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Abstract— Advanced motion controllers combining model-
based and model-free methods are proposed to solve two
problems of the benchmark challenge organized by IEEE CDC
2023. The proposed controllers allow the vehicle to track the
target speed and trajectory while effectively suppressing its
vertical acceleration on rough roads. First, the vehicle dynamics
model is established, and its unknown parameters are identified
via the nonlinear least squares method. Second, a longitudinal
motion controller is proposed based on nonlinear control
methods to track the target speed. Finally, the vehicle states,
including vertical acceleration, body roll angle, and body pitch
angle, are suppressed by torque allocation based on model-free
reinforcement learning. Co-simulations of Modelon Impact and
MATLAB/Simulink have been performed, and the results show
that our methods are initially effective and promising.

I. INTRODUCTION

Automation and electrification are two important trends in
the development of the automotive industry. Vehicle motion
control is the basis for the realization of autonomous driving
technologies. Although this problem has been addressed in
the field of vehicle engineering in the past decades, it has
not attracted much attention in the academic field of control
and decision-making. Therefore, the study of motion con-
trol of four in-wheel motor-actuated vehicles is meaningful
and important. Two problems of the benchmark challenge
organized by IEEE CDC 2023 are as follows:

• Problem 1: For the problem of acceleration and braking
on rough wet straight roads, we should not only track
the target speed but also consider the vehicle states and
body angles with the minimum energy consumption.

• Problem 2: For the ISO two-lane transformation prob-
lem on rough and uneven roads: we must not only track
the desired route to the maximum extent but also control
the driving state and body posture of the vehicle with
the minimum energy consumption.

The control strategies of longitudinal motion mainly in-
clude model-based optimal control, neural network control,
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Fig. 1. The diagram of the proposed control strategy.

and fuzzy control. The above methods can realize the ac-
curate tracking of longitudinal speed when the vehicle pa-
rameters are known. However, they have not yet considered
whether the tracking of longitudinal speed is effective when
the vehicle model is unknown. There are also lots of studies
focusing on vehicle lateral-longitudinal-vertical motion con-
trol. F. Xiao et al. [1] studied the three-dimensional stability
region and proposed an integrated control framework of
active front-wheel steering, active suspension, and direct
yaw moment control. J. Zhao et al. [2] proposed a new
integrated controller with a three-layer recursive structure to
coordinate the three interactions. S. Zhao et al. [3] proposed
a multilevel recursive order control theory realizing the
function decoupling of the vehicle chassis system.

Reinforcement learning is the branch of machine learning
that emphasizes exploring actions and learning based on
the environment to maximize expected benefits. The basic
principle of reinforcement learning is to learn the optimal
strategy to maximize the cumulative rewards of the intelli-
gent body through trial and error, constant interaction with
the environment, and constant revision of the intelligent
body’s strategy, which ultimately maximizes the rewards
or achieves the specified goal. Q-learning algorithm is a
typical value-based reinforcement learning algorithm, which
has the advantages of fewer required parameters, no need for
environment modeling, and can be implemented offline, and
is one of the most effective algorithms currently applied to
four-wheel drive vehicle path planning.

II. METHODS

The diagram of the proposed control strategy is shown
in Fig. 1. Firstly, a model-based control strategy based on
the longitudinal model is adopted to obtain the total torque
demand. The unknown parameters of the longitudinal model
are identified by using the nonlinear least squares method.
Then, reinforcement learning is used to allocate the total
required torque to reduce energy consumption and suppress
vertical acceleration.

The details of the model-based control strategy are to
identify the vehicle’s longitudinal model and obtain the
total torque demand of the vehicle. The longitudinal motion
controller is designed within the framework of the output
feedback nonlinear control method. The specific method
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Algorithm 1 Q-learning Algorithm
1: Initialize Q (s, a) with zeros, initialize Rj with zero
2: for i = 1 : N do
3: Initialize s
4: for j = 1 : M do
5: Choose action aj , observe Rj , sj+1 from envi-

ronment
6: Updating the Q-table: Q (sj , aj)← Q (sj , aj) +

c [Rj + r ∗max (Q (sj+1, aj))−Q (sj , aj)]
7: end for
8: end for

of reinforcement learning is to use the Q-learning method,
which uses the constraints of vertical acceleration and energy
consumption as the reward function. The specific algorithm
process is shown in Algorithm 1, where c is step size, r is
the discount factor, s is the state of the vehicle, a is the
distributed torque, and R is the reward.

The reward R can be calculated as

R = jv3 + pena, (1)

pena=

{
−1000, |az| > 0.4, |ϕ| > 0.014, |θ| > 0.005

0, others,
(2)

where jv3 is energy consumption, pena is the penalty for
exceeding constraints, az is vertical acceleration, ϕ is the
pitch angle, θ is the roll angle. Decision-making is performed
by constructing a Q-table, where each element of the Q-table
measures the maximum expected cumulative payoff that will
be obtained when a given action is taken in a given state.
Therefore, the intelligent body can select the optimal action
in each state according to the Q-table. Based on vehicle
dynamics, it is known that changes in vehicle road conditions
are coupled to the vehicle through vertical load, so in this
paper, the vertical acceleration is used as the state quantity in
Q-learning, and the body attitude-pitch, side inclination, and
front/rear axle allocation ratio are used as the reward function
to train the appropriate allocation strategy to control the body
attitude as well as the vehicle stability.

III. RESULTS

The preliminary results of our work are given based on
co-simulations of Modelon Impact and MATLAB/Simulink,
as shown in Figs. 2 and 3. It should be noted that these
preliminary results are obtained with the basic PID controller,
not the methods mentioned in Section II. We are developing
more advanced controllers described in Section II, and new
results will be given by the poster at the end of November.
Co-simulation results show that the longitudinal speed can
track the target speed, and the vertical acceleration is within
its constraint range. In addition, the pitch angle and roll angle
are also below constraints, satisfying the requirements.

IV. CONCLUSIONS

The research content of this paper is to design vehicle
motion controllers for state suppression, energy conversation,
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Fig. 2. Co-simulation results of Problem 1.
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Fig. 3. Co-simulation results of Problem 2.

and the tracking of speed and trajectory of four in-wheel
actuated vehicles. The proposed methods will be developed
further until the beginning of the Autonomous Driving Con-
trol Benchmark Challenge of IEEE CDC 2023.
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