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Abstract—This tutorial serves as an introduction to recently
developed non-asymptotic methods in the theory of—mainly
linear—system identification. We emphasize tools we deem
particularly useful for a range of problems in this domain, such
as the covering technique, the Hanson-Wright Inequality and the
method of self-normalized martingales. We then employ these
tools to give streamlined proofs of the performance of various
least-squares based estimators for identifying the parameters
in autoregressive models. We conclude by sketching out how
the ideas presented herein can be extended to certain nonlinear
identification problems. Note: For reasons of space, proofs have
been omitted in this version and are available in an online
version: https://arxiv.org/abs/2309.03873.

NOTATION

Maxima (resp. minima) of two numbers a, b ∈ R are
denoted by a ∨ b = max(a, b) (a ∧ b = min(a, b)). For two
sequences {at}t∈Z and {bt}t∈Z we introduce the shorthand
at ≲ bt if there exists a universal constant C > 0 and an
integer t0 such that at ≤ Cbt for every t ≥ t0. If at ≲ bt and
bt ≲ at we write at ≍ bt. Let X ⊂ Rd and let f, g ∈ X → R.
We write f = O(g) if lim supx→x0

|f(x)/g(x)| <∞, where
the limit point x0 is typically understood from the context.
We use Õ to hide logarithmic factors and write f = o(g)
if lim supx→x0

|f(x)/g(x)| = 0. We write f = Ω(g) if
lim supx→x0

|f(x)/g(x)| > 0. For an integer N , we also
define the shorthand [N ] ≜ {1, . . . , N}.

Expectation (resp. probability) with respect to all the
randomness of the underlying probability space is denoted by
E (resp. P).

The Euclidean norm on Rd is denoted ∥ · ∥2, and the unit
sphere in Rd is denoted Sd−1. The standard inner product
on Rd is denoted ⟨·, ·⟩. We embed matrices M ∈ Rd1×d2 in
Euclidean space by vectorization: vecM ∈ Rd1d2 , where
vec is the operator that vertically stacks the columns of
M (from left to right and from top to bottom). For a
matrix M the Euclidean norm is the Frobenius norm, i.e.,
∥M∥F ≜ ∥ vecM∥2. We similarly define the inner product
of two matrices M,N by ⟨M,N⟩ ≜ ⟨vecM, vecN⟩. The
transpose of a matrix M is denoted by MT and trM
denotes its trace. For a matrix M ∈ Rd1×d2 , we order its
singular values σ1(M), . . . , σd1∧d2(M) in descending order
by magnitude. We also write ∥M∥op for its largest singular
value: ∥M∥op ≜ σ1(M). To not carry dimensional notation,
we will also use σmin(M) for the smallest nonzero singular

value. For square matrices M ∈ Rd×d with real eigenvalues,
we similarly order the eigenvalues of M in descending order
as λ1(M), . . . , λd(M). In this case, λmin(M) will also be
used to denote the minimum (possibly zero) eigenvalue of
M . For two symmetric matrices M,N , we write M ≻ N
(M ⪰ N) if M −N is positive (semi-)definite.

I. INTRODUCTION

Machine learning methods are at an ever increasing pace
being integrated into domains that have classically been
within the purview of controls. There is a wide range of
examples, including perception-based control, agile robotics,
and autonomous driving and racing. As exciting as these
developments may be, they have been most pronounced on
the experimental and empirical sides. To deploy these systems
safely, stably, and robustly into the real world, we argue that
a principled and integrated theoretical understanding of a)
fundamental limitations and b) statistical optimality is needed.
Under the past few years, a host of new techniques have been
introduced to our field. Unfortunately, existing results in this
area are relatively inaccessible to a typical first or second
year graduate student in control theory, as they require both
sophisticated mathematical tools not typically included in a
control theorist’s training (e.g., high-dimensional statistics
and learning theory).

This tutorial seeks to provide a streamlined exposition of
some of these recent advances that are most relevant to the
non-asymptotic theory of linear system identification. Our
aim is not to be encyclopedic but rather to give simple proofs
of the main developments and to highlight and collect the key
technical tools to arrive at these results. For a broader—and
less technical—overview of the literature we point the reader
to our recent survey [31]. It is also worth to point out that
the classical literature on system identification has done a
formidable job at—often very accurately—characterizing the
asymptotic performance of identification algorithms [14]. Our
aim is not to supplant this literature but rather to complement
the asymptotic picture with finite sample guarantees by
relaying recently developed technical tools drawn from high-
dimensional probability, statistics and learning theory [35, 37].
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A. Problem Formulation

Let us now fix ideas. We are concerned with linear time-
series models of the form:

Yt = θ⋆Xt + Vt t = 1, 2, . . . , T (1)

where Y1:T is a sequence of outputs (or targets) assuming
values in RdY and X1:T is a sequence of inputs (or covariates)
assuming values in RdX . The goal of the user (or learner) is to
recover the a priori unknown linear map θ⋆ ∈ RdY×dX using
only the observations X1:T and Y1:T . The linear relationship
in the regression model (1) is perturbed by a stochastic
noise sequence V1:T assuming values in RdY . We refer to the
regression model (1) as a time-series to emphasize the fact
that the observations X1:T and Y1:T may arrive sequentially
and in particular that past Xt and Yt may influence future
Xt′ and Yt′ (i.e. with t′ > t).

a) Example: Autoregressive Models.: For instance, a
model class of particular interest to us which is subsumed by
(1) are the (vector) autoregressive exogenous models of order
p and q (briefly ARX(p, q)):

Yt =

p∑
i=1

A⋆
i Yt−i +

q∑
j=1

B⋆
i Ut−j +Wt (2)

where typically U1:T−1 is a sequence of user specified inputs
taking values in RdU and W1:T is an iid sequence of noise
variables taking values in RdW . If we are only interested in
the parameters

[
A⋆

1:p B⋆
1:q

]
, we obtain the model (2) by

setting

Xt =
[
Y T
t−1:t−p UT

t−1:t−q

]T
; θ⋆ =

[
A⋆

1:p B⋆
1:q

]
; Vt =Wt.

(3)
We point out that that the above discussion presupposes that
the order of the model, (p, q), is known (there are ways around
this).

In this tutorial we will provide the necessary tools to tackle
the following problem.

Problem I.1. Fix ε > 0, δ ∈ (0, 1), and a norm ∥·∥. Fix also
a ‘reasonable’ estimator θ̂ of θ⋆ using a sample (X,Y )1:T
from (1). We seek to establish finite sample guarantees of the
form

∥θ̂ − θ⋆∥ ≤ ε with probability at least 1− δ (4)

where ε controls the accuracy (or rate) and the failure
parameter δ controls the confidence.

In the sequel, ‘reasonable’ estimator will typically mean
some form of least squares estimator (7). These are in-
troduced in Section I-B below. A bound of the form (4)
is typically thought of as follows. We fix a priori the
failure parameter δ and then provide guarantees of the
form ∥θ̂ − θ⋆∥ ≤ ε(T, δ,PXY ) where PXY is the joint
distribution of (X,Y )1:T . Hence, the sample size T , the
failure probability δ and the distribution of the samples all

impact the performance guarantee ε we are able to establish.
To be more specific, ε will typically be of the form

ε ∝ (Noise Scale)×

√
problem dimension + log(1/δ)

sample size
. (5)

Thus in principle, the best possible choice of ε2 can be
thought of as a high probability version of the (inverse)
signal-to-noise ratio of the problem at hand. The fact that
the confidence parameter δ typically affects (5) additively in
log(1/δ) is consistent with classical asymptotic normality
theory of estimators. One often expects the normalized
difference T−1/2(θ̂ − θ⋆) to converge in law to a normal
distribution [33]. In this tutorial we will provide tools that
allow us to match such classical asymptotics but with a finite
sample twist. Let us also remark that there often is a minimal
requirement on the sample size necessary for a bound of the
form (4)-(5) to hold. Such requirements are typically of the
form

sample size ≳ problem dimension + log(1/δ). (6)

Requirements such as (6) are called burn-in times and are
related to the notion of persistence of excitation. They corre-
spond to the rather minimal requirement that the parameter
identification problem is feasible in the complete absence of
observation noise.

B. Least Squares Regression and the Path Ahead
Let us now return to the general setting of (1). Fix a subset

M of RdY×dX , called the model class. The estimator

θ̂ ∈ argmin
θ∈M

1

T

T∑
t=1

∥Yt − θXt∥22 (7)

is the least squares estimator (LSE) of θ⋆ (with respect to M).
Often we simply set M = RdY×dX . In this case, equivalently:

θ̂ =

(
T∑

t=1

YtX
T
t

)(
T∑

t=1

XtX
T
t

)†

(8)

and the LSE reduces to the (minimum norm) ordinary least
squares (OLS) estimator (8).

For simplicity, let us further assume that the (normalized)
empirical covariance matrix:

Σ̂ ≜
1

T

T∑
t=1

XtX
T
t ; (9)

is full rank almost surely.
a) The Path Ahead.: Let us now briefly sketch the

path ahead to solve Problem I.1. If (9) is full rank—as
required above—the estimator (8) admits the convenient error
representation:

θ̂ − θ⋆

=

( T∑
t=1

VtX
T
t

)(
T∑

t=1

XtX
T
t

)−1/2
( T∑

t=1

XtX
T
t

)−1/2

.

(10)
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The leftmost term of (10) (in square brackets) can be shown
to be (almost) time-scale invariant in many situations. For
instance, if the noise V1:T is a sub-Gaussian martingale
difference sequence with respect to the filtration generated
by the covariates X1:T , one can invoke methods from the
theory of self-normalized processes to show this [18, 1]. These
methods are the topic of Section IV.

Whenever this is the case, the dominant term in the
rate of convergence of the least squares estimator is(∑T

t=1XtX
T
t

)−1/2

. In other words, providing control of
the smallest eigenvalue of (9) effectively yields control of the
rate of convergence of the least squares estimator in many
situations. Thus, to analyze the rate of convergence of (7)
when M = RdY×dX it suffices to:

• Analyze the smallest eigenvalue (or lower tail) of (9).
We provide such analyses in Section III

• Analyze the scale invariant term (in square brackets) of
(10). This can in many situations be handled for instance
by the self-normalized martingale method described in
Section IV.

C. Overview

Before covering these more technical topics in Section III
and Section IV, we also briefly review some preliminaries
from probability theory in Section II. We then demonstrate
how to apply these ideas in the setting of identifying the
parameters of an ARX(p, q) model of the form (2) in
Section V. An alternative perspective not based on the
decomposition (10) for more general least squares algorithms
is given in Section VI. We conclude with a brief discussion
on how the tools in Section VI can be extended to study more
general nonlinear phenomena in Section VII.

II. PRELIMINARIES: CONCENTRATION INEQUALITIES,
PACKING AND COVERING

Before we proceed to tackle the more advanced question
of analyzing the LSE (7), let us discuss a few preliminary
inequalities that control the tail of a random variable. Our
first inequality is Markov’s.

Lemma II.1. Let X be a nonnegative random variable. For
every s > 0 we have that

P(X ≥ s) ≤ s−1E[X]. (11)

Proof. We have that E[X] ≥ E[1X≥sX] ≥ sE[1X≥s]. Since
E[1X≥s] = P(X ≥ s) the result follows by rearranging. ■

Typically, Markov’s inequality itself is insufficient for
our goals: we seek deviation inequalities that taper of
exponentially fast in s and not as s−1. Such scaling is for
instance predicted asymptotically by the central limit theorem
by the asymptotic normality of renormalized sums of square
integrable iid random variables; that is, sums of the form
Sn/

√
n = (X1 +X2 + · · ·+Xn)/

√
n where the Xi, i ∈ [n]

are independent and square integrable. For random variables
possessing a moment generating function, Markov’s inequality

can be ”boosted” by the so-called ”Chernoff trick”. Namely,
we apply Markovs inequality to the moment generating
function of the random variable instead of applying it directly
to the random variable itself.

Corollary II.1 (Chernoff). Fix s > 0 and suppose that
E exp (λX) exists. Then

P (X ≥ s) ≤ min
λ≥0

e−λsE exp (λX) . (12)

Proof. Fix λ ≥ 0. We have:

P (X ≥ s) = P (exp (λX) ≥ exp (λs)) (mono: x 7→ eλx)

≤ e−λsE exp (λX) (Markov).

The result follows by optimizing. ■

Recall that the function ψX(λ) ≜ E exp (λX) is the
moment generating function of X . For instance, if X has
univariate Gaussian distribution with mean zero and variance
σ2, the moment generating function appearing in (12) is just
E exp (λX) = exp

(
λ2σ2/2

)
. Hence the probability that said

Gaussian exceeds s is upper-bounded:

P (X > s) ≤ min
λ≥0

e−λs exp
(
λ2σ2/2

)
= exp

(
−s2

2σ2

)
(13)

which (almost) exhibits the correct Gaussian tails as compared
to (11).1 It should be pointed out that assumptions stronger
than those of the Central Limit Theorem (finite variance) are
indeed needed for a non-asymptotic theory with sub-Gaussian
tails as in (13). An assumption of this kind which is relatively
standard in the literature is introduced next.

A. Sub-Gaussian Concentration and the Hanson-Wright In-
equality

In the sequel, we will not want to impose the Gaussian
assumption. Instead, we define a class of random variables
that admit reasoning analogous to (13).

Definition II.1. We say that a random vector W taking values
in Rd is σ2-sub-Gaussian (σ2-subG) if for every v ∈ Rd we
have that:

E exp (⟨v,W ⟩) ≤ exp

(
σ2∥v∥2

2

)
. (14)

Similarly, we say that W is σ2-conditionally sub-Gaussian
with respect to a σ-field F if (14) holds with E[·] replaced
by E[·|F ].

The term σ2 appearing in (14) is called the variance
proxy of a sub-Gaussian random variable. The significance
of this definition is that the one-dimensional projections
X = ⟨v,W ⟩ (with ∥v∥ = 1) satisfy the tail inequality
(13). While obviously Gaussian random variables are sub-
Gaussian with their variance as variance-proxy, there are many
examples beyond Gaussians that fit into this framework. It
is for instance straightforward to show that bounded random

1We write almost because exp(−s2/2σ2) ≈ P(V > s) where V ∼
N(0, σ2) but the expression is not exact.
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variables have variance proxy proportional to the square of
their width [see eg. 37, Examples 2.3 and 2.4]. Moreover, it
is readily verified that the normalized sum mentioned above—
Sn/

√
n = (X1 + · · ·+Xn)/

√
n—satisfies the same bound

(13) provided that the entries of X1:n are independent, mean
zero and σ2-sub-Gaussian. To see this, notice that the moment
generating function ”tensorizes” across products. Namely, for
every λ ∈ R:

E exp

(
λ√
n

n∑
i=1

Xi

)
=

n∏
i=1

E exp

(
λ√
n
Xi

)
≤

n∏
i=1

exp

(
λ2σ2

2n

)
= exp

(
λ2σ2

2

)
.

Hence, by the exact same reasoning leading up to (13) such
normalized sub-Gaussian sums satisfy the same tail bound
(13).

When analyzing linear regression models, most variables of
interest are typically either linear or quadratic in the variables
of interest (cf. (10)). Hence, we also need to understand
how squares of sub-Gaussian random variables behave. The
next result shows that sub-Gaussian quadratic forms exhibit
similar tail behavior to the Chi-squared distribution (often in
the literature referred to as sub-exponential tails). It is known
as the Hanson-Wright Inequality.

Theorem II.1 ([6, 22]). Let M ∈ Rd×d. Fix a random
variable W =W1:d where each Wi, i ∈ [d] is a scalar, mean
zero and independent σ2-sub-Gaussian random variable. Then
for every s ∈ [0,∞):

P
(
|WTMW −EWTMW | > s

)
≤ 2 exp

(
−min

(
s2

144σ4∥M∥2F
,

s

16
√
2σ2∥M∥op

))
.

The proof of Theorem II.1 is rather long and technical and
thus relegated to the appendix. There, the reader may also
find further useful concentration inequalities for quadratic
forms in sub-Gaussian variables. In fact, there are plethora
of useful concentration inequalities not covered here and the
interested reader is urged to consult the first few chapters of
[35].

B. Covering and Discretization Arguments

We will often find ourselves in a situation where it is
possible to obtain a scalar concentration bound but need this
to hold uniformly for many random variables at once. The
ε-net argument, which proceeds via the notion of covering
numbers, is a relatively straightforward way of converting
concentration inequalities for scalars into their counterparts
for vectors, matrices and functions more generally.

The reader will for instance notice that the quantity being
controlled by Theorem II.1 is a scalar quadratic form in
sub-Gaussian random variables. By contrast, the empirical
covariance matrix (9) is a matrix and so a conversion step
is needed. This idea will be used frequently and in various

forms throughout the manuscript, so we review it briefly here
for the particular case of controlling the operator norm of a
random matrix. To this end, we notice that for any matrix
M ∈ Rm×d:

∥M∥2op = max
v∈Sd−1

⟨Mv,Mv⟩. (15)

Hence, the operator norm of a random matrix is a maximum
of scalar random variables indexed by the unit sphere Sd−1.

Recall now that the union bound states that the probability
that the maximum of a finite collection (|S| <∞) {Xi}i∈S of
random variables exceeds a certain threshhold can be bounded
by the sum of their probabilities:

P

(
max
i∈S

Xi > t

)
≤
∑
i∈S

P (Xi > t) . (16)

Unfortunately, the unit sphere appearing (15) is not a finite
set and so the union bound (16) cannot be directly applied.
However, when the domain of optimization has geometric
structure, one can often exploit this to leverage the union
bound not directly but rather in combination with a discretiza-
tion argument. Returning to our example of the operator norm
of a matrix, the set S appearing in (16) will be a discretized
version of the unit sphere Sd−1.

The following notion is key.

Definition II.2. Let (X, d) be a compact metric space and
fix ε > 0. A subset N of X is called an ε-net of X if every
point of X is within radius ε of a point of N :

sup
x∈X

inf
x′∈N

d(x, x′) ≤ ε. (17)

Moreover, the minimal cardinality of N necessary such that
(17) holds is called the covering number at resolution ε of
(X, d) and is denoted N (ε,X, d).

We will not explore this notion in full, but simply content
ourselves to note that it plays very nicely with the notion of
operator norm.

Lemma II.2 (Lemma 4.4.1 in [35]). Let M ∈ Rm×d and let
ε ∈ (0, 1). Then for any ε-net N of (Sd−1, ∥ · ∥2) we have
that:

∥M∥op ≤
1

1− ε
sup
v∈N

∥Mv∥2. (18)

Hence at a small multiplicative cost, the computation of
the operator norm can be restricted to the discretized sphere
N . Our intention is now to apply the union bound (16) to
the right hand side of (18). To do so, we also need control
of the size (cardinality) of the ε-net.

Lemma II.3 (Corollary 4.2.13 in [35]). For any ε > 0 the
covering numbers of Sd−1 satisfy

N (ε, Sd−1, ∥ · ∥) ≤
(
1 +

1

2ε

)d

. (19)

We now provide two instances of this covering argument
combined with the union bound. The second of these uses an
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alternative variational characterization of the operator norm
but otherwise similar ideas.

Lemma II.4. Let M be an m× d random matrix, and ϵ ∈
(0, 1). Furthermore, let N be an ϵ-net of Sd−1 of minimal
cardinality. Then for all ρ > 0, we have

P (∥M∥op > ρ) ≤
(
2

ϵ
+ 1

)d

max
v∈N

P (∥Mv∥2 > (1− ϵ)ρ) .

Lemma II.5. Let M be an d× d symmetric random matrix,
and let ϵ ∈ (0, 1/2). Furthermore, let N be an ϵ-net of Sd−1

with minimal cardinality. Then for all ρ > 0, we have

P (∥M∥op > ρ) ≤
(
2

ϵ
+ 1

)d

max
v∈N

P
(
|v⊤Mv| > (1− 2ϵ)ρ

)
.

Lemma II.4 and Lemma II.5 exploit two different variational
forms of the operator norm. Namely for any M we have that
∥M∥2op = supv∈Sd−1 ∥Mv∥2 and in addition, when M is
symmetric we also have, ∥M∥op = supv∈Sd−1 |v⊤Mv|. The
proof of these last two lemmas are standard and can be found
for example in [35, Chapter 4].

C. Concentration of the Covariance Matrix of Linear Systems

To not get lost in the weeds, let us provide an example
showcasing the use of Theorem II.1 due to [8]. Recall that
the matrix Σ̂ appearing in (9) is crucial to the performance
of the least squares estimator. We will now see that this
matrix is well-conditioned when we consider stable first order
auto-regressions of the form:

Xt+1 = A⋆Xt +Wt t = 1, . . . , T (20)

taking values in RdX and with W1:T iid isotropic and K2-
subG. By stable we mean that the spectrum of A⋆ is contained
in the unit disc.

The following result is a consequence of the Hanson-Wright
inequality together with the discretization strategy outlined
in Section II-B.

Theorem II.2. Let ε > 0 and set M ≜(∑T
t=1

∑t−1
k=0(A

⋆)k(A⋆,T)k
)− 1

2

. Let also L be the linear
operator such that X1:T = LW1:T . Then simultaneously for
every i ∈ [dX]:

(1−ε)2λmin

(
T∑

t=1

t−1∑
k=0

(A⋆)k(A⋆,T)k

)
≤ λi

(
T∑

t=1

XtX
T
t

)

≤ (1 + ε)2λmax

(
T∑

t=1

t−1∑
k=0

(A⋆)k(A⋆,T)k

)
holds with probability at least

1− exp

(
− ε2

576K2∥M∥2op∥L∥2op
+ dX log(18)

)
. (21)

Put differently, on the same event as in Theorem II.2, the
spectrum of

Σ̂ =
1

T

T∑
t=1

XtX
T
t (22)

is sandwiched by its population counterpart within a small
multiplicative factor. The result holds with high probability
for strictly stable systems.

The quantity ∥L∥op in (21) grows very quickly as the
spectral radius of A⋆ tends to 1; Theorem II.2 becomes
vacuous in the marginally stable regime. It turns out that
requirement of two-sided concentration—the sandwiching of
the entire spectrum—is too stringent a requirement to obtain
bounds that degrade gracefully with the stability of the system.
Fortunately, we only need sharp control of the lower half
of the spectrum to control the error (10). This motivates
Section III below, in which we will see how to relax the
stability assumption and analyze more general linear systems.

D. Notes

The basic program carried out in Section II-C can be
summarized as follows: (1) introduce a discretization of
the problem considered—for matrices this is typically a
discretization of the unit sphere; (2) prove an exponential
inequality for a family of scalar random variables correspond-
ing to one-dimensional projection of the discretization—in
our case: prove bounds on the moment generating function
of quadratic forms in random matrices; and (3) conclude to
obtain a uniform bound by using the union bound across
the discretization. This roughly summarizes the proof of
Theorem II.2. These tools are thematic throughout this
manuscript.

III. THE LOWER SPECTRUM OF THE EMPIRICAL
COVARIANCE

Recall that our outline of the analysis of the least squares
estimator in Section I-B consists of two main components,
one of which being the lower tail of the empirical covariance
matrix (9). In this section we provide a self-contained analysis
of this random matrix for a class of ”causal” systems.
Moreover, we will emphasize only the lower tail of this
random matrix as to sidestep issues with bounds degrading
with the stability of the system considered. This allows us to
quantitatively separate the notions of persistence of excitation
and stability.

Let us now carry out this program. Fix two integers T and k
such that T/k ∈ N. We consider causal processes of the form
X1:T = (XT

1 , . . . , X
T
T )

T evolving on Rd. More precisely, we
assume the existence of an isotropic sub-Gaussian process
evolving on Rp, W1:T with EW1:TW

T
1:T = IpT and a (block-)

lower-triangular matrix L ∈ RdT×pT such that

X1:T = LW1:T . (23)

We will assume that all the pT -many entries of W1:T are
independent K2-sub-Gaussian for some positive K ∈ R.
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We say that X1:T is k-causal if the matrix L has the block
lower-triangular form:

L =


L1,1 0 0 0 0
L2,1 L2,2 0 0 0
L3,1 L3,2 L3,3 0 0

...
. . . . . . . . .

...
LT/k,1 . . . . . . . . . . . .LT/k,T/k

 =


L1

L2

L3

...
LT/k


(24)

where each Lij ∈ Rdk×pk, i, j ∈ [T/k] ≜ {1, 2, . . . , T/k}.
In brief, we say that X0:T−1 satisfying the above construction
is k-causal with independent K2-sub-Gaussian increments.

Obviously, every 1-causal process is k-causal for every
k ∈ N as long as the divisibility condition holds. To analyze
the lower tail of the empirical covariance of X0:T−1 we will
also associate a decoupled random process

X̃1:T = blkdiag(L11, . . . ,LT/k,T/k)W1:T .

Hence, the process X̃1:T is generated in much the same way
as X1:T but by removing the sub-diagonal entries of L:

L̃ ≜


L1,1 0 0 0

0 L2,2
. . .

...
...

. . . . . . 0
0 . . . 0 LT/k,T/k

 =⇒ X̃1:T = L̃W1:T .

We emphasize that by our assumptions on W1:T

and the block-diagonal structure of L̃ the variables
X̃1:k, X̃k+1:2k, . . . , X̃T−k+1:T are all independent of each
other; they have been decoupled. This decoupled process will
effectively dictate our lower bound, and we will show under
relatively mild assumptions that

λmin

(
1

T

T∑
t=1

XtX
T
t

)
≳ λmin

(
1

T

T∑
t=1

EX̃tX̃
T
t

)
(25)

with probability that approaches 1 at an exponential rate in
the sample size T . More precisely, the following statement is
the main result of this section.

Theorem III.1. Fix an integer k ∈ N, let T ∈ N be divisible
by k and suppose X1:T is a k-causal process taking values
in Rd with K2-sub-Gaussian increments. Suppose further
that the diagonal blocks are all equal: Lj,j = L1,1 for all
j ∈ [T/k]. Suppose λmin

(∑T
t=1 EX̃tX̃

T
t

)
> 0. We have

that:

P

(
1

T

T∑
t=1

XtX
T
t ⪰̸

1

8T

T∑
t=1

EX̃tX̃
T
t

)

≤ (Csys)
d
exp

(
− T

576K2k

)
(26)

where

Csys ≜ 1+

2
√
2

(
T∥LLT∥op

18kλmin(
∑T

t=1 EXtXT
t )

+ 9

)
λmax

(∑T
t=1 EXtX

T
t

)
λmin

(∑T
t=1 EX̃tX̃T

t

) .

(27)

To parse Theorem III.1, note that it simply informs us
that there exist a a system-dependent constant Csys—which
itself has no more than polynomial dependence on relevant
quantities—such that if

T/k ≥ 576K2(d logCsys + log(1/δ)) (28)

then on an event with probability mass at least 1− δ:

1

T

T∑
t=1

XtX
T
t ⪰ 1

8T

T∑
t=1

EX̃tX̃
T
t .

Remark III.1. Since the blocks of L can be regarded to
specify the noise-to-output map, the assumption that the
diagonal blocks are constant is for instance satisfied by linear
time-invariant (LTI) systems. The assumption can be removed
at the cost of a more complicated expression.

The next example serves as the archetype for the reduction
from L to L̃.

Example III.1. Suppose that (23) is specified via

Xt = A⋆Xt−1 +B⋆Wt (29)

for t ∈ [T ] and where (A⋆, B⋆) ∈ RdX×dX+dX×dW . We set
d = dX and p = dW in the theorem above. The reduction from
X1:T = LW1:T to X̃1:T = blkdiag(L11, . . . ,LT/k,T/k)W1:T

corresponds to replacing a single trajectory from the linear
system (29) of length T by T/k trajectories of length k each
and sampled independently of each other. The price we pay for
decoupling these systems is that our lower bound is dictated
by the gramians up to range k:

1

T

T∑
t=1

EX̃tX̃
T
t =

1

k

k∑
t=1

EX̃tX̃
T
t

=
1

k

k∑
t=1

t−1∑
j=0

(A⋆)jB⋆B⋆,T(A⋆,T)j

instead of the gramians up to range T :

1

T

T∑
t=1

EXtX
T
t =

1

T

T∑
t=1

t−1∑
j=0

(A⋆)jB⋆B⋆,T(A⋆,T)j .

Put differently, the reduction from L to L̃ can be thought of
as restarting the system every k steps.

Comparing with Theorem II.2, the advantage of The-
orem III.1 is that it allows us to provide persistence-of-
excitation type guarantees that do not rely strongly on the
stability of the underlying system. While Theorem II.2 gives in
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principle stronger two-sided concentration results, it comes at
the cost of the guarantees becoming vacuous as the spectral
radius of A⋆ in Example III.1 tends to marginal stability
(tends to 1). By contrast, Theorem III.1 does not exhibit such
a blow-up since the dependence on Csys in (28) is logarithmic
(instead of polynomial). The distinction might seem small,
but it is qualitatively important as it (almost) decouples the
phenomena of stability and persistence of excitation.

A. A Decoupling Inequality for sub-Gaussian Quadratic
Forms

Our proof of Theorem III.1 will make heavy use of
Proposition III.1 below. This is the crucial probalistic in-
equality that allows us to decouple—or restart as discussed
in Example III.1.

Proposition III.1. Fix K ≥ 1, x ∈ Rn and a sym-
metric positive semidefinite Q ∈ R(n+m)×(n+m) of the

form Q =

[
Q11 Q12

Q21 Q22

]
with Q22 ≻ 0. Let W be an

m-dimensional mean zero, isotropic and K2-sub-Gaussian
random vector with independent entries. Then for every
λ ∈

[
0, 1

8
√
2K2∥Q22∥op

]
it holds true that:

E exp

(
−λ
[
x
W

]T [
Q11 Q12

Q21 Q22

] [
x
W

])
≤ exp

(
−λ trQ22 + 36K4λ2 trQ2

22

)
. (30)

By combining Lemma III.1 below with the exponential
form of Hanson-Wright we obtain the exponential inequality
(30), which in the sequel will allow us to control the lower
tail of the conditionally random quadratic form[

x
W

]T [
Q11 Q12

Q21 Q22

] [
x
W

]
.

We point out that (30) is not the best possible if the
entries of are W independent and Gaussian as opposed
to just isotropic and sub-Gaussian. In this case, the factor
36K4λ2(trQ22)

2 in (30) can be improved to λ2

2 trQ2
22 and

the inequality can be shown to hold for the entire range of
non-negative λ [38, Lemma 2.1]. Irrespectively, we will see
in the sequel that it captures the correct qualitative behavior.

Lemma III.1 (sub-Gaussian Decoupling). Fix K ≥ 1, x ∈
Rn and a symmetric positive semidefinite Q ∈ R(n+m)×(n+m)

of the form Q =

[
Q11 Q12

Q21 Q22

]
. Let W be an m-dimensional

mean zero and K2-sub-Gaussian random vector. Then for
every λ ∈

[
0, 1

4K2∥Q22∥op

]
it holds true that:

E exp

(
−λ
[
x
W

]T [
Q11 Q12

Q21 Q22

] [
x
W

])
≤
√
E exp (−2λWTQ22W ). (31)

Once equipped with (31), Proposition III.1 follows imme-
diately.

B. The Lower Tail of the Empirical Covariance of Causal
sub-Gaussian Processes

Repeated application of Proposition III.1 to the process
X1:T = LW1:T in combination with the tower property
of conditional expectation yields the following exponential
inequality that controls the lower tail of (9) in any fixed
direction.

Theorem III.2. Fix an integer k ∈ N, let T ∈ N be divisible
by k and suppose X1:T is a k-causal process driven by
independent K2-sub-Gaussian increments as described in
Section III. Fix also a matrix ∆ ∈ Rd′×d. Let Qmax ≜
maxj∈[T/k] ∥LT

j,jblkdiag(∆
T∆)Lj,j∥op Then for every λ ∈[

0, 1
8
√
2K2Qmax

]
:

E exp

(
−λ

T∑
t=1

∥∆Xt∥22

)

≤ exp

(
− λ

T/k∑
j=1

tr
(
LT
j,jblkdiag(∆

T∆)Lj,j

)
+ 36K4λ2

T/k∑
j=1

tr
(
LT
j,jblkdiag(∆

T∆)Lj,j

)2)
.

To appreciate the terms appearing in Theorem III.2, it is
worth to point out that

T/k∑
j=1

tr
(
LT
j,jblkdiag(∆

T∆)Lj,j

)
=

T∑
t=1

E∥∆X̃t∥22.

Hence Theorem III.2 effectively passes the expectation inside
the exponential at the cost of working with the possibly
less excited process X̃1:T and a quadratic correction term.
Note also that the assumption that T is divisible by k is not
particularly important. If not, let T ′ be the largest integer
such that T ′/k ∈ N and T ′ ≤ T and apply the result with T ′

in place of T .
The significance of Theorem III.2 is demonstrated by the

following simple observation, which is just the Chernoff ap-
proach applied to the exponential inequality in Theorem III.2.

Lemma III.2. Fix an integer k ∈ N, let T ∈ N be
divisible by k and suppose X1:T is a k-causal process with
independent K2-sub-Gaussian increments. Suppose further
that the diagonal blocks are all equal: Lj,j = L1,1 for all
j ∈ [T/k]. For every size-conforming matrix ∆ we have that:

P

(
T∑

t=1

∥∆Xt∥22 ≤ 1

2

T∑
t=1

E∥∆X̃t∥22

)
≤ exp

(
− T

576K2k

)
.

(32)

Note that Lemma III.2 only yields pointwise control of the
empirical covariance—i.e. pointwise on the sphere Sd−1 . By
setting ∆ = v ∈ Sd−1, the result holds for a fixed vector on
the sphere, but not uniformly for all such vectors at once.
Thus, returning to our over-arching goal of providing control
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of the smallest eigenvalue of the empirical covariance matrix
(9), we now combine (32) (using d′ = 1) with a union bound.
This approach yields Theorem III.1.2

C. Notes

In this manuscript we have chosen a perhaps less well-
known but conceptually simpler approach to establishing lower
bounds on the empirical covariance matrix Equation (25). The
first proof of a statement similar to Theorem III.1 is due to
[27] which in turn relies on a more advanced notion from
probability theory known as the small-ball method, due to
[15]. The emphasis therein is on anti-concentration—which
can hold under milder moment assumptions—rather than
concentration. However, the introduction of this tool is not
necessary for Gaussian (or sub-Gaussian) system identification.
For instance, Sarkar and Rakhlin [24] leverage the method of
self-normalized martingales introduced in Section IV below.

Our motivation for providing a different proof is to
streamline the exposition as to fit control of the lower tail
into the ”standard machinery”, which roughly consists of: (1)
prove a family of scalar exponential inequalities, (2) invoke
the Chernoff method, and (3) conclude by a discretization
argument and a union bound to port the result from scalars to
matrices. Our proof here follows this outline and emphasizes
the exponential inequality in Theorem III.2. We finally remark
that the proof presented here is new to the literature and
extends a result in [38] from the Gaussian setting to the
sub-Gaussian setting.

IV. SELF-NORMALIZED MARTINGALE BOUNDS

The objective in this section is to bound the operator and
Frobenius norms of the self-normalized term of (10):(

T∑
t=1

VtX
T
t

)(
T∑

t=1

XtX
T
t

)−1/2

. (33)

This object has special structure. Firstly, in many cases of
interest, e.g. the autoregressive model in (2), the noise Vt
is independent of Xk for all k ≤ t. This is what provides
martingale structure, as will be made precise shortly. Secondly,
it is self-normalized: if the covariates Xt are large for some t,
then any increase in the left sum will be compensated by an
increase in the sum in the term on the right. Together, these
properties make the object above a self-normalized martingale
term.

To express results generally and compactly, several defini-
tions are in order.

Definition IV.1. (Filtration and Adapted Process) A sequence
of sub-σ-algebras {Ft}Tt=1 is said to be a filtration if Ft ⊆ Fk

for t ≤ k. A stochastic process {Wt}Tt=1 is said to be adapted
to the filtration {Ft}Tt=1 if for all t ≥ 1, Wt is Ft-measurable.

Conditioning on a sub-σ-algebra provides partial informa-
tion about the total randomness. Therefore, the requirement
that a filtration is non-decreasing captures the fact that

2Similar results can also be obtained for restricted eigenvalues.

information is not forgotten. An adapted process is one in
which all the randomness at a particular time is explained by
the information in the filtration up to that time.

Definition IV.2. (Martingale) Consider a stochastic process
{Wt}Tt=1 which is adapted to a filtration {Ft}Tt=1. This
process is called a martingale if for all 1 ≤ t ≤ T , Wt

is integrable and for all 1 ≤ t < T , E[Wt+1|Ft] =Wt.

Martingales model causal or non-anticipative processes. To
better appreciate this, note that the increments Wt+1 −Wt

are mean zero and conditionally orthogonal to the past; they
can be thought of as the ”next step” in a random walk whose
path is traced out by Wt.

In the context of the linear time-series model in (1), we
may define the sub-σ-algebras Ft as those induced by the
randomness up to time t: Ft = σ(X1, . . . , Xt+1, V1, . . . , Vt).
In this case, the process {Xt}Tt=1 is adapted to the filtration
{Ft−1}Tt=1 and the process {Vt}Tt=1 is adapted to the filtration
{Ft}Tt=1.

Recall now again that the ”numerator” in the ordinary
least squares error is (33). We see that if we define the
sum, St ≜

∑t
s=1 VsX

⊤
s , then the process {St}Tt=1 is

adapted to {Ft}Tt=1. Furthermore, E (St+1|Ft) = St +
E (Vt+1|Ft)X

⊤
t+1. In particular, as long as the noise has

conditional mean zero (E (Vt+1|Ft) = 0), the process
{St}Tt=1 is a martingale.3 Normalizing the sum St by the

covariates as St

(∑t
s=1XsX

⊤
s

)−1/2

almost preserves the
martingale structure. Expressions of this type are called self-
normalized martingales—although we stress that they are not
strictly speaking martingales but only constructed from them.

We now state bounds on the operator and Frobenius norms
of the self-normalized martingale. The main idea behind
the result—the technique of pseudo-maximization—is due to
[21]. The formulations presented here are a consequence of
Theorem 3.4 in [1].

Theorem IV.1. (Special cases of Theorem 3.4 in [1]) Let
{Ft}Tt=0 be a filtration such that {Xt}Tt=1 is adapted to
{Ft−1}Tt=1 and {Vt}Tt=1 is adapted to {Ft}Tt=1. Additionally,
suppose that for all 1 ≤ t ≤ T , Vt is σ2-conditionally sub-
Gaussian with respect to Ft. Let Σ be a positive definite
matrix in RdX×dX . For a fixed T ∈ N+ and δ ∈ (0, 1), with
probability at least 1− δ,

∥∥∥∥∥∥
T∑

t=1

VtX
⊤
t

(
Σ+

T∑
t=1

XtX
⊤
t

)−1/2
∥∥∥∥∥∥
2

F

≤ dYσ
2 log

det
(
Σ+

∑T
t=1XtX

⊤
t

)
det(Σ)

+ 2σ2 log
1

δ
.

Additionally, for a fixed T ∈ N+ and δ ∈ (0, 1), with

3Indeed, St is a so-called martingale transform of X1:t.
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probability at least 1− δ,∥∥∥∥∥∥
T∑

t=1

VtX
⊤
t

(
Σ+

T∑
t=1

XtX
⊤
t

)−1/2
∥∥∥∥∥∥
2

op

≤ 4σ2 log

det
(
Σ+

∑T
t=1XtX

⊤
t

)
det(Σ)


+ 8dYσ

2 log 5 + 8σ2 log
1

δ
.

Note that the quantities bounded above have a positive
definite matrix Σ added to the normalization quantities
that was not present in the original term of interest, (33).
Furthermore, the covariates

∑T
t=1XtXt appear in the upper

bound. Hence, one typically combines the self-normalized
martingale bound with some weak form of concentration.4

This is done in Section V.
In the sequel, we prove the above bounds. To obtain the

bound on the Frobenius norm, we directly consider the object∥∥∥∥∥∥
(

T∑
t=1

VtX
T
t

)(
T∑

t=1

XtX
T
t

)−1/2
∥∥∥∥∥∥
F

, (34)

while to obtain the bound on the operator norm we consider
the following vector norm for an arbitrary unit vector w as
an intermediate step:∥∥∥∥∥∥

(
w⊤

T∑
t=1

VtX
T
t

)(
T∑

t=1

XtX
T
t

)−1/2
∥∥∥∥∥∥
2

(35)

and combine with a covering argument (recall Section II-B).

A. Exponential Inequalities via Pseudo-maximization

We begin by neglecting the details of the process that
generated the data in (33). In particular, consider a random
matrix P assuming values in Rdη×dX for dη ∈ N+ and
a random matrix Q assuming values in RdX×dX with Q
almost surely nonsingular. Bounding the quantities in (34)
and (35) are special cases of bounding ∥PQ− 1

2 ∥F . A naive
first approach is to apply a Chernoff bound (12). Doing so
results in the inequality

P
(
∥PQ−1/2∥F ≥ x

)
≤ min

λ≥0
exp

(
−λ
2
x2
)
E exp

(
λ

2
∥PQ−1/2∥2F

)
.

If it is possible to bound the moment generating function
E exp

(
λ
2 ∥PQ

−1/2∥2F
)

by one for some λ > 0, then the
above bound provides an exponential inequality. Obtaining
a bound of the form E exp

(
λ
2 ∥PQ

−1/2∥2F
)
≤ 1 requires

very strong assumptions on P and Q which would not be
suitable for our purposes. However, we may observe that
1
2∥PQ

−1/2∥2F = maxΛ tr(PΛ − 1
2Λ

⊤QΛ). This motivates

4Alternatively, in the analysis of ridge regression, Σ takes the role of the
penalizing matrix which can be tuned.

the following canonical assumption in self-normalized process
theory:

max
Λ∈RdX×dη

E exp tr

(
PΛ− 1

2
Λ⊤QΛ

)
≤ 1. (36)

This inequality is called the canonical assumption because
a wide variety of self-normalized processes satisfy it. We
will demonstrate that it is satisfied for (34) and (35) in
Section IV-B. If we could exchange the order of the max-
imization with the expectation in (36), then the bound
E exp

(
1
2∥PQ

−1/2∥2F
)

≤ 1 would be satisfied, and the
Chernoff bound above would provide a valuable exponential
inequality. As this exchange is not possible, we instead lower
bound the maximization over Λ by assigning a probability
distribution to a random variable Ψ which takes values in
RdX×dη , and taking the expectation over this distribution.
Doing so preserves the inequality (36):

EE

[
exp tr

(
PΨ− 1

2
Ψ⊤QΨ

) ∣∣∣Ψ] ≤ 1.

The order of expectation over Ψ and over the random variables
P and Q may then be exchanged by an appeal to Fubini’s
theorem:

1 ≥ EE

[
exp tr

(
PΨ− 1

2
Ψ⊤QΨ

) ∣∣∣Ψ]
= EE

[
exp tr

(
PΨ− 1

2
Ψ⊤QΨ

) ∣∣∣P,Q] . (37)

By selecting the distribution over Ψ appropriately, the result is
a so-called pseudo-maximization. In particular, by completing
the square, the inner conditional expectation on the right may
be expressed as

E

[
exp tr

(
PΨ− 1

2
Ψ⊤QΨ

) ∣∣∣P,Q]
= exp tr

(
PQ−1P⊤/2

)
×E

[
exp tr

(
−1

2
(Ψ−Q−1P⊤)⊤Q(Ψ−Q−1P⊤)

) ∣∣∣P,Q] .
For particular choices of the distribution of Ψ, the right side
of the above expression approximates the maximimum value,
exp tr

(
PQ−1P⊤/2

)
, of exp tr(PΛ− 1

2Λ
⊤QΛ). This allows

us to apply a Chernoff argument similar to the one sketched
above to obtain an exponential bound on a quantity related
to ∥PQ−1/2∥F . The following lemma demonstrates one such
bound that results by selecting the distribution of Ψ as a
matrix normal distribution.

Lemma IV.1 (Extension of Theorem 14.7 in [18]). Suppose
that (36) is satisfied. Let Σ be a positive definite matrix in
RdX×dX . Then, for δ > 0, with probability at least 1− δ,

∥P (Q+Σ)−1/2∥2F ≤ 2 log

(
det(Q+Σ)dη/2 det(Σ)−dη/2

δ

)
.
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B. Self-Normalized Martingales Satisfy the Canonical As-
sumption

In order to make use of Lemma IV.1 to bound (34) or (35),
we must ensure that the condition (36) holds for

P =

T∑
t=1

ηtX
⊤
t

σ
, Q =

T∑
t=1

XtX
⊤
t ,

where ηt ∈ Rdη is either the noise process Vt or the scalar
process w⊤Vt for some fixed unit vector w. The following
lemma shows that it is sufficient for ηt to be σ2-conditionally
sub-Gaussian.

Lemma IV.2. Fix T ∈ N+. Let {Ft}Tt=0 be a filtration
such that {Xt}Tt=1 is adapted to {Ft−1}Tt=1 and {ηt}Tt=1 is
adapted to {Ft}Tt=1. Additionally, suppose that for all t ≥ 1,
ηt is σ2-conditionally sub-Gaussian with respect to Ft. Let
Λ ∈ RdX×dη be arbitrary and consider for t ∈ {1, . . . , T}

Mt(Λ) ≜ exp tr

(
t∑

s=1

[
ηsX

⊤
s Λ

σ
− 1

2
Λ⊤XsX

⊤
s Λ

])
.

Then EMT (Λ) ≤ 1.

Synthesizing the results in this section along with a covering
argument, yields Theorem IV.1

C. Notes

Remark IV.1. Consider the dimensional dependencies of the
Frobenius and operator norm bounds in Theorem IV.1. The
leading term in the Frobenius norm bound is dY multiplied
by the log det term, which scales with dX log T when the
empirical covariance is well-conditioned. In particular, the
leading term scales with dXdY log T . The factor of dY is
no longer present on the log det term for the operator
norm. The term therefore scales as dX log T when the the
empirical covariance matrix is well-conditioned. There is,
however, a term 8dYσ

2 log 5 which results from the covering
argument. The operator norm bound therefore scales as
max{dX log T, dY}.

Remark IV.2. Theorem IV.1 holds for a fixed T ∈ N+, which
is sufficient for analyzing the system identification error. In
contrast, the self-normalized margtingale bound in [1] holds
for an arbitrary stopping time and thus uniformly for all
T ∈ N+ by a stopping time construction. This uniform bound
may be required in some settings, e.g. in error bounds for
adapative control.

V. SYSTEM IDENTIFICATION

In this section, we analyze well-known linear system
identification algorithms that rely on the least squares al-
gorithm. Note that the problem formulation changes with
the system parameterization (e.g., state space, ARMAX, etc.).
However, a nice property of linear systems is that under certain
conditions, we can obtain a linear non-parametric ARX model
by regressing the system output to past outputs and inputs.
Then, depending on the parameterization, we can recover a

particular realization. In the following, we first review ARX
identification, which can be seen as a fundamental building
block for many linear system identification algorithms. Then,
we analyze identification of Markov parameters in the case
of state-space systems. We focus exclusively on the case of
single trajectory data.

A. ARX Systems

Consider an unknown vector autoregressive system with
exogenous inputs (ARX)

Yt =

p∑
i=1

A⋆
i Yt−i +

q∑
j=1

B⋆
jUt−j +Σ

1/2
W Wt, (38)

where Yt ∈ RdY are the system outputs, Ut ∈ RdU are
the control (exogenous) inputs, and Wt ∈ RdY is the
normalized process noise with ΣW ∈ RdY×dY capturing
the (non-normalized) noise covariance. Matrices A⋆

i , i ≤ p
and B⋆

j , j ≤ q contain the unknown ARX coefficients. For
the initial conditions, we assume Y−1 = · · · = Y−p = 0,
U−1 = · · · = U−q = 0.

Assumption V.1 (System and Noise model). Let the noise
covariance ΣW ≻ 0 be full rank. Let the normalized process
noise Wt, t ≥ 0 be independent and identically distributed,
K2-sub-Gaussian (see Definition II.1), with zero mean and
unit covariance EWtW

⊤
t = IdY

. The orders p, q are known.
System (38) is non-explosive, that is, the eigenvalues of matrix

A11 ≜


A⋆

1 A⋆
2 · · · A⋆

p−1 A⋆
p

I 0 · · · 0 0
0 I · · · 0 0
...

. . .
...

0 0 · · · I 0

 , (39)

lie strictly on or inside the unit circle ρ(A11) ≤ 1.

The techniques below can provide meaningful finite-sample
bounds only when the system is non-explosive. Deriving
finite sample guarantees for identifying open-loop, explosively
unstable partially-observed systems from single trajectory data
is open to the best of our knowledge [31].

In this tutorial, we focus solely on white-noise excitation
inputs. For analyses of more advanced experimental designs—
a crucial aspect of system identification—we refer to [36] as
well as to the classical literature [14].

Assumption V.2 (White-noise excitation policy). We assume
that the control input is generated by a random i.i.d. Gaussian
process, that is, Ut ∼ N (0, σ2

uI).

Grouping all covariates into one vector and defining

Xt =
[
Y ⊤
t−1:t−p U⊤

t−1:t−q

]⊤
, θ⋆ =

[
A⋆

1:p B⋆
1:q

]
(40)

we can re-write (38) in terms of (1)

Yt = θ⋆Xt +Σ
1/2
W Wt,
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where Wt is independent from Xt, but Xt has the special
time-dependent structure induced by (38). Given samples
(Y1:T , U0:T−1), the least-squares estimate is given by

θ̂T ≜
T∑

t=1

YtX
⊤
t

(
T∑

t=1

XtX
T
t

)†

, (41)

where we purposely highlight the dependence of the estimate
on the number of samples with the subscript T . Before we
present the main result, let us define some quantities which
are related to the quality of system estimates. The covariance
at time t ≥ 0 is defined as

Σt ≜ EXtX
⊤
t . (42)

It captures the expected richness of the data, i.e., how excited
the modes of the system are on average. In particular, the
relative excitation of the data compared to the noise magnitude
significantly affects the quality of system identification. This
motivates the definition of signal-to-noise (SNR) as the ratio of
the worst-case excitation over the worst-case noise magnitude

SNRt ≜
λmin(Σt)

∥ΣW ∥opK2
. (43)

The following theorem provides a finite-sample upper
bound on the performance of the least-square estimator.

Theorem V.1 (ARX Finite-Sample Bound). Let
(Y1:T , U0:T−1) be single trajectory input-output samples
generated by system (38) under Assumptions V.1, V.2
for some horizon T . Fix a failure probability
0 < δ < 1 and a time index τ ≥ max{p, q}. Let
Tpe(δ, τ) ≜ min{t : t ≥ T0(t, δ/3, τ)}, where T0 is defined
in (46). If T ≥ Tpe(δ, τ), then with probability at least 1− δ

∥θ̂T − θ⋆∥2op ≤
C

SNRτT

(
(pdY + qdU) log

pdY + qdU
δ

+ log det
(
ΣTΣ

−1
τ

))
, (44)

where C is a universal constant, i.e., it is independent of
system, confidence δ and index τ .

For non-explosive systems, matrix ΣTΣ
−1
τ increases at

most polynomially with T in norm (in view of Lemma V.1).
Hence, the identification error decays with a rate of Õ(1/

√
T ).

Dimensional dependence. Ignoring logarithmic terms, the
bound implies that the number of samples T should scale
linearly with the dimension pdY + qdU of the covariates Xt.
Since every sample Yt contains at least dY measurements,
this implies that the total number of measurements should be
linear with dY × (pdY + qdU). This scaling is qualitatively
correct since θ⋆ has dY × (pdY + qdU) unknowns, requiring
at least as many independent equations.

Logarithmic dependence on confidence. The error norm
scales linearly with

√
log 1/δ. In the asymptotic regime we

also recover the same order of
√
log 1/δ by applying the

Central Limit Theorem (CLT). However, in the regime of
finite samples, obtaining the rate is non-trivial, see [31], and
requires the analysis presented in this tutorial.

System theoretic constants. The identification error is
directly affected by the SNR of the system. The more the
system is excited and the smaller the noise, the better the SNR
becomes. However, excitability varies heavily depending on
the system and the choice of excitation policy. In particular,
the system’s controllability structure can affect the degree
of excitation dramatically. Systems with poor controllability
structure can exhibit SNR which suffers from curse of
dimensionality, i.e., the smallest eigenvalue of Στ degrades
exponentially with the system dimension [30].

The upper bound also increases with the logarithm of the
“condition number” det(ΣTΣ

−1
τ ). For stable systems, this

condition number is bounded since ΣT converges to a steady-
state covariance as T increases; we can neglect it in this
case. On the other hand, the term might be significant in the
case of general non-explosive systems. Let κ be the size of
the largest Jordan block of A11 with eigenvalues on the unit
circle. Then, this term can be as large as κ log T .

Burn-in time. The upper bound holds as soon as the
number of samples exceeds a “burn-in” time Tpe(δ, τ). If
the system is non-explosive, Tpe(δ, τ) is always finite for
fixed τ . Exceeding the burn-in time guarantees that we have
persistency of excitation, that is, all modes of the system
are excited. The burn-in time increases as we require more
confidence δ and we chose larger time indices τ . On the other
had, larger τ leads to larger Στ , which improves the SNRτ . In
other words, there is a tradeoff between improving the SNR
and deteriorating the burn-in time. We analyze persistency of
excitation in more detail, in the next subsection.

Proof outline We outline the proof below, the full proofs
can be found in the online version. To analyze the least
squares error, observe that

θ̂T − θ⋆ =

T∑
t=1

Σ
1/2
W WtX

⊤
t

(
T∑

t=1

XtX
⊤
t

)−1/2

︸ ︷︷ ︸
noise

×

(
T∑

t=1

XtX
⊤
t

)−1/2

︸ ︷︷ ︸
excitation

(45)

where we assumed that the inverse exists. To deal with the
second term, we will prove persistency of excitation in finite
time leveraging the techniques of Section III, which requires
most of the work. To deal with the noise part we will apply the
self-normalized martingale methods, which are reviewed in
Section IV. We study both terms in the following subsections.

1) Persistency of Excitation in ARX Models: In this
subsection, we leverage the result of Theorem III.1 to prove
persistency of excitation. By persistency of excitation, we
refer to the case when we have rich input-output data, that is,
data which characterize all possible behaviors of the system.
Recall the definition (9) of the empirical covariance matrix

Σ̂T ≜
1

T

T∑
t=1

XtX
⊤
t .
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Using this definition, the excitation term in the least squares
error can be re-written as (T Σ̂T )

−1/2. We say that persistency
of excitation holds if and only if the empirical covariance
matrix is strictly positive definite (full rank). In the following,
we show that the full rank condition holds with high
probability, provided that the number of samples exceeds
a certain threshold, i.e., the burn-in time.

Theorem V.2 (ARX PE). Let (Y1:T , U0:T−1) be input-output
samples generated by system (38) under Assumptions V.1, V.2
for some fixed horizon T . Fix a failure probability 0 < δ < 1
and a time index τ ≥ max{p, q}. Then, λmin(Στ ) > 0.
Moreover, if T is large enough

T ≥ T0(T, δ, τ) ≜ 1152τ max{K2, 1}×(
(pdY + qdU) logCsys(T, τ) + log(1/δ)

)
(46)

where

Csys(T, τ) ≜
T

3τ

∥ΣT ∥2op
λ2min(Στ )

,

then,

P

(
Σ̂T ⪰ 1

16
Στ

)
≥ 1− δ.

The detailed proof can be found in the online version, we
only sketch the main ideas here. The first step is to express
the covariates X1:T as a causal linear combination of the
noises and the inputs, mimicking (23). The evolution of the
covariates follows a state-space recursion

Xt+1 = AXt + BVt, (47)

where we concatenate noises and inputs Vt ≜
[
W⊤

t U⊤
t

]⊤
.

Matrices A, B are given by

A ≜

[
A11 A12

0 A22

]
, B ≜

[
B1 B2

]
, where

A11 is defined in (39),

A12 ≜


1
0
...
0

⊗
[
B⋆

1 · · · B⋆
q

]
∈ RpdY×qdU

A22 ≜


0 · · · 0 0 0
IdU

· · · 0 0 0
...

. . . · · ·
0 · · · IdU

0 0
0 · · · 0 IdU

0

 ∈ RqdU×qdU

B1 ≜
[
Σ

1/2
W 0((p−1)dY+qdU)×dY

]⊤
,

B2 ≜
[
0pdY×dU

IdU
0(q−1)dU×dU

]⊤
.

The vector X1:T of all covariates satisfies the following causal
linear relation

X1:T =


B 0 · · · 0
AB B · · · 0

...
. . .

AT−1B AT−2B · · · B


︸ ︷︷ ︸

L

V0:T−1. (48)

where the lower-block triangular matrix is the Toeplitz matrix
generated by the Markov parameters matrices A, B. The
second step is to apply Theorem III.1. The details can be
found in the online version.

Remark V.1 (Existence of burn-in time.). For the above result
to be meaningful, we need inequality (46) to be feasible. For
non-explosive systems, the system theoretic term logCsys(T, τ)
increases at most logarithmically with T , since Σt increases
polynomially with t in view of Lemma V.1. Hence, for any fixed
τ , or, in general, any τ that increases mildly (sublinearly)
with T , e.g. O(

√
T ), it is possible to satisfy (46). Note that

ρ(A) = ρ(A11) due to the triangular structure of A. Hence,
by Assumption V.1, system A is also non-explosive.

Remark V.2 (Unknown system orders p, q). The result of
Theorem V.2 still holds if the orders p, q are unknown and we
use the wrong orders p̂, q̂ in the covariates Xt. We just need
to replace p, q with p̂, q̂ with p̂, q̂ and revise the size of Σ
accordingly in (46). The finite-sample bounds of Theorem V.1
also hold (by revising accordingly), but only if we overestimate
p, q, that is p̂ ≥ p, q̂ ≥ q. This also generalizes the single
trajectory result of [3] to non-explosive systems.

The following supporting lemma proves that the k-th pow-
ers of non-explosive matrices increase at most polynomially
with k.

Lemma V.1 (Lemma 1 in [30]). Let A ∈ Rd×d have all
eigenvalues inside or on the unit circle, with ∥A∥op ≤ M ,
for some M > 0. Then,

∥Ak∥op ≤ (ek)d−1 max
{
Md, 1

}
. (49)

As a corollary, the covariance matrices Σt also grow at
most polynomially with the time t.

2) Dealing with the Noise Term: In this subsection, we
modify the noise term so that we can leverage Theorem IV.1,
which cannot be applied directly. We first manipulate the
inverse of T Σ̂T to relate it to the inverse of Σ + T Σ̂T , for
some carefully selected Σ. Inspired by [24], we leverage the
result of Theorem V.2. Under the event that persistency of
excitation holds we have Σ̂T ⪰ TΣτ/16. Thus, selecting
Σ = TΣτ/16 guarantees that(

T Σ̂T

)−1

⪯ 2
(
Σ+ T Σ̂T

)−1

.

We can now apply Theorem IV.1. To finish the proof we need
to upper-bound the determinant of log det(Σ + T Σ̂T ). It is
sufficient to establish a crude upper-bound on the empirical
covariance T Σ̂T as in the following lemma.
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Lemma V.2 (Matrix Markov’s inequality). Fix a failure
probability δ > 0. With probability at least 1− δ

Σ̂T ⪯ pdY + qdU
δ

ΣT . (50)

A more refined upper bound can also be applied (see e.g.
the proof of Proposition VI.1 below or the results in [8]).

B. State-Space Systems

In this subsection, we derive finite-sample guarantees for
learning Markov parameters of linear systems in state-space
form. Consider the following state-space system in the so-
called innovation form:

Xt+1 = A⋆Xt +B⋆Ut + F ⋆Σ
1/2
E Et

Yt = C⋆Xt +Σ
1/2
E Et,

(51)

where A⋆ ∈ RdX×dX , B⋆ ∈ RdX×dU , F ⋆ ∈ RdX×dY , and
C⋆ ∈ RdY×dX are unknown state-space parameters. For the
initial condition, we assume X0 = 0. We call the normalized
noise process Et the innovation error process. Similar to the
ARX case, we focus on white-noise excitation inputs, namely
Assumption V.2 also holds here. Moreover, we assume the
following.

Assumption V.3 (System and Noise model). Let the noise
covariance ΣE ≻ 0 be full rank. Let the normalized
innovation process Et be independent, identically distributed,
K2-sub-Gaussian (see Definition II.1), with zero mean and
unit covariance EEtE

⊤
t = IdY

. The order dX is unknown.
System (51) is non-explosive, that is, the eigenvalues of matrix
A⋆ lie strictly on or inside the unit circle ρ(A) ≤ 1. The
system is also minimum-phase, i.e., the closed loop matrix

A⋆
cl ≜ A⋆ − F ⋆C⋆ (52)

has all eigenvalues inside the unit circle ρ(A⋆
cl) < 1.

The innovation form (51) might seem puzzling at first. In
particular, the correlation between process and measurement
noise via F ⋆, and the requirement ρ(A⋆

cl) < 1 seem restrictive.
However, the representation (51) is standard in the system
identification literature [34]. Moreover, as we review below,
standard state-space models have input-output second-order
statistics, which are equivalent to the ones generated by
system (51) (for appropriate F ⋆, ΣE).

Remark V.3 (Generality of model). System class (51)
captures general state-space systems driven by Gaussian noise.
Consider the following state-space model

St+1 = A⋆St +B⋆Ut +Wt

Yt = C⋆St + Vt,
(53)

where Wt, Vt are i.i.d., independent of each other, mean-zero
Gaussian, with covariances ΣW and ΣV respectively. Assume
that ΣV ≻ 0 is full rank, the pair (C⋆, A⋆) is detectable, and
the pair (A⋆,ΣW ) is stabilizable. These three assumptions

imply that the Kalman filter of system (53) is well-defined [2].
In particular, define the Riccati operator as

RIC(P ) ≜ A⋆P (A⋆)⊤ +ΣW

−A⋆P (C⋆)⊤(C⋆P (C⋆)⊤ +ΣV )
−1C⋆P (A⋆)⊤ (54)

and let P ⋆ be the unique positive semidefinite solution of
P ⋆ = RIC(P ⋆). Then the Kalman filter gain is equal to

F ⋆ = −A⋆P (C⋆)⊤(C⋆P (C⋆)⊤ +ΣV )
−1. (55)

Assume that the initial state is also mean-zero Gaussian with
covariance P ⋆ and independent of the noises. Finally set

ΣE = C⋆P ⋆(C⋆)⊤ +ΣV . (56)

Under the above assumptions and selection of F ⋆, ΣE

systems (51) and (53) are statistically equivalent from an
input-output perspective, see [19]. Both system descriptions
lead to input-output trajectories with identical statistics.
Moreover, due to the properties of Kalman filter, stability
of A⋆

cl (minimum phase property) and independence of Et

are satisfied automatically [2].

In this tutorial we will only focus on recovering the first
few (logarithmic in T -many) Markov parameters C⋆(A⋆

cl)
iB⋆,

i ≥ 0 and C⋆(A⋆
cl)

jF ⋆, j ≥ 0 of system (51). From a learning
theory point of view, this is also known as improper learning,
since the search space (finitely many Markov parameters)
does not exactly, but only approximately, coincide with the
hypothesis class (state space models). In principle, this forms
the backbone of the SSARX method introduced by Jansson
[7]. One can then proceed to recover the original state-space
parameters (up to similarity transformation) from the Markov
parameters by employing some realization method. We refer
to [17, 31] for a discussion on this approach from a finite
sample perspective.

1) Reduction to ARX Learning with Bias: Let p > 0 be a
past horizon. Denote the Markov parameters up to time p by

θ⋆p ≜ [ C⋆B⋆ · · · C⋆(A⋆
cl)

p−1B⋆

C⋆F ⋆ · · · C⋆(A⋆
cl)

p−1F ⋆ ]. (57)

Note that the innovation errors are equal to Σ
1/2
E Et = Yt −

C⋆Xt. Replacing this expression into the state equation (51),
we obtain

Xt = A⋆
clXt−1 +B⋆Ut−1 + F ⋆Yt−1.

Unrolling the state equation p times, we get

Yt = θ⋆pZt +Σ
1/2
E Et︸ ︷︷ ︸

ARX

+C⋆(A⋆
cl)

pXt−p︸ ︷︷ ︸
bias

, (58)

where Zt includes the past p covariates

Zt =
[
Y ⊤
t−1:t−p U⊤

t−1:t−p

]⊤
. (59)
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The above recursion is an approximate ARX equation. There
is an additive bias error term on top of the statistical noise.
The least-squares solution is given by

θ̂p,T ≜
T∑

t=1

YtZ
⊤
t

(
T∑

t=1

ZtZ
T
t

)†

, (60)

where we also highlight the dependence on the past p.
By the minimum phase assumption, the bias term decays
exponentially with the past horizon p. This follows from the
fact that A⋆

cl is asymptotically stable, while Xt scales at most
polynomially with t (in view of Lemma V.1). By selecting
p = Ω(log T ), we can make the bias term decay very fast,
making its contribution to the error θ⋆p − θ̂p,T negligible. On
the other hand, increasing the past horizon p increases the
statistical error since the search space is larger.

2) Finite-Sample Guarantees: To derive a finite-sample
rate for state space systems of the form (51), we follow the
same steps as in the case of ARX systems. However, we have
to account for the bias term and the fact that p grows with
log T . Let us define again the covariance at time t ≥ 0

Σp,t ≜ EZtZ
⊤
t , (61)

where we highlight the dependence on both the past horizon p
and the time t. The covariance of the state is defined similarly

ΣX,t ≜ EXtX
⊤
t . (62)

Define the SNR as

SNRp,t ≜
λmin(Σp,t)

∥ΣE∥opK2
. (63)

Unlike the ARX case, here the SNR might degrade since we
allow p to grow with log T . For this reason, we require the
following additional assumption.

Assumption V.4 (Non-degenerate SNR). We assume that the
SNR is uniformly lower bounded for all possible past horizons

lim inf
t≥0

SNRt,t > 0.

Later on, in Theorem V.4, we show that the above condition
is non-vacuous and is satisfied for quite general systems.

Theorem V.3 (State Space Finite-Sample Bound). Let
(Y1:T , U0:T−1) be single trajectory input-output samples
generated by system (51) under Assumptions V.2, V.3, V.4,
for some horizon T . Fix a failure probability 0 < δ < 1 and
select p = β log T , for β large enough such that

∥C⋆(A⋆
cl)

p∥op∥ΣX,T ∥op ≤ T−3. (64)

Let T ss
pe(δ, β) ≜ min{t : t ≥ T0(t, δ, β log t)}, where T0 is

defined in (46). If T ≥ T ss
pe(δ, β), then with probability at

least 1− 2δ

∥θ̂p,T − θ⋆p∥2op ≤
C1

SNRp,pT

(
p(dY + dU) log

p(dY + dU)

δ

+ log det
(
Σp,TΣ

−1
p,p

))
, (65)

where C1 is a universal constant, i.e., it is independent of
system, confidence δ and past horizon p.

For non-explosive systems, matrix Σp,TΣ
−1
p,p increases

at most polynomially with T in norm. Since the SNR is
uniformly lower bounded, the identification error decays with
a rate of Õ(1/

√
T ). The bound seems similar to the one for

ARX systems for τ = p. However, since p = θ(log T ), we
have an extra logarithmic term.

Role of β. Recall the approximate ARX relation (58).
For the bias term to be small, the exponentially decaying
(A⋆

cl)
p should counteract the magnitude of the state ∥Xt−p∥op.

Intuitively, the state grows as fast as ∥ΣX,t∥1/2op , where
ΣX,t = EXtX

⊤
t . Hence the state norm grows at most

polynomially with T . Meanwhile, ∥(A⋆
cl)

p∥op = O(ρp) for
some ρ > ρ(A⋆

cl). With the choice p = β log T , we get
∥(A⋆

cl)
p∥op = O(T−β/ log(1/ρ)). Hence, if we select large

enough β, we can make the bias term very small, even smaller
than the dominant Õ(1/

√
T ) term.

Burn-in time. Since the system is non-explosive, T ss
pe(δ, β)

is always finite under Assumption V.4, for any β. As before,
exceeding the burn-in time guarantees that we have persistency
of excitation. Naturally, larger β lead to larger past horizons
p, which, in turn, increase the burn-in time.

Finally, we prove that Assumption V.4 is non-vacuous. It
is sufficient for F ⋆ and ΣW to be generated by a Kalman
filter as in (55), (56).

Theorem V.4. Consider system (51) and the definition
of SNRp,t in (63). If matrices F ⋆, ΣE are generated as
in (55), (56) with (A⋆,Σ

1/2
W ) stabilizable, (C⋆, A⋆) detectable

and ΣV ≻ 0, then the SNR is uniformly lower bounded
lim inft≥0 SNRt,t > 0.

Both conditions are sufficient. It is subject of future work
to extend the result to more general non-exposive systems.

C. Notes

The exposition above is inspired by prior work on identify-
ing fully-observed systems [4, 27, 24] and partially-observed
systems [16, 28, 25, 29, 11, 10, 12]. For a wider overview
of the literature, we refer the reader to [31].

Let us further remark that the guarantee for the ARX model
in Theorem V.1 is almost optimal. The use of Matrix Markov’s
inequality yields extrananeous dependency on the problem
dimension multiplying the deviation term log(1/δ). This can
in principle be removed by a more refined analysis (see e.g.
the proof of Proposition VI.1 below or the results in [8]).
The question of optimality in identifying partially observed
state-space systems is more subtle, and while consistent, the
bounds presented here are not (asymptotically) optimal.

VI. AN ALTERNATIVE VIEWPOINT: THE BASIC
INEQUALITY

In many situations, the choice of the model class M =
RdY×dX leading to (8) is not appropriate. For instance physical
or other modelling considerations might have already informed

975



us that the true θ⋆ belongs to some smaller model class such
as the family of low rank or sparse matrices which are strict
subsets of M. Other properties one might wish to enforce
include, stable, low norm, or even passivity-type properties. In
either of the above examples no error expression of the form
(10) is directly available. Instead, we observe by optimality
of M̂ to the optimization program (7) that

1

T

T∑
t=1

∥Yt − θ̂Xt∥22 ≤ 1

T

T∑
t=1

∥Yt − θ⋆Xt∥22. (66)

Expanding the squares and re-arranging terms we arrive at
the so-called basic inequality of least squares:

1

T

T∑
t=1

∥(θ̂ − θ⋆)Xt∥22 ≤ 2

T

T∑
t=1

⟨Vt, (θ̂ − θ⋆)Xt⟩. (67)

The inequality (67) serves as an alternative to the explicit
error equation (10). To drive home this point, let us first
re-arrange (67) slightly:

1

T

T∑
t=1

∥(θ̂ − θ⋆)Xt∥22

≤ 4

T

T∑
t=1

⟨Vt, (θ̂ − θ⋆)Xt⟩ −
1

T

T∑
t=1

∥(θ̂ − θ⋆)Xt∥22. (68)

Note now that θ̂− θ⋆ are elements of M⋆ ≜ M− θ⋆. Hence—
by considering the worst-case (supremum) right hand side of
(68)—we obtain:

1

T

T∑
t=1

∥(θ̂ − θ⋆)Xt∥22

≤ sup
θ∈M⋆

{
4

T

T∑
t=1

⟨Vt, θXt⟩ −
1

T

T∑
t=1

∥θXt∥22

}
. (69)

In fact, if M = RdY×dX , the optimization on the right hand
side of (69) has an explicit solution. This implies that we
always have the following upper-bound on the event that the
design is nondegenerate:

sup
θ∈M⋆

{
4

T

T∑
t=1

⟨Vt, θXt⟩ −
1

T

T∑
t=1

∥θXt∥22

}

≤ sup
θ∈RdY×dX

{
4

T

T∑
t=1

⟨Vt, θXt⟩ −
1

T

T∑
t=1

∥θXt∥22

}

=
4

T

∥∥∥∥∥∥
(

T∑
t=1

VtX
T
t

)(
T∑

t=1

XtX
T
t

)−1/2
∥∥∥∥∥∥
2

F

. (opt.)

(70)
Hence, we have in principle recovered an in-norm version of
(10) with slightly worse constants. Put differently, we may
regard (69) as a variational (or dual) form of the explicit error
(10). Now, the advantage of (69) is twofold:

1) (69) and (70) hold for any M⋆ ⊂ RdY×dX and hence
allows us to analyze the LSE (7) beyond OLS (M⋆ =

RdY×dX). This is important in identification problems
where the parameter space is restricted.

2) We do not have to rely on (70) to control (69). In fact,
for many reasonable classes of M⋆ ⊂ RdY×dX we are
able to give alternative arguments that are much sharper
(in terms of e.g. dimensional scaling) than the naive
bound (70). See Section VI-A below.

A third advantage of the variational form (69) is that it
generalizes straightforwardly beyond linear least squares. In
fact, none of the steps (66),(67), (68) and (69) relied on the
linearity of x 7→ θ̂x or that of x 7→ θ⋆x (x ∈ RdX). We will
explore this theme further in Section VI-A and Section VII.

A. Sparse Autoregressions
Before we proceed to sketch out how the basic inequality

above extends to nonlinear problems in Section VII, let us
use it to analyze a simple variation of the autoregression
already encountered in Section V. Namely, the autoregressive
model (38) which—for simplicity—is further assumed one-
dimensional:

Yt =

p∑
i=1

A⋆
i Yt−i +Wt (71)

and assume in addition that it is known that only s ∈ N of the
p entries of θ⋆ = [A⋆

1, . . . , A
⋆
p] are nonzero. Put differently,

the vector θ⋆ is known to be s-sparse and we write θ⋆ ∈
{θ ∈ Rp : ∥θ∥0 ≤ s} ≜ M. Hence, in this case the model
class M is the union of

(
p
s

)
subspaces. Clearly, we could use

OLS (8) but this estimator does not take advantage of the
additional information that A⋆ = θ⋆ lies in the s-dimensional
submanifold M. Intuitively, if s≪ p this set should be much
smaller than Rp and so one expects that identification occurs
at a faster rate.

In this section we demonstrate that the least squares
estimator (7) in which the search is restricted to the low-
dimensional manifold M outperforms the OLS. We stress that
this is not a computationally efficient estimator and the results
in this section should be thought of as an illustration of a
proof technique.

Returning to the problem of controlling the error of this
estimator, we note that in this case there is no closed form for
the LSE and we do not have direct access to the error equation
(10).5 Hence, we instead use the offset basic inequality
approach from Section VI. As before, it is convenient to set
Xt = [Yt−1, . . . , Yt−p]

T. With this additional bit of notation
in place, we recall from (69) that:

1

T

T∑
t=1

∥(θ̂ − θ⋆)Xt∥22

≤ max
θ∈M⋆

{
4

T

T∑
t=1

WtθXt −
1

T

T∑
t=1

|θXt|22

}
where M⋆ is the translation M − θ⋆. Since M is the union
of
(
p
s

)
-many linear s-dimensional subspaces S ⊂ RdX×dX ,

5Although, in this particular case an alternative analysis based on this
equation is possible.
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M⋆ is the union of
(
p
s

)
affine subspaces s-dimensional affine

subspaces of the form S − θ⋆. Let us also note that M⋆ ⊂
M−M = {θ ∈ Rp : ∥θ∥0 ≤ 2s}. Consequently:

1

T

T∑
t=1

∥(θ̂ − θ⋆)Xt∥22

≤ max
θ∈M⋆

{
4

T

T∑
t=1

WtθXt −
1

T

T∑
t=1

|θXt|22

}

≤ max
S

max
θ∈S

{
4

T

T∑
t=1

WtθXt −
1

T

T∑
t=1

|θXt|22

}
. (72)

where maximization over S occurs over the
(
p
2s

)
-many sparse

subspaces. Notice now that since θ in (72) is s-sparse, the
products θXt are just θXt =

∑
i∈S θi(Xt)i where we have

abused notation and identified S with its support set. Hence, by
the same direct calculation as in (70), if we denote (Xt)S the
s-dimensional vector obtained by coordinate projection onto
part of S not constrained to be identically zero (i.e. the image
of the projection onto S represented as the s-dimensional
Euclidean space) we find that:

1

T

T∑
t=1

∥(θ̂ − θ⋆)Xt∥22

≤ 4

T
max
S

∥∥∥∥∥∥
(

T∑
t=1

Wt(Xt)S

)(
T∑

t=1

(Xt)S(Xt)
T
S

)−1/2
∥∥∥∥∥∥
2

2

.

(73)

The right hand side of (73) can be controlled by the self-
normalized inequality in Theorem IV.1 for each fixed S.
Moreover, there are only

(
p
2s

)
such subspaces, so we can

apply a union bound to control the maximum over these
subspaces. Note also that the left hand side of (73) can be
controlled by the tools developed in Section III. Carrying out
these steps leads to the following guarantee.

Proposition VI.1. Fix T, k ∈ N with T divisible by k and
let L be the linear operator defined in (48). Let θ̂ be the LSE
(7) over the set M = {θ ∈ Rp : ∥θ∥0 ≤ s} for the system
(71). Define Σj ≜ 1

j

∑j
t=1 EXtX

T
t for j ∈ [T ] and

condsys(T, k) ≜

(
1 +

∥LLT∥op
kλmin (ΣT )

)
λmax (ΣT )

λmin (Σk)
.

There exist univeral positive constants c, c′ such that for any
δ ∈ (0, 1) it holds with probability at least 1− δ that:

∥(θ̂− θ⋆)
√
Σk∥22 ≤ cσ2 ×

s log
(

p×condsys(T,k)
s

)
+ log(1/δ)

T
(74)

as long as

T/k ≥ c′σ2 (s [log (condsys(T, k)) + log(p/s)] + log(1/δ)) .
(75)

A few remarks are in order. The guarantee (74) depends on
the dimension s of M, and not the total parameter dimension p.
Similarly, the burn-in (75) exhibits a similar win, by depending
linearly on s and only logarithmically on p. There is also
the difference that the left hand side of (74) is given in
the problem-dependent Mahalanobis norm induced by Σk

and opposed to just the standard Euclidean 2-norm. This
implies that if we actually want parameter identification in
the sense of the previous section, a restricted eigenvalue
condition on Σk is needed.6 Indeed, for some positive number
λrestricted, one requires that vTΣkv ≥ λrestricted for all 2s-
sparse vectors v on the unit sphere: v ∈ Sp−1 and ∥v∥0 ≤ 3s.
Obviously the requirements on λrestricted are much milder
than the corresponding ones on λmin(Σk) and we always
have λrestricted ≥ λmin(Σk).

The following lemma is central. Namely, we begin the proof
of Proposition VI.1 by restricting to an event in which the
designs

∑T
t=1(Xt)S(Xt)

T
S are sufficiently well-conditioned

for all the subspaces S at once. The requirements on this
event are relatively milder than the corresponding one over
Rp and explains the ”dimensional win” (when s≪ p) of the
sparse estimator over OLS.

Lemma VI.1. Let L be the linear operator defined in (48).
Fix δ ∈ (0, 1) and let T be divisible by k ∈ N. There
exist universal positive constants c1, c2, c3 ∈ R such that
the following two-sided control holds uniformly in S with
probability 1− δ:

c1
k

k∑
t=1

E
[
(Xt)S(Xt)

T
S

]
⪯ 1

T

T∑
t=1

(Xt)S(Xt)
T
S

⪯ c2

1 +
T∥LLT∥op

kλmin

(∑T−1
t=0 EXtXT

t

)


×

(
1

T

T∑
t=1

E
[
(Xt)S(Xt)

T
S

])
(76)

as long as

T ≥ c3K
2 (s [logCsys + log(p/s)] + log(1/δ)) . (77)

Equation (77) is revealing about the advantage of using the
sparse estimator searching over M = {θ ∈ Rp : ∥θ∥0 ≤ s}.
The burn-in period in (77) is proportional to the dimension
of the low-dimensional parameter manifold M instead of that
of the latent space Rp. Finally, as usual we have relegated
the full proof of Proposition VI.1 to the appendix, see ??.

B. Notes

The variational formulation of the least squares error—
the basic inequality (67)—is standard in the nonparametric
statistics literature [see e.g. 37, Chapters 13 and 14]. The idea
to rewrite the basic inequality (67) as (68) was introduced
to the statistical literature by [13], but has its roots in online
learning [20].

6Note that θ̂ − θ⋆ is 2s-sparse.

977



VII. BEYOND LINEAR MODELS

Let us now make another gradual shift of perspective.
Instead of considering the linear model (1) introduced in
Section I-A we consider the following nonlinear regression
model:

Yt = f⋆(Xt) + Vt, t ∈ [T ]. (78)

As before, Y1:T ,X1:T and V1:T are stochastic processes taking
values in RdY and RdX respectively. However, this time f⋆ is
no longer constrained to be a linear map of the form x 7→ Ax
for matrix A. Rather, we suppose that f⋆ in (78) belongs
to some (square integrable) space of functions F such that
F ∋ f : x 7→ f(x). It is perhaps now that the motivation
behind the change of perspective from Section VI becomes
most apparent: the basic inequality (68) remains valid. To be
precise, let us define the nonparametric least squares estimator

f̂ ∈ argmin
f∈F

{
1

T

T∑
t=1

∥Yt − f(Xt)∥22

}
. (79)

Let F⋆ ≜ F − f⋆. By the exact same optimality argument
as in Section VI, the reader can now readily verify that:

1

T

T∑
t=1

∥f̂(Xt)− f⋆(Xt)∥22

≤ sup
f∈F⋆

1

T

(
T∑

t=1

4⟨Vt, f(Xt)⟩ −
T∑

t=1

∥f(Xt)∥22

)
. (80)

What does (80) entail in terms of estimating the unknown
function f⋆? To answer this, we first need to define a
performance criterion. The simplest one is small average
L2-norm-error, where

f ∈ F : ∥f∥2L2 ≜
1

T

T∑
t=1

E∥f(Xt)∥22. (81)

The program we have carried out in the previous sections
now generalizes as follows:

• First, prove a so-called lower uniform law. That is to say,
we wish to show that with overwhelming probability

∥f∥2L2 ≤ C

T

T∑
t=1

∥f(Xt)∥2 (simultaneously ∀f ∈ F⋆).

(82)
for some universal positive constant C.

• Second, control the supremum of the empirical process:

f 7→

(
T∑

t=1

4⟨Vt, f(Xt)⟩ −
T∑

t=1

∥f(Xt)∥22

)
(83)

in terms of the noise level σ and some complexity
measure comp(F ).

By combining (82) and (83) we arrive at a high probability
bound of the form:

∥f̂ − f⋆∥2L2 ≤ C

T

T∑
t=1

∥f(Xt)∥2

≤ C × comp(F , σ2) + deviation term
T

. (84)

A statement of this form is given as Theorem VII.1 below.

Remark VII.1. It is worth to take pause and appreciate
the analogy to the analysis of linear regression models. The
first step (82) exactly corresponds to controlling the lower
spectrum of the empirical covariance matrix. Suppose for
simplicity that dY = 1. Then for a linear map SdX−1 ∋ f 7→
⟨f, x⟩ we have:

1

T

T∑
t=1

∥f(Xt)∥22 =
1

T

T∑
t=1

⟨f, (XtX
T
t )f⟩

=

〈
f,

[
1

T

T∑
t=1

(XtX
T
t )

]
f

〉
(85)

which are just the one-dimensional projections of the empirical
covariance matrix (9). In the context of linear models,
establishing (82) was the topic of Section III. Analogously,
for a linear predictor, the L2-norm (81) becomes a Maha-
lanobis norm: f ∈ RdX ⇒ ∥f∥2L2 = ⟨f,ΣXf⟩ for some
ΣX = 1

T

∑T
t=1 EXtX

T
t .

Moreover, For linear models, we had:

sup
f∈RdX

(
T∑

t=1

4⟨Vt, f(Xt)⟩ −
T∑

t=1

∥f(Xt)∥22

)

= 4

∥∥∥∥∥∥
(

T∑
t=1

VtX
T
t

)(
T∑

t=1

XtX
T
t

)−1/2
∥∥∥∥∥∥
2

F

. (86)

Analyzing terms of this form was the topic of Section IV.
In other words, the approach outlined above is very much

in the same spirit as that in the rest of the manuscript. There
are a few changes that need to be made since we less access
to linearity in our argument, but in principle the key difference
is that we will have to replace the indexing set Sd−1 with a
more general function class F⋆.

A. Many Trajectories and Finite Hypothesis Classes

In order to make the exposition self-contained, we will now
make two simplifying assumptions relating to the finiteness
of the hypothesis class and the dependence structure of the
covariate process X1:T . A more general treatment without
these can be found in [39]. Here, we impose the following:
A1. The hypothesis class F is finite.
A2. We have access to T/k-many independent trajectories

from the same process: there exists an integer k ∈ N
dividing T such that X1:k, Xk+1:2k, . . . are drawn iid.

We will also impose the following rather minimal integrability
condition:
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A3. All functions f ∈ F are such that E∥f(Xt)∥42 <∞ for
all t ∈ [T ].

Moreover, as in Section V, we require the noise to be a
sub-Gaussian martingale difference sequence:
A4. For each t ∈ [T ], Vt|X1:t is σ2 conditionally-sub-

Gaussian and mean zero.
Under these assumptions, the main result of [39] essentially

simplifies to the following theorem.

Theorem VII.1. Impose A1-A4, fix δ ∈ (0, 1) and define

condF ≜ max
f∈F⋆

max
t∈T

√
E∥f(Xt)∥42
E∥f(Xt)∥22

. (87)

Suppose further that

T/k ≥ 4cond2F (log |F |+ log(2/δ))

then we have that:

∥f̂ − f⋆∥2L2 ≤ 16σ2

(
log(|F |) + log(2/δ)

T

)
. (88)

A few remarks are in order. The structure of Theorem VII.1
is by now familiar and it is very much of the same structure
as our previous results, cf. (5). The key differences are
that: (1) we now control the L2 norm of our estimator
instead of the Euclidean or spectral norm; and (2) that the
dimensional dependency has been replaced by the complexity
term log |F⋆|. The proof is also structurally similar, as noted
in Remark VII.1. We also caution the reader that (88) is
strictly a statistical guarntee; we have said nothing—and will
say nothing more—about the computational feasibility of the
estimator (79).

Let us now discuss A1-A4. Assumption A1 informs us that
the search space for the LSE (79) is finite. This is mainly
imposed to avoid the introduction of the chaining technique
which is the standard alternative to the bounds from Section IV.
Using this technique, similar statements can for instance be
derived for compact subsets of bounded function classes
[39]. Assumption A2 controls the dependence structure of the
process. Here, we assume that we are able to restart the process
every k time steps. Again, a more general statement relying
on stochastic stability can be found in [39]. Assumption A3
is relatively standard. Arguably the strongest assumption is
A4, which in principle yields that the conditional expectation
(given all past data) is a function in the search space F .
It is a so-called realizability assumption—the model (78) is
well-specified—and it is not currently known how to remove
it and still obtain sharp bounds beyond linear classes [for an
analysis of linear misspecified models, see 40].

B. Notes

As noted in the previous section, the idea of using the
“offset” basic inequality relied on here is due to [20, 13].
The “many trajectores”-style of analysis used here is due to
[32] who introduced it in the linear setting. Here, we have
extended their style of analysis to simplify the exposition of
[39] who consider the single trajectory setting, but rely on

a rather more advanced exponential inequality due to [23].
Note however that all the analyses above and in this section
necessitate some degree of stability (mixing). This should be
contrasted with the system identification bounds of Section V,
which work even in the marginally regime. In principle, the
consequence of this is that while the convergence rates for
bounds such as Theorem VII.1 are correct, the burn-ins are
deflated by various dependency measures.

There have also been other, more algorithmically focused,
approaches to nonlinear identification problems in the recent
literature. Noteably, gradient based methods in generalized
linear models of the form Xt+1 = ϕ(A⋆Xt) + Vt (with ϕ a
known nonlinearity) have been the topic of a number of recent
papers [see e.g. 5, 26]. The sharpest bounds for parameter
recovery in this setting are due to [9].

REFERENCES

[1] Yasin Abbasi-Yadkori. Online learning for linearly
parametrized control problems. 2013.

[2] Brian DO Anderson and John B Moore. Optimal
Filtering. Courier Corporation, 2012.

[3] Zhe Du, Zexiang Liu, Jack Weitze, and Necmiye Ozay.
Sample complexity analysis and self-regularization in
identification of over-parameterized ARX models. In
2022 IEEE 61st Conference on Decision and Control
(CDC), pages 6026–6033. IEEE, 2022.

[4] Mohamad Kazem Shirani Faradonbeh, Ambuj Tewari,
and George Michailidis. Finite time identification in
unstable linear systems. Automatica, 96:342–353, 2018.

[5] Dylan Foster, Tuhin Sarkar, and Alexander Rakhlin.
Learning nonlinear dynamical systems from a single
trajectory. In Learning for Dynamics and Control, pages
851–861. PMLR, 2020.

[6] David Lee Hanson and Farroll Tim Wright. A bound
on tail probabilities for quadratic forms in independent
random variables. The Annals of Mathematical Statistics,
42(3):1079–1083, 1971.

[7] Magnus Jansson. Subspace identification and ARX
modeling. IFAC Proceedings Volumes, 36(16):1585–
1590, 2003.

[8] Yassir Jedra and Alexandre Proutiere. Finite-time
identification of linear systems: Fundamental limits and
optimal algorithms. IEEE Transactions on Automatic
Control, 2022.

[9] Suhas Kowshik, Dheeraj Nagaraj, Prateek Jain, and
Praneeth Netrapalli. Near-optimal offline and streaming
algorithms for learning non-linear dynamical systems.
Advances in Neural Information Processing Systems, 34,
2021.

[10] Sahin Lale, Kamyar Azizzadenesheli, Babak Hassibi,
and Anima Anandkumar. Finite-time system identifica-
tion and adaptive control in autoregressive exogenous
systems. In Learning for Dynamics and Control, pages
967–979. PMLR, 2021.

[11] Bruce Lee and Andrew Lamperski. Non-asymptotic
Closed-Loop System Identification using Autoregressive

979



Processes and Hankel Model Reduction. In IEEE 59th
Conference on Decision and Control (CDC), 2020.

[12] Holden Lee. Improved rates for prediction and identifi-
cation of partially observed linear dynamical systems.
In International Conference on Algorithmic Learning
Theory, pages 668–698. PMLR, 2022.

[13] Tengyuan Liang, Alexander Rakhlin, and Karthik Srid-
haran. Learning with square loss: Localization through
offset rademacher complexity. In Conference on Learn-
ing Theory, pages 1260–1285. PMLR, 2015.

[14] Lennart Ljung. System identification: theory for the user.
PTR Prentice Hall, Upper Saddle River, NJ, 28, 1999.

[15] Shahar Mendelson. Learning without concentration. In
Conference on Learning Theory, pages 25–39. PMLR,
2014.

[16] Samet Oymak and Necmiye Ozay. Non-asymptotic
identification of LTI systems from a single trajectory. In
2019 American control conference (ACC), pages 5655–
5661. IEEE, 2019.

[17] Samet Oymak and Necmiye Ozay. Revisiting Ho–
Kalman-based system identification: Robustness and
finite-sample analysis. IEEE Transactions on Automatic
Control, 67(4):1914–1928, 2021.

[18] Victor H Peña, Tze Leung Lai, and Qi-Man Shao.
Self-normalized processes: Limit theory and Statistical
Applications. Springer, 2009.

[19] S Joe Qin. An overview of subspace identification.
Computers & chemical engineering, 30(10-12):1502–
1513, 2006.

[20] Alexander Rakhlin and Karthik Sridharan. Online non-
parametric regression. In Conference on Learning
Theory, pages 1232–1264. PMLR, 2014.

[21] Herbert Robbins and David Siegmund. Boundary
crossing probabilities for the wiener process and sample
sums. The Annals of Mathematical Statistics, pages
1410–1429, 1970.

[22] Mark Rudelson and Roman Vershynin. Hanson-wright
inequality and sub-gaussian concentration. Electronic
Communications in Probability, 18, 2013.

[23] Paul-Marie Samson. Concentration of measure inequal-
ities for markov chains and ϕ-mixing processes. The
Annals of Probability, 28(1):416–461, 2000.

[24] Tuhin Sarkar and Alexander Rakhlin. Near Optimal
Finite Time Identification of Arbitrary Linear Dynamical
Systems. In International Conference on Machine
Learning, pages 5610–5618, 2019.

[25] Tuhin Sarkar, Alexander Rakhlin, and Munther A Dahleh.
Finite time LTI system identification. Journal of Machine
Learning Research, 22(26):1–61, 2021.

[26] Yahya Sattar and Samet Oymak. Non-asymptotic and
accurate learning of nonlinear dynamical systems. The
Journal of Machine Learning Research, 23(1):6248–
6296, 2022.

[27] Max Simchowitz, Horia Mania, Stephen Tu, Michael I.
Jordan, and Benjamin Recht. Learning without mixing:
Towards a sharp analysis of linear system identification.

In Conference On Learning Theory, pages 439–473.
PMLR, 2018.

[28] Max Simchowitz, Ross Boczar, and Benjamin Recht.
Learning Linear Dynamical Systems with Semi-
Parametric Least Squares. In Conference on Learning
Theory, pages 2714–2802. PMLR, 2019.

[29] Anastasios Tsiamis and George J. Pappas. Finite sample
analysis of stochastic system identification. In 2019
IEEE 58th Conference on Decision and Control (CDC),
pages 3648–3654. IEEE, 2019.

[30] Anastasios Tsiamis and George J Pappas. Linear systems
can be hard to learn. arXiv preprint arXiv:2104.01120,
2021.

[31] Anastasios Tsiamis, Ingvar Ziemann, Nikolai Matni, and
George J Pappas. Statistical learning theory for control:
A finite sample perspective. to appear: IEEE Control
Systems Magazine, 2023.

[32] Stephen Tu, Roy Frostig, and Mahdi Soltanolkotabi.
Learning from many trajectories. arXiv preprint
arXiv:2203.17193, 2022.

[33] Aad W van der Vaart. Asymptotic Statistics. Cambridge
university press, 2000.

[34] Michel Verhaegen and Vincent Verdult. Filtering
and system identification: a least squares approach.
Cambridge university press, 2007.

[35] Roman Vershynin. High-Dimensional Probability: An
Introduction with Applications in Data Science. Cam-
bridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, 2018. doi: 10.1017/
9781108231596.

[36] Andrew Wagenmaker and Kevin Jamieson. Active
learning for identification of linear dynamical systems.
In Conference on Learning Theory, pages 3487–3582.
PMLR, 2020.

[37] Martin J. Wainwright. High-dimensional statistics:
A non-asymptotic viewpoint, volume 48. Cambridge
University Press, 2019.

[38] Ingvar Ziemann. A note on the smallest eigenvalue of
the empirical covariance of causal gaussian processes.
arXiv preprint arXiv:2212.09508, 2022.

[39] Ingvar Ziemann and Stephen Tu. Learning with little
mixing. arXiv preprint arXiv:2206.08269. NeurIPS’22,
2022.

[40] Ingvar Ziemann, Stephen Tu, George J Pappas, and
Nikolai Matni. The noise level in linear regression with
dependent data. arXiv preprint arXiv:2305.11165, 2023.

980


