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Abstract— The target audience for the line of research to be
described in this tutorial paper is control system researchers
with an interest in algorithmic stock trading but without a
substantial background in finance and economics. To this end,
we focus our attention on just a few hand-picked problem
areas to illustrate how algorithmic trading research might be
carried out from a control-theoretic perspective and refer the
reader to a number of references where extensive survey-style
material can be found. The paper begins with the exposition of
some basics associated with opening a brokerage account and
mathematical modelling of common order types. Subsequently,
we consider a number of trading scenarios involving feedback
control design, optimization problems arising in portfolio man-
agement, the theory of Kelly Betting in a stock trading context
and interaction with the Limit Order Book which is crucial
for smooth market operation. Given the control-theoretic point
of view taken in this paper, many of our basic tools come
into play; e.g., standard results from areas such as convex
optimization, discrete probability theory and Markov processes,
to name a few. One of the salient features of this tutorial is our
use of idealizing assumptions and simplistic models whenever
convenient for pedagogical and motivational purposes. In the
conclusion section, we mention some challenging new research
opportunities involving more general models and relaxation
some of our simplifying assumptions.

I. INTRODUCTION

As a starting point for this tutorial, it is convenient to
imagine a small stock trader who is operating from a desktop
computer at home with a high-speed internet connection and
a limited budget. Orders are being submitted in discrete
time and the trader is positioned within a feedback loop,
as depicted in Figure 1. The restriction to this narrow frame-
work, in lieu of a general problem formulation involving
hedge funds, investment professionals, extensive computing
resources and the like, is deliberate. Whereas in this paper,
for simplicity, we confine attention to the use of historical
stock price data, in a more general framework, feeding
additional data such as news, earnings and social media to
the controller would also be of interest.

Throughout this paper, to communicate basic ideas about
stock trading, whenever convenient for pedagogical and
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Fig. 1. Control-Theoretic Setup for Stock Trading

motivational purposes, we make idealizing assumptions and
work with some of the simplest models available in the litera-
ture. Then, in the conclusion, we mention some more general
modelling possibilities and revisit some of our assumptions
which are not straightforward to relax. This serves as a
stepping stone to research on some significant new problems
which can be easily understood within the control-theoretic
framework of this paper.

In the exposition to follow, we provide citations which
can be used to supplement the material which we cover.
Consistent with the financial engineering perspective taken
in this paper, some good starting textbooks for the reader to
consider are [1]–[7]. Moreover, given that the topics to follow
are described in a control-theoretic setting, the reader may
wish to consult [8] which provides a survey of many papers
taking this same point of view. Unlike a survey paper which
is aimed at giving the authors’ perspective as to which papers
are important from a research contribution point of view, our
choice of tutorial citations are mainly limited to the topics
which we are using to illustrate how to easily conduct stock
trading research for attendees from the control community.

With these considerations in mind, the plan for the re-
mainder of this paper is as follows: In Section II, we begin
by considering a number of preliminaries associated with
becoming a real-world trader. This includes but is not limited
to considerations related to selecting a reputable broker,
account insurance and regulations by governmental agencies,
deciding on account type (margin versus cash) and utilizing
an Application Program Interface (API). Subsequently, in
Section III, we describe what might appropriately be called
the “rules of the road.” To this end, we first carry out some
mathematical modelling of the mechanics associated with
some of the basic types of orders such as market, limit and
stop. This opens the door to using many standard tools from
systems and control; e.g., results on stochastic systems and
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Markov processes, convexity, mathematical programming
and adaptive control, to name a few.

In Section IV, stock trading is considered as a feedback
control design problem. We highlight the use of linear
feedback and the so-called Simultaneous Long-Short (SLS)
controller as we describe advantages and limitations of this
approach hopefully shedding light on its suitability across
various market conditions. This is followed by Section V
where the spotlight is on optimization problems in trading an
individual stock and more generally a multi-stock portfolio.
Then, in Section VI, we provide an introduction to Kelly
Betting, and its eventual use in the stock market pioneered by
Thorpe and others. Following this, in Section VII, we cover
the so-called Limit Order Book (LOB) which can be viewed
as the “brain center” for a fully electronic marketplace where
buyers and sellers are matched up to consummate trades.
Given the nanosecond time stamping of transactions in the
LOB, this topic is seen to be a convenient starting point for
the study of high-frequency trading. Then in Section VIII, a
number of simulations are given, serving as a simple example
of “backtesting.” This involves the assessment of the perfor-
mance of various linear feedback stock trading controllers
applied to the Grayscale Bitcoin Trust (GBTC), an exchange-
traded fund, over a two-year period of high price volatility.
Finally, in Section IX, the conclusion section, the reader is
reminded about our objectives and some important problems
for future research, motivated by our use of simplified models
and idealizing assumptions, are discussed.

II. ON OPENING A BROKERAGE ACCOUNT

This preliminary section is entirely nontechnical and pro-
vides a brief description of most of the main issues to be
addressed by readers who are determined to take some of the
technical ideas in this paper and put them into practice. It can
be skipped by readers solely interested in algorithmic trading
issues that arise once an appropriate brokerage account is
fully established.

Large brokerage companies offer a comprehensive array
of financial services to cater to the diverse needs of in-
vestors. As a preliminary step in screening a broker under
consideration, aspiring traders are well served by checking
the range of financial instruments and services being offered.
This includes, but is not limited to, stocks, options, bonds,
exchange-traded funds, educational resources, various trad-
ing platforms, market data and news. Once a “candidate”
brokerage company has been identified, it is arguable that an
uninitiated trader’s highest priority should be to take every
reasonable step to ensure that the firm being considered is
trustworthy and adequately regulated. There are typically
many internet reviews of the broker and the website should
be highly transparent in its disclosure of costs to the trader
such as commissions, broker-assisted trades, mutual funds,
margin interest rates and account maintenance fees. Suffice
it to say, when seeking a broker, protection and accessibility
of the trader’s assets should also be assigned high priority.

Further to this “protection and accessibility,” in most
countries, oversight of brokers is carried out by various

government and regulatory agencies. For example, in the
U.S., agencies such as the Securities and Exchange Commis-
sion (SEC), Federal Reserve Board (FRB), Federal Deposit
Insurance Corporation (FDIC) and the Financial Industry
Regulatory Authority (FINRA) play an important protective
role for the trader. These agencies address many critical
issues, which include account insurance requirements, lim-
itations on margin loans and many other restrictions aimed
at guaranteeing account safety and integrity of all parties
involved in trading. To provide further examples of such
agencies, in the UK, the Financial Conduct Authority (FCA)
regulates financial services, in Germany, the Federal Fi-
nancial Supervisory Authority, known as BaFin, oversees
financial institutions, in France, a similar role is played by
Autorité des Marchés Financiers (AMF) and in Japan, it is
the Japan Financial Services Agency (JFSA). Over and above
governmental protections, it is a good idea to determine the
extent to which a broker carries significant supplemental
private insurance and whether any complaints have been
filed. For example, in the United States, such complaints can
be seen on the website of the Better Business Bureau and
many other countries have similar organizations providing
this type of information.

One final important consideration we mention pertains
to traders planning to use an algorithm which potentially
involves a trading frequency whose realization is “unimag-
inable” by clicking a mouse and entering orders by hand on
one’s desktop: It would be important to consider whether
the brokerage company offers an Application Programming
Interface (API) and if so, the details of its use. Assuming
an internet connection with adequate speed, this enables a
small trader’s software to communicate with the brokerage’s
servers thereby enabling order placement at a rate up to
several trades per second.

Most large brokerage companies offer a wide variety of ac-
count types to meet various customer needs. For the purpose
of this tutorial, we focus our main attention on the most basic
of account types — so-called cash account. On few occasions
in the sequel, for example, when short selling is involved, a
margin account is required. Having such an account, a trader
is given certain “lending privileges” by the broker; this makes
it possible to carry out a variety of “leveraged’ trades which
are not available in a standard brokerage cash account; see
Section IX where margin accounts are further discussed in
the context of future research.

Finally, there is one important account setup detail to be
mentioned: the specification of beneficiaries which would be
in play in the event of the account owner’s death. Then,
to activate the account, a trader’s initial funds come into
the account usually by a wire transfer, Automated Clearing
House (ACH) transfer or by a check. For a cash account,
whereas some brokers require several thousand dollars to get
started, in most cases the required initial funds can be very
small — even as little as a few dollars. However, to open
a margin account, it is typical to see regulatory authorities
requiring significantly more; e.g.,in the United States, the
minimum initial deposit is two thousand dollars.
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III. ON MATHEMATICAL MODELLING OF
STOCK PRICES, ORDER TYPES AND DYNAMICS

In the sequel, we carry out some mathematical modelling
of some of the most common types of orders used by
traders. To this end, we first introduce some notation: We use
index k = 0, 1, 2, . . . , n− 1 to enumerate n trading intervals
each having time duration of ∆t > 0, which is arbitrary
and assumed to be known. This can accommodate various
different investment styles. For instance, many money man-
agers purchase or sell shares on a quarterly basis while high-
frequency traders may be working with time stamps at the
nanosecond level. We begin at t0 = 0 and the k-th such
interval is

Tk
.
= [tk, tk + ∆t].

In practice, there are often “time gaps” between the end of
one interval and the beginning of the next; e.g., to model
stoppage of trading overnight and on holidays, for some
values of k we may have tk+1 > tk + ∆t.

As far as the stock price is concerned, associated with
each Tk interval, it is assumed that the following information
is available: The opening price Ok, the low Lk, the high Hk

and the closing price Ck satisfying the obvious inequalities

Lk ≤ Ok ≤ Hk; Lk ≤ Ck ≤ Hk.

In the subsections to follow, we use the notation Nk to denote
the number of shares under control by the trader at instant tk.
Note that Nk < 0 represents a short position, in which case,
per earlier discussion, a margin account is required. When
a short sale occurs, consistent with the standard practice
of brokers, we require the proceeds to be held aside and
not be available for use by the trader. We also introduce
the notation Mk to represent the amount of money, say
cash equivalents, held at the end of interval Tk. Finally, to
complete our description of the notation, we let Vk denote
the market value of the account at the end of interval Tk,
and, for consistency with most authors who work with only
one stock price rather than our quadruple (Ok, Lk, Hk, Ck),
we take Sk ≡ Ck. Then, trading is initialized with V0 > 0
prespecified, N0 = 0 and M0 = V0 and the account value at
the end of interval Tk is found as

Vk = NkSk +Mk.

A. Simplifying Assumptions

For pedagogical purposes, we now impose a number
of assumptions to avoid making the mathematical analysis
unduly complicated for the uninitiated trader seeking to
understand the main ideas driving this line of research. Per
discussion in the Introduction, in the conclusion section, we
revisit some of the assumptions below noting that relaxing
some of them is highly nontrivial and suggest new research
opportunities.

1) Trading at the Daily Market Close Assumption: In the
sequel, for simplicity, we take the interval Tk corresponding
to the stock market’s day session which typically lasts 6–8
hours. We further assume that orders are submitted at the

market closing time but may not necessarily be filled until
the next session associated with Tk+1; e.g., see the limit
order scenario described later in this section.1

2) No-Leverage Assumption: The value of the control
variable uk corresponds to the total desired market value of
the shares, both new and old, associated with an order placed
at the end of Tk. For simplicity, it is assumed that the no-
leverage condition |uk| ≤ Vk is satisfied. This simplifying
assumption helps to avoid dealing with a number of technical
issues associated with a margin account. For example, by
restricting attention to a cash account, we avoid the need to
address maintenance requirements, margin interest and fees
for borrowed shares; see Section IX for further discussion.

3) Cash Settlement at Closing Assumption: To avoid
technicalities associated with the trader incurring a so-called
good faith violation, we assume that all trades are “cash
settled” by the end of each trading day. Without such an
assumption in place, the cash proceeds associated with a sale
on Day k may not be available for use on Day k + 1.2

4) No-Dividend or Interest Assumption: For simplicity,
it is assumed that the stock being traded does not pay
dividends. It should be noted that one standard method
for circumventing this assumption involves working with
adjusted closing prices and taking account of the fact that a
short seller is responsible for the payment of such dividends.
As far as cash equivalents represented by Mk are concerned,
in this section, for simplicity, it is assumed that no interest
is accrued; see the examples in Sections IV and VIII where
the analysis is expanded to include interest as well.

5) Fractional Shares Assumption: In the analysis to fol-
low, whenever convenient, we do not require the number
of shares being transacted to be an integer. In fact, some
brokerage companies allow this practice while others do
not. In practice, if the number of shares being traded is
significant, from a practitioner’s point of view, “rounding
off” a prescribed trade to an integer number of shares should
not have a material effect on performance.

6) Frictionless Market Assumption: It is assumed
that trading is being conducted in a frictionless mar-
ket; e.g., see [9]. We note that this concept, instrumental
to many models in the literature, takes on a number of
different forms; see Section IX. We now elaborate on this
rather technical requirement, and, to keep the exposition
as simple as possible, we contextualize the discussion to
the modelling to follow in the remainder of this section:
Indeed, for each of the three order types to follow, assuming
submission at the close of interval Tk, there is an associated
number of desired shares ∆Nk to be bought or sold and
a trigger price S′k which is not necessarily the closing
price, Sk = Ck. In this setting, the frictionless market
assumption tells us the following. If the price S′k is reached
in the market, be it during Tk or Tk+1, the desired transaction

1The analysis to follow is readily extended to allow for trading at the
open as well.

2We note that the so-called cash settlement rule in the United States was
updated on May 28, 2024 from T + 2 to T + 1; see Section IX where
relaxation of this assumption is discussed.
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will occur instantaneously. This type of instantaneous order-
fill requirement is tantamount to a zero-latency assumption.
That is the time for the order information to travel between
the trader and exchange server is zero. Furthermore, the
following adequate liquidity condition will be satisfied: If
the trader is a buyer, sellers on the “ask side” of the market
will be offering at least ∆Nk at price S′k so as to guarantee
that the order is filled. On the other hand, if the trader is
a seller, buyers on the “bid side” of the market will be
seeking at least ∆Nk so as to guarantee again that the order
is filled. Whereas an assumption of adequate liquidity is
typically reasonable for small desktop traders, it can easily
fail to be satisfied for a large hedge fund trading millions
of shares per day. For example, if the number of shares
being sought is suitably large, it may be impossible to buy
them without bidding up the price above S′k. Finally, it is
important to make the following comment which bears upon
the rechability of the trigger price S′k. If during Tk+1, we
see Ok+1 ≤ S′k ≤ Hk+1, the continuous price variation
assumption guarantees, by an intermediate value argument,
that the order will be triggered.

B. Basic Order Types

In this section, we provide some illustrations of the mod-
elling of some of the most common order types. Recalling
that uk denotes the desired total market value of the shares,
both new and old, associated with an order placed at the end
of Tk. It is is important to note that this value which may
not necessarily be realized. For example, as seen below, a
limit order with an acceptable price S′k < Ck may never be
filled on Tk+1.

1) Modelling of Market Orders: Suppose the trader
is holding Nk > 0 shares (long) at the close of Tk and
is seeking to increase the stock position from its current
value NkSk to desired value uk > NkSk. Then, at the
current market price Sk = Ck, the desired number of shares
to acquire is

∆Nk
.
=
uk −NkSk

Sk

and the frictionless market assumption assures that a market
order to buy these shares will be instantaneously filled.
Hence, the number of shares being held over the next
interval Tk+1 is given by

Nk+1 = Nk + ∆Nk,

the new money balance is

Mk+1 = Mk −∆NkSk

= Mk +NkSk − uk
= Vk − uk

and the updated account value is

Vk+1 = Nk+1Sk+1 +Mk+1.

Notice that, in accordance with the no-leverage assumption,
the account balance remains nonnegative; i.e., Mk+1 ≥ 0.

Given the lack of contingencies for this most basic of all
order types, and consistent with many existing papers, the
update in the account value can also be expressed in terms
of the single period return Xk

.
= (Sk+1 − Sk)/Sk. That is,

Vk+1 = Vk + ukXk.

Finally, it is also noted that a similar formula can readily be
obtained for a market sell order or market short sale order.

2) Modelling of Limit Orders: At the end of Tk, at
price Sk, suppose the trader is holding Nk shares (long) and
wants to increase this position from its current value NkSk
to desired value uk > NkSk but only if the new shares are
acquired at the discounted limit price S′k < Sk. In this case,
a buy limit order can be submitted with the desired number
of shares being

∆Nk
.
=
uk −NkSk

S′k
.

Now, there are three mutually exclusive cases to consider.
The first case, a windfall of sorts, occurs if Ok+1 ≤ S′k.
Given the frictionless nature of the market, the order is filled
at the open of Tk+1 at price Ok+1, and, with the same
update equation for Nk+1 as given above, the account money
update is

Mk+1 = Mk −∆NkOk+1

= Mk −
uk −NkSk

S′k
Ok+1

and the account value update is the same as given above.
The second case occurs if Ok+1 > S′k and Lk+1 ≤ S′k.

In this situation, the frictionless market assumption assures
that limit price S′k is reached during Tk+1. Then, again the
same update Nk+1 is used and the account money update is

Mk+1 = Mk −∆NkS
′
k

= Mk −
uk −NkSk

S′k
S′k

= Mk − uk +NkSk

The third case occurs if S′k < Lk+1 which implies that
the limit order remains unfilled during Tk+1 leading to

Nk+1 = Nk; Mk+1 = Mk.

The outcome for this third case is consistent with the fact that
if a trader’s limit price is too ambitious in the sense that S′k
is too far below Sk, the probability of an order fill may be
quite low. Finally, we note that a nearly identical analysis can
also be carried out for a sell limit order working with Hk+1

rather than Lk+1.
3) Modelling of Stop Orders: This type of order is trig-

gered and automatically converted to a market order if its so-
called stop price is reached or surpassed. More precisely, for
the case of a buy stop order shares with stop price S′k > Sk
submitted at the close of Tk, the formula for ∆Nk is the same
as in the limit order case and if S′k is reached or surpassed
during Tk+1, a market order for these shares is triggered at
such time. Then, our standing assumption that the market is

7444



frictionless guarantees a fill at price S′k. The analysis for this
order has a similar flavor to the one used for the limit order
and again involves three mutually exclusive cases and we
omit some details for brevity. For the case when Ok+1 ≥ S′k,
this order is filled at the open for Tk+1 at price Ok+1 and
we obtain

Mk+1 = Mk −∆NkOk+1

= Mk −
uk −NkSk

S′k
Ok+1.

If Ok+1 < S′k and Hk+1 ≥ S′k, the stop price S′k is reached
during Tk+1 and we obtain

Mk+1 = Mk −∆NkS
′
k

= Mk −
uk −NkSk

S′k
S′k

= Mk − uk +NkSk.

For the third and final case, occurring if S′k > Hk+1, the
stop order is unfilled during Tk+1 leading to Nk+1 = Nk
and Mk+1 = Mk as in the limit order case. Finally, analo-
gous to the limit order case, a nearly identical analysis can
also be carried out for a sell stop order working with Lk+1

rather than Hk+1 playing the pivotal role.

C. Causality Requirement

At the end of stage k, the desired value of shares under
control uk, in practice, must be a causal function of past
history variables. Subsequently, with uk specified and the
trader indicating the order type, the ideas in the previous sub-
sections can be used to update the account value. To provide
an example, at stage k, suppose uk is a linear time-invariant
feedback on the s most recent account values; i.e., say

uk = K0Vk +K1Vk−1 + · · ·+KsVk−s

with associated feedback gain vector K .
= (K0,K1, . . . ,Ks)

leading to satisfaction of the no-leverage condition. The
trader can enter a buy order of one of the aforementioned
types, and the previously described update equations can be
immediately applied.

IV. STOCK TRADING AS A FEEDBACK
CONTROL DESIGN PROBLEM

The example above with its gain vector K illustrates how a
feedback control mechanism can be used to define a suitable
trading strategy or enhance an existing one. Also recalling
the Introduction where further motivation for control-inspired
trading methods and the related literature is discussed, this
section provides some illustrations of this type of integration
of automatic control principles into trading schemes. In this
context, we first consider an approach which we describe
as “model free” and later introduce both model-based and
data-driven analyses into the discussion.

To begin, we consider the case of trading a single stock us-
ing a linear time-invariant feedback control to determine the
desired investment level Ik corresponding to controller uk. In
this section, since only market orders are assumed, consistent
with the frictionless market assumption in the previous

Fig. 2. Stock Trading via Linear Feedback

section, we are assured that Ik is instantaneously realized.
Instead of using data or a model to make predictions of
the future stock prices as a basis for adjustment of Ik
as is typically done by practitioners of classical technical
analysis,3 we simply introduce a “garden variety” linear time-
invariant feedback controller as depicted in Figure 2. This
serves a starting point for the more general framework in [8]
in next subsection.

Now, with I0 representing the initial investment, notice
that the controller Ik is “model free” in the sense that this
investment level at stage k, given by

Ik = I0 +Kgk

is based solely on the cumulative gain or loss to date gk
with no assumed parameterization of the price dynamics Sk
or stock returns Xk. Consistent with this, in the exposition
to follow, the only assumption on Xk is that it arises from
underlying stochastic process with mean

µ
.
= E[Xk]

for all k. Finally, we note that with K > 0 and I0 > 0, this
corresponds to going long, which leads to profit when the
price Sk is increasing; equivalently, when Xk > 0.

For the accounting block in the figure, the cumulative gain-
loss is updated as

gk+1 = gk +XkIk.

Furthermore, since gk and the associated account value Vk
satisfy gk = Vk − V0, we also have update equation

Vk+1 = Vk +XkIk.

As in stochastic control, the returns Xk represent the primary
uncertainty influencing the dynamics of gk.

A. Simultaneous Long-Short Controller

The takeoff point for this subsection is that fact the linear
feedback controller Ik = I0 + Kgk above can potentially
lead to large losses. For example, in a rapid market decline
with both I0 and K being positive, if K is not sufficiently
large, the investment level Ik may not be decreasing quickly

3Prior to the last couple of decades, technical analysis and its foundations
were strongly criticized by academics based on considerations of market
efficiency. More recently, however, these methods have been receiving
increasing attention in the literature; e.g., see [51]–[55].
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enough to attenuate the fast decay in gk. With this scenario
and others serving as motivation, in [8], a hedging strategy of
sorts is introduced. To this end, the so-called Simultaneous
Long-Short (SLS) controller, capable of both long and short
positions, is now described.

Indeed, the SLS controller employs a pair of decoupled
linear feedback controllers in parallel. Namely, for fixed
gain K > 0, using two different investments, Ik,L being
long and Ik,S being short, we define investment levels

Ik,L = I0 +Kgk,L; Ik,S = −I0 −KIk,S

and overall investment

Ik = Ik,L + Ik,S .

Corresponding to these levels are the individual cumulative
gains and losses

gk+1,L = gk,L +XkIk,L; gk+1,S = gk,S +XkIk,S ,

and overall gain-loss function

gk = gk,L + gk,S .

In [8], this SLS scheme is shown to have an interesting
arbitrage-like property. Namely, the following theorem is
established.

Robust Positive Expectation Theorem: In an idealized
frictionless market, the trading gain-loss function resulting
from the SLS controller is

E[gk] =
I0

K

[
(1 +Kµ)k + (1−Kµ)k − 2

]
,

which is positive for k > 1 and all µ non-zero.

B. Remarks on SLS Control and Related Work

The theorem above demonstrates the effectiveness of feed-
back control in a hedging context and it is also noted that
performance of the SLS controller depends strongly on the
selection of the feedback gain K > 0; e,g., see [11]. For
the advanced reader, it is noted that there is an analogy to
be made between the behavior of E[gk] in the theorem as
a function of µ and the behavior of a straddle in options
theory. That is, if there is a large price movement either up
or down, the SLS controller will typically perform well.

Despite its hedging potential, real-world use of an SLS
controller has some negatives: For sideways price movement,
even with E[Xk] non-zero and positive, along some “un-
lucky” sample pathes, significant losses can occur. Another
negative associated with the SLS controller relates the fact
that real-world stock price dynamics may be highly nonsta-
tionary; a fixed gain K while performing well on one price
regime may be inadequate for another. This consideration
motivates research on control methods other than the simplest
SLS scheme as described above. To this end, we point to
some initial work along these lines.

One approach in the literature involves beginning with an
a priori bound on the Xk obtained from historical data and
then determining what SLS gain K to use by robust control

Fig. 3. Empirical Return Distributions for Eight American Stocks

methods; see [15]. By way of illustration, in the box plot
in Figure 3, the empirical return distributions of eight well-
known American stocks for the trading years 2010–2017 are
given. They show the median, quartiles, and outliers, pro-
viding a concise summary of data spread, central tendency,
and anomalies. Since a typical robust control method places
heavy emphasis on the “extreme” returns associated with the
dashed min and max lines in the figure , it stands to reason
that an “optimal” robust stock-trading controller may be
“overly conservative” because the large positive and negative
returns which are emphasized may be highly improbable.

Another approach aimed at obtaining a suitable feedback
gain K involves the use of data-driven adaptive methods
in combination model-based price dynamics. The key ideas
underlying such a scheme are depicted in Figure 4 as it might
apply to the simple case of finding a standard time-varying
linear feedback gain Kk which can be viewed as as one of the
two legs of an SLS controller. Consistent with the Internal
Model Principle [50], the controller identifies local price
behaviors to counteract them through backward optimization
over a finite-length past window; for further details, see [16].
Finally, we mention the initial work in [14] looking at the use
extremum seeking techniques aimed at optimizing the output
of a dynamic closed-loop system represent the stock-trading
algorithm. To conclude, we note that delving deeper into new
trading schemes as illustrated by the ones described above
is a possible direction for further work. In particular, the
adaptive tuning of trading parameters such as the feedback
gain K, is a subject currently under investigation. In the
next section, instead of concentrating on single stock, we
consider a portfolio consisting of multiple stocks and study
optimization problems in this context.
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Fig. 4. The Adaptive SLS Control Architecture of [16]

V. OPTIMIZATION PROBLEMS ARISING IN
QUANTITATIVE PORTFOLIO MANAGEMENT

Optimization methods play a pivotal role in modern quan-
titative portfolio management. Beginning with this premise,
we discuss how optimization theory and related algorithms
can be used to efficiently solve various portfolio optimization
problems. To this end, we shall delve into classical mean-
variance models and their various extensions. These include
the Black-Litterman approach, which integrates market equi-
librium and investors’ views into the analysis, and more
recent developments such as stochastic and robust portfolio
theory. We aim to equip theoreticians and practitioners with
valuable insights and toolkits for optimizing portfolios by
examining key models and theories; see [1] and [19].

A. Mean-Variance Model

Central to modern portfolio theory, the Mean-
Variance (MV) Optimization formulated by Harry
Markowitz in his seminal paper [13] provides a framework
for constructing portfolios that maximize expected
return for a given level of risk. Specifically, consider
a portfolio of m assets, which may include equities,
bonds, currencies, and other assets. For i = 1, 2, . . . ,m,
let X = [X1, X2, . . . , Xm]> with Xi being the rate of
return on asset i. Take µ

.
= E[X] to be the mean return

vector.
Let V0 > 0 be the initial account value of the portfolio

and V1 be the subsequent account value, which can be
viewed as a system state. Consider the investment policy,
or a controller, for each asset i given by ui

.
= KiV0 with a

constant feedback gain Ki. Then the single-period account
value update equation is given by

V1 = V0 +

m∑
i=1

uiXi = V0(1 +K>X)

where K
.
= [K1,K2, . . . ,Km]> ∈ Rm is the feedback

gain vector that corresponds to the portfolio weights. The
portfolio return is rp(K)

.
= (V1 − V0)/V0 = X>K and the

corresponding portfolio mean return is E[rp(K)] = µ>K
and variancevar(rp(K)) = K>ΣK where

Σ
.
= E[XX>]− µµ>

is the covariance matrix of the asset returns.

A version of Markowitz’s MV optimization model is
given by

max
K∈K

{J(K) = µ>K − ρK>ΣK} (1)

where ρ ≥ 0 is a given risk aversion constant4 and K is the
admissible set. A typical choice for K is given by the unit
simplex constraint

K =
{
K ∈ Rm : K>1 = 1,Ki ≥ 0, i = 1, . . . ,m

}
(2)

with 1 = [1, 1, . . . , 1]> ∈ Rm being the one-vector. The con-
straint set K represents that the trades are long-only, Ki ≥ 0
for all i, and cash-financed, K>1 = 1. This framework is
deeply connected to the convex quadratic program, offering
efficient computational approaches for finding optimal port-
folios; see [37] and [40].

In particular, it is well-known that, if short selling is
allowed, that is, by dropping the nonnegativity constraints
on K, then obtains

max
K

µ>K − ρK>ΣK

s.t. K>1 = 1.

That is, Problem (1) reduces to a convex quadratic program
with only one linear constraint. For ρ > 0, applying the
standard Lagrange multiplier technique yields a closed-form
solution K = K∗ given by

K∗ =
1

2ρ
Σ−1(µ+ λ∗1)

where λ∗ is the optimal dual variable

λ∗ =
2ρ− 1>Σ−1µ

1>Σ−11
.

However, portfolio optimization problems always have ad-
ditional constraints in practice due to market regulations,
friction, and investor preferences; see [17] and [20]. For
example, if one considers the unit simplex constraint (2),
there is no closed-form solution, and one must employ a
numerical approach. The next example illustrates the case
with a simple three-asset portfolio.

B. Example: Three Asset Portfolio

Consider a portfolio with n = 2 risky assets: Nvidia Cor-
poration (Ticker: NVDA) and Advanced Micro Devices, Inc.
(Ticker: AMD), along with a risk-free treasury bond yielding
a 5% interest rate covering the period from January 2, 2023
to January 2, 2024 with a total of 250 trading days; see
Figure 5 for the price trajectories of the two risky assets.

Now, taking the vector K .
= [K0,K1,K2]>, where K0 =

1 − K1 − K2 represents the weight for the risk-free asset,
and K1,K2 are the weights for NVDA and AMD, respec-
tively, Figure 6 depicts the concave quadratic objective J(K)
with respect to (K1,K2) using ρ

.
= 4. The optimal weight

4Choosing the value of ρ depends on the investor’s aversion to risk. A
higher ρ means prioritizing the minimization of variance over achieving
higher returns, while a lower ρ focuses more on maximizing returns at the
risk of higher variance.
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is obtained at (K∗1 ,K
∗
2 ) ≈ (0.676, 0.054), occurring on the

interior of the unit simplex constraint set, which leads to
corresponding optim K∗0 = 1−K∗1 −K∗2 ≈ 0.269.
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Fig. 5. NVDA and AMD Prices: January 02, 2023 to January 02, 2024

Fig. 6. Three Asset MV Portfolio and Objective Value J(K)

It should be noted that the MV portfolio tends to over-
weight assets with large expected returns and low variance
while underweighting assets with low expected returns and
high variance. Indeed, taking the risk-aversion constant to
be ρ = 2, then the optimum K = (0, 1, 0), an overly
concentrated weight on NVDA, is seen. Thus, MV portfolios
may not be well diversified; e.g., see [35]. Moreover, the
estimation error may largely impact the performance of
the optimal MV portfolio. The uncertainty of returns tends
to exert more influence than the associated risk in MV
optimization, a point further elaborated upon in [36].

C. The Black-Litterman Model

Extending the MV model, the Black-Litterman (BL)
model, introduced by [24], incorporates investors’ subjective
views and market equilibrium into portfolio optimization.

This model addresses practical concerns with the traditional
MV model, particularly its sensitivity to input estimates.
The BL model connects the optimal weighted least-square
estimate and a convex quadratic program.

The basic idea of the BL model is to tilt the market
equilibrium returns to incorporate an investor’s views via a
Bayesian approach.5 For example, consider µ ∈ Rm as the
unknown true expected return. The BL model proposes an
estimate of µ using the market equilibrium return such as
the capital asset pricing model (CAPM) or factor models,
denoted by π, see [20], [24] and [44], as follows:

π = µ+ επ; επ ∼ N (0, γΣ)

for some small parameter γ � 1, e.g., see [24] and
γ ∈ [0.01, 0.05]. In particular, one can think of γΣ as our
confidence in estimating the equilibrium expected returns. A
small γ implies high confidence in our equilibrium estimates,
and vice versa.

Expressing Investor’s Views. Investors often hold specific
views on the performance of certain assets, either in absolute
terms or relative to other assets. The BL model formalizes
these views, denoted by q ∈ Rd, as:

q = Pµ+ εq; εq ∼ N (0,Ω)

where P ∈ Rd×m is the parameter matrix of views, εq
represents the normally distributed degree of confidence in
the views, and Ω ∈ Rd×d expressing the confidence in
the views, which is typically set to be a diagonal matrix,
indicating independent error terms across individual views.
In extreme cases, a view can have zero variance, signifying
absolute confidence.

Example: Assigning the Investor’s Views. Consider the
prior example regarding an asset allocation problem with
three assets: Risk-free treasury bonds, NVDA, and AMD.
Suppose we have two subjective views for the current ongo-
ing year:
• Return on treasury bond will be 4%.
• The NVDA will outperform the AMD by 2%.

Let µ = [µ0, µ1, µ2]> be the mean returns for the three
assets unknown to the trader. Then, the two views above can
be expressed as

0.04 = µ0 + ε1;

0.02 = µ1 − µ2 + ε2.

One can write the above to the matrix-vector form as q =
Pµ+ εq where q .

= [0.04, 0.02]>, εq = (ε1, ε2)>, and

P =

[
1 0 0
0 1 −1

]
.

Note that the error terms ε1 and ε2 do not explicitly enter
into the BL model—but their variances do.

5The classical approach to estimating future expected returns assumes
that the “true” expected returns and covariances of returns are unknown and
fixed. In contrast, the Bayesian approach assumes that the “true” expected
returns are unknown and random.

7448



Merging Investor’s View and Market Equilibrium. To
properly integrate the investor’s views with the prior market
equilibrium, we recall that{

π = µ+ επ, επ ∼ N (0, γΣ)

q = Pµ+ εq, εq ∼ N (0,Ω).

Let y .
= [π q]>, M .

=

[
Im×m
P

]
and V

.
=

[
Q 0
0 Ω

]
with

Q = γΣ. Then, it follows that

y = Mµ+ ε, ε ∼ N (0, V )

where Im×m is an identity matrix and P ∈ Rd×m. Once we
have merged the market equilibrium and the investors’ views,
we formulate a weighted least-squares (WLS) problem

min
µ

(y −Mµ)>V −1(y −Mµ).

whose solution, denoted by µ̂, is given by

µ̂ = π +QP>(PQP> + Ω)−1(q − Pπ). (3)

Moreover, via the Bayesian approach, e.g., [38], one can also
obtain the BL estimate for the covariance matrix as follows

Σ̂ = Σ + (Q−1 + P>Ω−1P )−1. (4)

It should be noted that the BL model’s reliance on normally
distributed error terms is a critical assumption for deriving
closed-form solutions like Equation (3). However, in cases
where this assumption does not hold, alternative numerical
methods, including nonlinear programming algorithms, may
be required to find suitable solutions; see [19]. Having
obtained the view-updated mean µ̂ and covariance matrix Σ̂,
one can then resolve the problem characterized by Equa-
tion (1) using these new estimates. However, it should be
noted that the result here is entirely an in-sample result
intended to demonstrate the construction of the Markowitz
model and its possible extension. Therefore, in practice, out-
of-sample testing should be the next step.

Remark on Further Generalization. The MV and BL
model can be recast as a more general model under the
umbrella of stochastic optimization (SO); see [21], which
incorporates uncertainty via randomness within the optimiza-
tion model itself. This is typically through the use of chance
constraints or stochastic objectives. Specifically, let Uk(·) be
a risk-averse utility function, which is concave and strictly
increasing. Then, the general SO problem for a finite-horizon
can be expressed as

sup
{uk,i}

n−1∑
k=0

E[Uk(Vk)] + E[Un(Vn)] (5)

where6 Vk+1 = Vk +
∑m
i=1Xk,iuk,i for k = 0, . . . , n − 1

and i = 1, . . . ,m. That is, the account value at the next time
step Vk+1 evolves based on the current account value Vk and
the decision variable uk influenced by returns Xk.

6Here, admitting some abuse of notation, we use Xk,i to denote the
return of the ith asset over period k.

VI. ON KELLY’S CRITERION FOR STOCK TRADING

In this section, we focus on a specific instance of opti-
mization problem characterized by Equation (5), where only
one stock is traded,7 and the performance index, viewed in
the context of the previous section has running utilities

U0 = U1 = · · · = Un−1 ≡ 0

and terminal utility being the expected logarithmic growth
(ELG) of the trader’s account value, to be maximized and
defined as

ELG
.
=

1

n
E
[
log

Vn
V0

]
.

The use of the ELG is standard in investment and gambling
literature; see [1], [9], [23] and [25]. By maximizing this
quantity, a trader strikes a balance between wealth growth
and risk mitigation; e.g., no trading strategy with a positive
chance of ruining can be optimal. Another reason for the use
of ELG, as noted in [25], is that in gambling and stock trading
one typically deals with reinvestments, and the account value
after n periods is the product of several factors, one per
trading period. While dealing with the expected value of such
products is inconvenient, the expected logarithm of a product
naturally decomposes into the sum of expected logarithms,
simplifying the determination of the optimal strategy.

A. Kelly’s Criterion for a Known Distribution of Returns
Consider first a hypothetical scenario where the returns

Xk = (Sk+1 − Sk)/Sk in the account update equation

Vk+1 = Vk + ukXk (6)

are i.i.d. with a known distribution. This distribution is as-
sumed to be discrete8 with s atoms x1, . . . , xs and pi > 0 ∀i
denoting the probability that Xk = xi and p1 + . . .+ps = 1.

The idea of a trading strategy maximizing the ELG traces
back to the seminal work by John Larry Kelly [22], a
scientist at Bell Labs with an interest in gambling theory,
who uncovered a relationship between gambling and in-
formation theory. Initially developed for betting in sports
and games of chance, Kelly’s strategy, essentially a simple
feedback controller, has since been applied in stock trading
and portfolio management [23] and [26].

1) Kelly’s Criterion: An Optimal Linear Controller:
Consider first the problem of finding the optimal trading
strategy among all static proportional controllers uk = KVk,
satisfying the no-leverage assumption |uk| ≤ Vk; equiva-
lently |K| ≤ 1. Note that K > 0 corresponds to a long
trading strategy, whereas K < 0 represents a short trading
strategy.

Substituting uk = KVk into the account value update
equation, one finds that Vn = V0(1+KX0) · · · (1+KXn−1),
and hence, the ELG can be written as follows

ELG(K) = p1 log(1 +Kx1) + . . .+ ps log(1 +Kxs).

7Kelly’s criterion can easily be extended to portfolio optimization; for
further details, interested readers can refer to [25] and [26].

8Kelly’s criterion can be given for the continuous distributions as well.
However, in practice, a stock trading strategy must be data-driven, relying
on discrete empirical distributions estimated from observed sample paths.
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In practice, the returns are usually small9 with |xi| < 1
for all i, and hence ELG(K) is well-defined under the no-
leverage condition |K| ≤ 1. By noticing that log is strictly
concave, the maximizer exists and is unique

K∗ = arg max
K∈[−1,1]

s∑
i=1

pi log(1 +Kxi). (7)

The ELG-optimal linear time-invariant feedback controller
uk = K∗Vk is known as Kelly’s strategy, and the optimality
condition (7) is referred to as Kelly’s criterion. In practice,
finding a maximizer for ELG(K) is straightforward; e.g.,
one can generate a plot of ELG(K) in appropriate software
and visually identify the point of maximum. However, for
more general versions of a problem involving a portfolio
and a vector K more sophisticated methods, such as convex
programming are typically used. Finally, note that Kelly’s
criterion generalizes to the long-only (respectively, short-
only) trading, replacing [−1, 1] in (7) with [0, 1] (respectively,
[−1, 0]).

2) Kelly’s Criterion for the Two-Atom Distribution: To
illustrate Kelly’s criterion, we examine an idealized scenario
where Xk is constrained to only two values (s = 2): x1 > 0,
occurring with a probability of p1 = p > 0, and x2 < 0,
occurring with a probability of p2 = 1 − p. Similar to a
straightforward coin-flipping game falling under the umbrella
of [22] and [27], in this scenario, for any K 6= 0, one of these
two outcomes results in a loss for the trader (if Kxi < 0),
while the other outcome increases the trader’s account value
(if Kxi > 0).

Recalling Kelly’s criterion tells us that the optimal
gambling strategy uk = K∗Vk is found by maximizing
ELG(K) = p log(1 + Kx1) + (1 − p) log(1 + Kx2) over
K ∈ [−1, 1], using concavity of the ELG, Kelly’s controller
K∗ can be found as the solution of the equation ELG′(K) =
0, i.e.,

K∗ = K∗p
.
= − p

x2
− 1− p

x1
=

p

|x2|
− 1− p

x1
,

provided that K∗p belongs to [−1, 1]. Otherwise, K∗ = 1 if
K∗p > 1 and K∗ = −1 if K∗p < −1.

A special case of this example arises in a coin-flipping
game with an even payoff, where the gambler stakes a portion
of wealth |uk| ≤ Vk at each round k = 0, . . . , n − 1. We
interpret values uk > 0 as betting on heads, whereas uk < 0
means betting on tails; the gambler skips the k-th round of
betting if uk = 0. The wager is added to the gambler’s
wealth if the coin side is correctly guessed (x1 = 1) and
forfeited otherwise (x2 = −1). In this scenario, we arrive at
the celebrated Kelly’s formula K∗ = 2p−1 for the optimum
in [22]. The gambler should bet on heads if p > 1/2 and on
tails when p < 1/2, with the proportion of wealth wagered
being |2p− 1|.

In this subsection, we briefly outline important properties
and some generalizations of Kelly’s criterion.

9Of particular note, positivity of prices Sk > 0 for all k guarantees that
the associated returns Xk = (Sk+1 − Sk)/Sk > −1.

3) More Advanced Kelly Betting Topics: In this subsec-
tion, we first describe two important properties of Kelly’s
ELG maximizing strategy and then discuss a possible re-
finement of the theory with potential appeal to stock market
practitioners: a data driven implementation of the optimal
betting scheme. Finally, we describe a recent Kelly betting
result by two of the coauthors of this tutorial paper. This
involves a robustness scenario and conditions under which
nonlinear controller, in lieu of Kelly’s linear one, is preferred.

One key question regarding the Kelly optimum is whether
the ELG performance level associated with the linear feed-
back scheme described above can be further increased by
allowing nonlinear and time-varying trading strategies. Sur-
prisingly, the answer is negative. Kelly’s strategy cannot be
outperformed by any admissible (causal) trading strategy,
such as, e.g., a time-varying nonlinear controller uk =
K̃k(Vk)Vk or a more general controller with memory uk =
K̃k(V0, . . . , Vk)Vk. The mathematical proof (addressing a
more general case of Kelly’s portfolio trading strategies)
is available, e.g., in [25]; this proof is inspired by Kelly’s
pioneering work [22].

The second important property of Kelly’s solution pertains
to asymptotic behavior. It can be proven that for long trading
intervals (n → ∞) Kelly’s controller uk = K∗Vk outper-
forms any other admissible trading strategy almost surely.
More formally, comparing the final account value Vn under
any admissible strategy with the final value V ∗n delivered by
Kelly’s strategy for the same sample path, it is shown in [25,
Theorem 15.3.1] that

lim sup
n→∞

1

n
log(Vn/V

∗
n ) ≤ 0

with probability one.
As far as the stock market practitioner is concerned, one

undesirable feature of the Kelly theory is the requirement
for information about the return variable distribution, an
assumption that is obviously unrealistic in trading and needs
to be discarded. A practitioner’s approach, as illustrated in
the simulation example in Section VIII, is to work with an
empirical distribution for Xk in the optimization problem (7)
(essentially, rendering the controller nonlinear and time-
varying). Namely, one fixes s ≥ 1 as the lookback parameter
(the retrospective observation window). When deciding on
the control on interval Tk, we allocate probability mass
1/s to each of the observed returns Xk−1, Xk−2, ..., Xk−s
(in practice, it is almost impossible to see the exactly the
same return twice). After that, we compute Kelly’s controller
uk = K∗kVk for interval Tk, using the constructed discrete
distribution instead of the actual distribution for Xk, that is,
we solve (7) with xi

.
= Xk−i and pi = 1/s, i = 1, . . . , s.

Note that the optimal level of investment K∗k will not be
constant as it depends on the historical data.

A modification of this data-driven approach is the method
of adaptive Kelly betting described in [29], which shares
similarities with the adaptive trading strategies discussed in
Section IV. In this approach, it is assumed that Xk are i.i.d.
random variables containing a parametric uncertainty; e.g.,
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we play a coin-flipping game with uncertain parameter being
the probability of heads p. Using statistical inference tech-
niques such as Bayesian and maximum likelihood estimates,
one can then estimate the uncertain parameters based on
the full observed sample path X0, . . . , Xk−1 and use the
obtained estimates in Kelly’s criterion. One can expect that,
as n→∞, the resulting controller approximates the “exact”
Kelly’s controller corresponding to the true parameter values.

An alternative robust control approach to the ELG-optimal
trading can be used based on the theory developed in the
recent work [28] and references cited therein. Whereas this
approach, motivated by the theory of distributional robust-
ness, deals with parametric uncertainty in the return distribu-
tion, the unknown parameters are not iteratively estimated.
Instead, a causal controller uk = Kk(X)Vk is found that
maximizes an integral ELG performance measure. Unlike the
classical Kelly criterion, this optimal controller proves to be
nonlinear even for the simplest of coin-flipping games.

VII. AN INTRODUCTION TO THE LIMIT ORDER BOOK

For any given stock, the Limit Order Book (LOB) is
essentially a collection of all open limit orders and main-
tained on a server of the stock exchange. As limit orders
either arrive or are filled dynamically in time, the LOB is
updated to reflect these changes. As seen in the sequel, the
Limit Order Book gives a clear picture of the supply and
demand for a given stock and other insights into market
depth and liquidity. As far as the control community work is
concerned, this section is motivated by the brief introductions
to the LOB in [41], [42] and the recent research papers [43]
and [45]. Current research, be it in the control community
or elsewhere is motivated by the following consideration:
Given the nanosecond time stamping of transactions and
the voluminous data sets associated with keeping track of
orders with this time scale, the LOB is a mecca of sorts for
both high-frequency traders and researchers. For example,
relatively recent surveys such as [34] and [46] motivate
research on the price movement prediction and potential
profitability of various high-frequency trading algorithms
exploiting the nanosecond-level time stamping as orders
enter into the LOB.

This section offers a detailed model of the market mecha-
nism that translates messages from traders, including offers
to buy and sell, into the data structure called the Limit Order
Book (LOB) and the time series we call “price.” Given the
target group of attendees, we take a control-theoretic point
of view and develop modelling equations in a state space.

A. Market Mechanisms and the LOB

Market mechanisms are discrete event dynamic systems
that receive messages from prospective traders and use them
to update the LOB [30], [32], [33]. The LOB is the state of
the market, a snapshot at any particular time of active orders
in the market from investors collectively wishing to buy and
sell a certain number of shares of a given stock at a particular
price. The orders to buy are called bids while the orders to
sell are called asks, and the LOB for any particular asset

traded on the market can be visualized as a histogram of the
aggregate number of shares being “bid” or “asked” at various
prices. This is depicted in Figure 7 for the case of General
Electric (GE) on February 4, 2014 at time 9 : 55 : 27am with
the bids in red and asks in blue. Notice the offer to buy a
large volume (over 5000) of shares at the very low price of
$24.42 (red bar on the far left) in spite of similar offers at
higher prices. All these offers contribute to the overall shape
of the book.

Although actual markets need to differentiate between
multiple orders to buy or sell at the same price in order
to 1) follow specific precedence rules about whose order
gets filled first, and 2) match filled orders to specific traders,
here we will simplify the discussion by only considering the
aggregate number of orders at any specific price.

GE 02/04/14 09:55:27

Fig. 7. The LOB for GE; see Text for Details

B. LOB State-Space Modelling

We begin by defining the range of discrete prices, P,
available for admissible trades. For example, these could
be $0.01, $0.02,. . .,$100, 000.00, or any other increment
and upper bound deemed acceptable to model the potential
price of a single share of stock. We let ` .

= |P|, and
note that the LOB at any given time k will be composed
of two nonnegative integer vectors, zb(k) ∈ Z`,(0,+) and
za(k) ∈ Z`,(0,+), respectively, representing in Figure 7 the
number of shares being sought on the bid side (red) and the
number of shares being offered on the ask side (blue) of the
LOB at each price point. Hence, to describe the full state of
the LOB, we define

z(k)
.
=
[
zb(k) za(k)

]
∈ Z`×2,(0,+).

Note that, although conceptually simple, in practice this
representation is not efficient because z(k) will, in general,
be very sparse, since most stocks do not receive offers to
buy or sell at every conceivable price. Nevertheless, we will
adopt it here for pedagogical purposes.

It turns out that characterizing LOB dynamics is eas-
ier when using cumulative representations of the vectors
z(a,b)(k). For this, we define the `× ` matrices:

U
.
=


1 1 ... 1 1
0 1 ... 1 1
...

. . .
...

0 0 ... 1 1
0 0 ... 0 1

 , L
.
=


1 0 ... 0 0
1 1 ... 0 0
...

. . .
...

1 1 ... 1 0
1 1 ... 1 1
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and change bases to define the LOB state variables:

xb(k)
.
= Uzb(k); xa(k)

.
= Lza(k)

which are combined to obtain

x(k)
.
=
[
xb(k) xa(k)

]
∈ Z`×2,(0,+).

We say the book is balanced when xbp 6= 0 implies xap = 0
and xap 6= 0 implies xbp = 0 for all p ∈ P.

To characterize order book dynamics, we adopt the fol-
lowing convention for the min and max operations: Given a
real vector x, we use min(x) and max(x) to denote the
minimum and maximum of its components, respectively.
Given c ∈ R and a matrix A, let min(A, c) denote a matrix
the same size as A with every entry given by min(ai,j , c); the
max operation is defined similarly. We use 1s×t to denote
an s × t matrix of all ones and also define a mapping,
f : Zl×2 → Zl×2, called the balancing function, by

f(y)
.
= max

(
y −max(min(yb, ya)1l×2, 0)

)
(8)

with argument, y =
[
yb ya

]
∈ Zl×2. Notice that f is

identity when its argument is nonnegative and balanced, since
max(min(yb, ya)1l×2, 0) = 0 × 1l×2 = 0l×2 in that case
because every row of a balanced y has at least one zero
element.

With this balancing function defined, our discrete-time
state equation characterizing the order book dynamics, is
given by

x(k + 1) = f (max (x(k) + u(k), 0)) (9)

where u(k) =
[
ub(k) ua(k)

]
∈ Zl×2, ub(k), ua(k) ∈ Zl

is an encoding of the order type received by the market at
time step k. Loosely speaking, these order book dynamics (9)
simply add incoming orders to the current cumulative state
of the book and then balances using the balancing function,
(8), to fill any overlapping orders and remove them from the
book. The maximizations with zero simply keep the state
representation, x(k), nonnegative, as illustrated through the
example to follow.

C. Messages and Level II ITCH Data

The LOB for a given stock reflects the aggregation of all
the individual orders a market receives for that stock. These
individual orders, however, are communicated as messages
using a very particular data format and exchange protocol
called the ITCH protocol.

NASDAQ introduced the ITCH protocol in January 2000.
It was developed, and evolved, to become a lightweight
data format to efficiently use limited bandwidth resources
between traders and markets. Today, the ITCH Protocol is
used across both Nasdaq-owned venues as well as other, non-
Nasdaq exchanges, and it has become one of the industry’s
de facto standards for market data feeds.

In general, ITCH data are timestamped sequences of mes-
sages, measured in nanoseconds after midnight, revealing the
nature of various orders arriving at the exchange. Messages
related to a specific stock then accumulate to effectively

create the LOB for that stock. Although a detailed description
of the messages or the protocol is beyond the scope of
this tutorial, the basic kinds of messages include things like
add orders, which adds either a buy or a sell order to the
book, or modify messages, which indicate things like when
an execution occurs or when an order is partially of fully
cancelled. Note that it does not cost a trader anything to
place or remove orders on the book; costs are only incurred
by transactions.

Since ITCH data are simply delivered as a sequence of
messages ordered by timestamp, called Level II data, it takes
some effort to convert this sequence into the data structure we
call the LOB; e.g., see [31] as in Figure 7. Here, consistent
with our state-space modelling, we encode each message as
a pair of vectors in Zn to model the effect of each order type
on the LOB, translating the message stream into the input
time series u(k), driving the dynamics. Indeed, beginning
with the simple no action case, we take ub(k) = ua(k) = 0.
Now, for brevity, we provide three more examples how this
translation of the message stream works where Z denotes
the integers, q ∈ Z is the number of shares ordered,
and ∗ represents standard multiplication: Now, we provide
three more examples illustrating how this translation of the
message stream works:
Add a bid Order for q Shares at Price p

ubi (k) =

{
q i ≤ p
0 i > p

∀i ∈ P,

uaj (k) = 0 ∀j ∈ P.

Cancel Ask Order for q Shares at Price p

ubi (k) = 0 ∀i ∈ P,

uaj (k) =

{
0 j < p

−q j ≥ p
∀j ∈ P.

Add a Market Order to Sell q Shares at the Best Price

ubi (k) = −q ∀i ∈ P,
uaj (k) = 0 ∀j ∈ P.

D. LOB Example

To illustrate LOB dynamics, consider the LOB for
a single stock, and suppose that market rules define
the price of this stock at any time step k as the
price of the last execution. For this illustration, let
P = {$0.01, $0.02, $0.03, $0.04, $0.05, $0.06} and suppose
that at time k = 0 the price of the stock is S(0) = $0.05,
with the initial book given by:

bid ask

z(0) =


0 0
2 0
1 0
3 0
0 1
0 2


← $0.01
← $0.02
← $0.03
← $0.04
← $0.05
← $0.06

⇒ x(0) =


6 0
6 0
4 0
3 0
0 1
0 3

 ,
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corresponding to bids of size 2, 1, and 3 at prices $0.02,
$0.03, and $0.04 respectively, as well as asks of size 1 and
2 at prices $0.05 and $0.06. This order book is balanced,
since there are no overlapping bids and asks, and the bid-
ask spread, or the difference between the price of the highest
bid and lowest ask, is $0.01.

At the same time, suppose that a message arrives to add
a bid order for 1 share at price $0.01. This is encoded as a
matrix u(0) and, following the calculations in (9) and (8), we
find the cumulative state x(1) and the corresponding shape
of the LOB, z(1), as:

u(0) =


1 0
0 0
0 0
0 0
0 0
0 0

 ⇒ x(1) =


7 0
6 0
4 0
3 0
0 1
0 3

 ⇒ z(1) =


1 0
2 0
1 0
3 0
0 1
0 2


Notice that the add order effectively just added onto the order
book, i.e. z(1) = z(0) + u(0), and since no executions were
involved, the price (of the last execution) remains unchanged:
S(1) = $0.05.

However, suppose that at the next time step a market
order to sell 5 shares arrives. These orders must be filled,
if possible, at the best possible price, and, since the last
reported price (for at least the last two time steps) has been
$0.05, the trader may be expecting to sell these five shares
for a total price of $0.25. Encoding the order, we see that

x(2) = f

max




7 0
6 0
4 0
3 0
0 1
0 3

+


−5 0
−5 0
−5 0
−5 0
−5 0
−5 0

 , 0




= f




2 0
1 0
0 0
0 0
0 1
0 3



 =


2 0
1 0
0 0
0 0
0 1
0 3

 ⇒ z(2) =


1 0
1 0
0 0
0 0
0 1
0 2


Here we see that z(2) 6= z(1) + u(1), and using the
cumulative state representation for x(k) made the dynamics
of walking the book easy to execute. What happened was
that the first 3 shares of the market order were bought by
the highest bid at a price of $0.04, but then the next best
price was one share at $0.03, and the last share was filled
at a price of $0.02, for a total price of $0.17 instead of the
expected $0.25. The last execution is now the last share filled,
so S(2) = $0.02, jumping from S(1) = S(0) = $0.05.

Seeing the price, which has been steadily at $0.05 a share
suddenly jump down to $0.02 a share, a trader who decides
that this stock is now undervalued may decide to buy a
few shares. Of course, in practice traders cannot receive
and act on market information this fast, but continuing with
this situation for pedagogical reasons, we suppose a market

order is placed to buy two shares. This being the case, a
straightforward but lengthy calculation yields

x(3) = f




2 0
1 0
0 0
0 0
0 0
0 1



 =


2 0
1 0
0 0
0 0
0 0
0 1

 ⇒ z(3) =


1 0
1 0
0 0
0 0
0 0
0 1


and we see that the order is filled at the best available
prices, which were $0.05 for the first share, and $0.06 for the
second, totalling $0.11 for the order. This is quite different
from the $0.04 the investor may have been expecting when
placing the order, and we see that although $0.01 of the
discrepancy is due to the order “walking the book” and
$0.06 of the discrepancy comes from both shares of the order
jumping the $0.03 bid-ask spread.

So far, none of the incoming orders have unbalanced the
book, but the re-balancing dynamics can easily be seen if we
suppose that u(3) is a limit bid order for 5 shares at $0.04,
and u(4) is a limit ask order for 2 shares at $0.03. Again,
by a straightforward but lengthy calculation, we obtain

x(5) = max




7 0
6 0
5 2
5 2
0 2
0 3

−


2 2
2 2
2 2
2 2
2 2
2 2

 , 0
 =


5 0
4 0
3 0
3 0
0 0
0 1


which demonstrates how the dynamics automatically re-
balance the book. Although the ask was placed at $0.03,
there was already a better offer on the book, so it was
filled at $0.04, showing us that even though S(4) remained
unchanged from S(3) at $0.06, S(5) = $0.04. This example
illustrates how the state model from (9) and (8) calculate
changes to the LOB as new orders arrive, and how subtle
dynamics like walking the book and jumping the bid-ask
spread can lead to unexpected outcomes and volatile prices.

VIII. BACKTESTING: AN ILLUSTRATIVE EXAMPLE

Backtesting is a process for evaluating the performance of
a trading scheme based on historical data. For instance, for
backtesting a daily strategy, sources such as Yahoo Finance,
Google Finance and Quandl will suffice. For a tick-by-tick
strategy, a large number of universities have licensed access
to the Wharton School’s WRDS data. For backtesting of
higher frequency trading schemes, costly NASDAQ ITCH
protocol data can be required. At the outset, for a given trad-
ing strategy, it is important to distinguish between demonstra-
tion of “mechanics” of backtesting it versus judging whether
it is likely to be an “excellent performer” when implemented
in the marketplace rather than with historical data; here
our simulation is being used solely for demonstration of
mechanics purposes. In order to make a judgment whether
the strategies we consider are “ready for prime time,” one
would need to perform a large number of backtests with data
covering many different scenarios — different time windows
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Fig. 8. Prices for Grayscale Bitcoin ETF: Dec.12, 2021 to Jan. 10,2024

including both bull and bear markets, periods when events
such as earnings or interest changes take place, times when
geopolitical turmoil takes place, to name a few.

A. Performance Metrics for Account Value Plots

For a given account value plot, there are a wide variety
of performance metrics which can be used for evaluation
purposes. Depending on the underlying risk preferences of a
trader, one metric may be preferred to another. For example,
in the pursuit of a high return, some traders may be willing
to tolerate a large Maximum Percentage Drawdown

dmax = max
k<n,i>k

Vk − Vi
Vk

along the way and others may not. We illustrate use of this
metric in the simulations to follow, along with the classical
Raw Return:

R =
Vn − V0
V0

to evaluate our V -plot performance. Although not considered
in our simulations, the reader would also be well advised
to learn about the so-called Sharpe Ratio (SR) which was
introduced in a widely celebrated 1966 paper [48] and has
been used extensively ever since to evaluate the performance
of money managers.

B. Trading the Grayscale Bitcoin ETF

In this section, per discussion above, to demonstrate the
mechanics of backtesting, we consider the following simple
scenario: For the time period from December 8, 2021 to
January 10, 2024, beginning with Yahoo daily data for the
Grayscale Bitcoin ETF whose ticker is GBTF, we examine
the performance of three of the trading strategies in earlier
sections. In all of the price and account value plots to follow,
the units assumed are U.S. dollars. The starting point for
our simulation is the daily closing prices for GBTC over
the 526 days under consideration; see Figure 8. Each of
the three cases to follow is a variation on a linear feedback
controller — each with its own distinctive features. To make

these backtests more consistent with simulations performed
by a practitioner, we assume that “idle cash” held overnight
in a trader’s account receives interest at an annual risk-free
interest rate of 3.75% which is converted to a daily rate r =
(1+0.0375)1/252−1 ≈ 1.461·10−4 for simulation purposes.
This averaged rate, obtained by examination of U.S. Treasury
data, is used for simplicity, and the simulations to follow
are rather insensitive to use of r in lieu of more accurate
daily rate rk. When we implement the trading schemes in
Sections III, IV and VI, the updated equation for Vk+1 has
one extra term attributable to this interest. For example, for
the trader using the linear feedback Ik = I0 + Kgk in
Section IV, the account value update equation becomes

Vk+1 = Vk + IkXk + (Vk − Ik)r.

C. The Limit Order Trader

The scenario in this first simulation is as follows: Imagine
a trader who is long-only and has opportunity to buy new
shares or sell existing shares at the market close of each day.
On Day k, a limit is entered with the goal of bringing the
account to a desired investment level specified by a linear
feedback control of the form uk = KVk. With Ck being the
closing price, a price improvement of 2% is being sought on
both buy and sell orders; i.e., in Section III, we take S′k =
0.98Ck on buy orders and S′k = 1.02Ck on sell orders. The
results of the simulation, shown for illustrative values K =
0.05, 0.25, 0.50 are seen in Figure 9.
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Fig. 9. Account Value for Limit Order Trader

For the performance metrics R an dmax given above, we
obtained:
• for K = 0.05: R ≈ 0.06 and dmax ≈ 0.02;
• for K = 0.25: R ≈ 0.09 and dmax ≈ 0.20;
• for K = 0.50: R ≈ 0.14 and dmax ≈ 0.53.

D. The Linear Feedback Trader

The scenario in this second simulation is as follows: A
trader is going long-only again, but this time, at the close of
each day k, a market order at price Sk = Ck instead of a
limit order is used. Again, a linear feedback control of the
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form uk = KVk is applied. The results of the simulation,
shown for illustrative values K = 0.30, 0.60, 0.90 are seen
in Figure 10.
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For the performance metrics R and dmax given above, we
obtained:
• for K = 0.3: R ≈ 0.22 and dmax ≈ 0.58;
• for K = 0.6: R ≈ 0.15 and dmax ≈ 0.49;
• for K = 0.9: R ≈ 0.07 and dmax ≈ 0.42.

E. The Data-Driven Kelly Betting Trader

The scenario in this third and final simulation is for a
trader is going long using the Kelly Betting described in
Section VI. Again, at the close of each day k, a market
order at price Sk = Ck with trade size is determined by a
Kelly-optimal time-varying linear feedback of the form uk =
K∗kVk which is obtained by the maximization of expected
logarithmic growth using lookback window of variable size s
to obtain the probability mass function required in the opti-
mization. The results of the simulation, shown for illustrative
values s = 40, 78, 90 are seen in Figure 11.
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For the performance metrics R and dmax given above, we
obtained:
• for s = 40: R ≈ 1.27 and dmax ≈ 0.39;
• for s = 78: R ≈ 1.85 and dmax ≈ 0.26;
• for s = 90: R ≈ 1.09 and dmax ≈ 0.31.

F. Additional Comments on the Simulations

Looking at the account value plots and the reported
values for the raw return R and maximum percentage draw-
down dmax, in order to make a performance comparison
between two such results, it is important to point out that
traders may disagree which of the two results is “preferred.”
To make this point, imagine a trader comparing the s = 40
plot for the Kelly Betting Trader with the K = 0.05 plot
for the Limit Order Trader. In making this comparison,
someone uninitiated in the world of finance might instantly
conclude that “Kelly is preferred” because its raw return
of 127% far outweighs the “measly” 6% return for the limit
order method. However, such reasoning is flawed because
other performance attributes also need to be considered. For
example, for the comparison under consideration, the Kelly
method has a maximum percentage drawdown of 39%, while
the limit order method has a maximum percentage drawdown
of only 2%. A conservative trader may be unwilling to
get drawn down by such a large percentage because it is
unknown if the stock price will recover and eventually return
to a high level of profitability. Suffice it to say, coming up
with a performance rating for V (k) plots involves many
considerations beyond the scope of this paper. Here, for
illustrative purposes we only used the 2-tuple (R, dmax) as
performance metrics but there may be many other factors
which a practitioner would taken into account in a more
general multi-attribute setting; e.g., see [49].

IX. CONCLUSION

The main objective of this tutorial was to facilitate entry
into the stock trading research area for control scientists
without a substantial background in finance and economics.
The so-called “jump start,” included in the title of this paper,
was accomplished in a number of ways: We covered just a
few topics whose central ideas are easily understood because
they do not require significant technical development. In
addition, we imposed a number of simplifying assumptions
so as to avoid obfuscation of key issues with technical
or mathematical detail. Finally, as much as possible, we
formulated and described the stock trading problems under
consideration in control-theoretic terms, the language of the
systems and control community.

Of all of the assumptions we imposed, we point to three
which are felt to be worthy of future study because their re-
laxations are not straightforward and are felt to be amenable
to research using control community tools: First and foremost
among these is our assumption that the market is frictionless.
Invocation of this assumption for simplification purposes is
foundational in many models and theories — the celebrated
Black-Scholes pricing model being a prime example; see [47]
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for a literature review. In our view, relaxation of this assump-
tion is an important problem, particularly for a practitioner
who emphasizes making money rather than theorem proving.
However, the reader should be forewarned there are a number
of issues which arise when considering such a relaxation:
to be considered: latency associated with the time required
for orders to travel from the trader to the server at the
stock exchange, degree of liquidity as indicated by bid-ask
spread and share volume in the limit order book at various
price points and the number of shares in the traders desired
transaction, to name a few.

Per discussion above, we also mention two more as-
sumptions, no-leverage and cash settlement at closing, also
important to the practitioner, and seemingly appear “easier”
to relax. For the case when leverage is allowed, the details
of margin account trading need to be brought into play.
This includes but not limited dealing with brokerage mainte-
nance requirements and margin calls margin interests rates.
Currently, most large brokerages offer margin loan interests
rates which are a function of a trader’s account size and
are typically in the range of 7% to 15%. Hence, for many
investors, the use of a significant margin loan provides a
significant obstacle to profitable trading. As far as relaxation
of the cash settlement requirement is concerned, the analysis
of a trader’s strategies will need to account for the fact that
there may be times when the “available cash” in an account is
insufficient to carry out a desired trade. For these situations,
to carry out such trades a cash account will not suffice and
a margin account is needed.

Our approach has been to formulate trading decisions as
control-theoretic problems, followed by a validation exercise
calibrating the performance of our resulting trading strategies
in a process known as backtesting; see Section VIII. This
is accomplished by checking the performance of trading
strategies on actual historical data, and, once this is deemed
satisfactory, the serious trader will often then check the
performance of their strategies on live market data, in real
time, using a process called paper trading. Paper trading
simulates a trading strategy using fictitious money but oper-
ates in real time rather than using historical data. This allows
traders to gain further confidence that their backtests do not
inadvertently “cheat” by using future information in trading
decisions or relying on assumptions upon stock prices upon
which the strategy is based. Many brokers offer paper trading
services and there are a number of third party applications
doing the same. This process of thorough backtesting and
timely paper trading offers the control researcher an oppor-
tunity to integrate theory and practice in the pursuit of stock
trading algorithms with real impact.
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