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Abstract— This paper provides a comprehensive tutorial on a
family of Model Predictive Control (MPC) formulations, known
as MPC for tracking, which are characterized by including
an artificial reference as part of the decision variables in the
optimization problem. These formulations have several benefits
with respect to the classical MPC formulations, including
guaranteed recursive feasibility under online reference changes,
as well as asymptotic stability and an increased domain of
attraction. This tutorial paper introduces the concept of using
an artificial reference in MPC, presenting the benefits and
theoretical guarantees obtained by its use. We then provide
a survey of the main advances and extensions of the original
linear MPC for tracking, including its non-linear extension.
Additionally, we discuss its application to learning-based MPC,
and discuss optimization aspects related to its implementation.

Index Terms— Tutorial, Model predictive control, reference
tracking, constrained control, artificial reference.

I. INTRODUCTION

The main benefit of Model Predictive Control (MPC) [1],
[2] is its ability to steer the system to a given reference
without violating the constraints while minimizing some
objective. A suitably designed MPC controller guarantees
asymptotic stability of the closed-loop system to the desired
reference as long as its optimization problem is feasible for
the initial state of the system. This is typically achieved by
means of a terminal cost function and a terminal invariant
set, which must satisfy certain stabilizing conditions in a
neighborhood of the reference.

However, it is not unusual for the desired reference to be
changed during the online operation of the system, in order
to steer it to a more convenient goal. One of the limitations
of classical MPC is that changing the reference online may
lead to an unfeasible MPC problem or to the loss of the
stabilizing design guarantees. Furthermore, due to a lack of
deep knowledge of the system and the uncertain nature of
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the change of reference, it is possible for the user to provide
a desired reference that is unfeasible or non-attainable for
the MPC controller, leading to the same problem.

This tutorial brings together recently-proposed MPC for-
mulations that have been designed to address these issues.
Recursive feasibility, even in the event of a sudden reference
change, is guaranteed thanks to the idea of introducing
an artificial reference as a decision variable of the MPC’s
optimization problem. This property is guaranteed regardless
of the reference provided by the user, even if it violates
the system constraints or if it is not a steady state of
the system. Additionally, the resulting predictive controller
provides asymptotic stability and (in general) a larger domain
of attraction when compared to classical MPC.

The adoption of an artificial reference to deal with con-
straint satisfaction, even in the case of set-point changes,
was introduced in the reference governor techniques, where
a optimization-based reference filter is used in cascade with
a stabilizing controller, see [3] and the references therein.
An artificial reference was first integrated into a generalized
predictive controller in [4], but without stability guarantees.

In 2008, the original stabilizing linear MPC for tracking
formulation for tracking piece-wise affine references was
introduced [5], [6], and in 2018 it was extended to non-linear
MPC [7]. Based on these seminal papers, the idea of using an
artificial reference has been extended to other classical MPC
paradigms, such as tracking periodic references [8]–[14],
economic MPC [8], [9], [15]–[18], robust control [19]–[23],
stochastic MPC [24], [25], zone-control [26]–[28], output-
tracking [29], path following and obstacle avoidance [30],
[31], or distributed/coordinated control [14], [32]–[35].

Other articles have provided additional theoretical guaran-
tees on the performance of MPC for tracking [36], extended
the non-linear case to the use of a semidefinite cost func-
tions [37], [38], presented a novel way of parameterizing the
artificial reference as a harmonic signal [39]–[41], focused
on a data-driven/learning approach [35], [37], [42], [43], or
worked on the use of soft-constraints [44], [45].

One of the possible drawbacks of these formulations is
the additional complexity of their optimization problems
due to the inclusion of the artificial reference as decision
variables. Thus, the role of optimization is fundamental to
their success, since their theoretical and practical benefits are
only useful in practice if they can compete with the classical
MPC formulations. Over the years, several publications have
tackled the problem of solving these formulations [12], [45]–
[49], presenting solvers and toolboxes [50] tailored to them.

The MPC for tracking formulation and its extensions have
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also been used in many (academic) case studies and applica-
tions, including automatic insulin injection for diabetes [28],
aerospace rendezvous [51], [52], robotics [21], [35], [53], or
economic building heat and ventilation [54], among others.

This article presents a comprehensive tutorial on the use
of artificial references in MPC, starting from the presentation
of the original linear MPC for tracking formulation [5], [6]
in Section II, then presenting its main linear extensions and
variations in Section III, and its non-linear extensions in
Section IV. Section V presents the application of MPC for
tracking to learning-based MPC, and Section VI discusses
optimization aspects related to the implementation of these
formulations, including guidelines on how to implement
them using existing tools from academia. Final conclusions
and remarks are presented in Section VII.
Notation: The set of natural numbers is denoted by N, and
N[a,b] denotes the set of integers from the integers a to b, both
included. In denotes the identity matrix of dimension n. We
denote ∥x∥Q

.
=

√
x⊤Qx. Given two vectors x and y, x ≤

(≥) y denotes componentwise inequalities. For vectors x1

to xN , (x1, x2, . . . , xN ) denotes the column vector formed
by their concatenation. By Sn≻ and Sn⪰ we denote the set of
positive definite and positive semi-definite matrices in Rn×n,
respectively. For a set X ⊆ Rn, int(X) denotes the interior
and for a given σ ∈ R, σX = {σx ∈ Rn : x ∈ X}. Given
sets X,Y ⊆ Rn, their Minkowski sum if defined by X⊕Y .

=
{x+ y : x ∈ X, y ∈ Y} and their Pontryagin set difference
by X ⊖ Y .

= {x : x⊕ Y ⊆ X}. A function f : R → R is of
class K∞ if it is continuous, strictly increasing, f(0) = 0
and f(x) → +∞ as x → +∞. We use v(i) to denote the
i-th element of vector v.

II. FUNDAMENTALS OF MPC FOR TRACKING USING AN
ARTIFICIAL REFERENCE: THE ORIGINAL FORMULATION

As an introduction to the idea of using an artificial refer-
ence in MPC, let us start by considering the original linear
MPC for tracking piece-wise affine references [5], [6]. As
in classical linear MPC [1], [2], we consider a controllable
system whose dynamics are described by a linear, discrete-
time, time-invariant, state-space model

x(t+ 1) = Ax(t) +Bu(t), (1a)
y(t) = Cx(t) +Du(t), (1b)

where x(t) ∈ Rnx , u(t) ∈ Rnu , y(t) ∈ Rny are the state,
input and output at sample time t, respectively, A ∈ Rnx×nx ,
B ∈ Rnx×nu , C ∈ Rny×nx , D ∈ Rny×nu . The control
objective of the MPC for tracking formulation [5] is to
steer (1) to a desired reference setpoint yr ∈ Rny while
satisfying the system constraints

(x(t), u(t)) ∈ Z, ∀t, (2)

where Z ⊆ Rnx+nu is a closed convex polyhedron that
contains the origin in its interior. The asymptotic convergence
properties of the MPC formulations presented in this article
require the following notion of (strictly) rechable setpoints.

Definition 1 (Reachable setpoints). The sets of (strictly)
reachable steady states and setpoint of system (1) con-
strained by (2), for a given σ ∈ [0, 1), are given by

Zs
.
= {(x, u) ∈ σZ : x = Ax+Bu} ⊆ int(Z), (3a)

Ys
.
= {Cx+Du : (x, u) ∈ Zs} . (3b)

In classical MPC, the above control objective is achieved
by first computing the optimal steady-state (xr, ur) ∈ Zs

satisfying yr = Cxr+Dur and then posing the finite-horizon
optimal control problem

min
x,u

N−1∑
k=0

ℓ(xk, uk, xr, ur) + Vf (xN , xr) (4a)

s.t. x0 = x(t), (4b)
xk+1 = Axk +Buk, k ∈ N[0,N−1], (4c)
(xk, uk) ∈ Z, k ∈ N[0,N−1], (4d)
xN ∈ Xf , (4e)

where x
.
= (x0, x1, . . . , xN ), u

.
= (u0, u1, . . . , uN−1) are

the predicted states and control inputs, respectively, along
the prediction horizon N ; the stage cost function is given by

ℓ(xk, uk, xr, ur)
.
= ∥xk − xr∥2Q + ∥uk − ur∥2R, (5)

with Q ∈ Snx

⪰ , R ∈ Snu
≻ , the terminal cost is given by

Vf (xN , xr)
.
= ∥xN −xr∥2P , with P ∈ Snx

≻ ; and the terminal
set Xf is assumed to contain the desired reference xr. Let
x∗ = (x∗

0, . . . , x
∗
N ), u∗ = (u∗

0, . . . , u
∗
N−1) be the optimal

solution of (4). The control law of (4) is u(t) = u∗
0.

It is well known that, under a suitable design of the termi-
nal ingredients Vf (·) and Xf , the MPC formulation (4) steers
the system to the desired setpoint if yr ∈ Ys and the initial
state x(0) belongs to the feasibility region of (4) [1]. The
above statement highlights two possible drawbacks of (4):

i) If yr is changed online, then the terminal set Xf must
be recomputed as a suitable admissible invariant set
containing the new steady-state xr, which could be
computationally expensive. Additionally, this could lead
to the loss of feasibility of the MPC controller.

ii) The reference yr must belong to the set of reachable
setpoints Ys (Definition 1). In a practical setting, a lack
of deep knowledge of the system could result in the
selection of a reference yr ̸∈ Ys.

To solve these issues, the MPC for tracking formulation [5]
introduces new decision variables (xa, ua) ∈ Rnx ×Rnu that
act as an artificial reference, leading to

min
x,u,
xa,ua

N−1∑
k=0

ℓ(xk, uk, xa, ua) + Vf (xN , xa) + Vo(ya − yr)

(6a)
s.t. x0 = x(t), (6b)

xk+1 = Axk +Buk, k ∈ N[0,N−1], (6c)
(xk, uk) ∈ Z, k ∈ N[0,N−1], (6d)
ya = Cxa +Dua, (6e)
(xa, ua) ∈ Zs, (6f)
(xN , xa, ua) ∈ Xa, (6g)
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where Vo(·) : Rny → R is the offset cost function, Xa ⊆
R2nx+nu is the terminal invariant set for tracking [5, §2.2],
and (6f) requires the artificial reference to be a strictly
admissible steady state of the system. The intuition behind
this formulation is to include an artificial reference that acts
as a proxy of the desired reference. The formulation steers
the system state towards the artificial reference while also
penalizing the distance between this artificial reference and
the desired one. The idea is for both the system state and
artificial reference to converge towards the desired reference
as t increases.

We note that (6f) considers strictly admissible steady
states to avoid a possible loss of controllability that could
result from the presence of active constraints on the artificial
reference [5], [55]. However, in practice σ can be chosen
arbitrarily close to 1, so the artificial reference can be
arbitrarily close to the system constraints.

Under a suitable design of its ingredients, as detailed in the
following assumption, the MPC for tracking formulation (6)
provides recursive feasibility and asymptotic stability to the
following optimal reachable reference.

Definition 2 (Optimal reachable reference). The optimal
reachable reference of the MPC for tracking controller (6)
for a given yr ∈ Rny and σ ∈ [0, 1) is given by

y◦a = arg min
y∈Ys

Vo(y − yr).

Assumption 1. Let Q ∈ Snx

⪰ be such that (Q1/2, A) is
observable; N be greater or equal to the controllability index
of (1); K ∈ Rnx×nu be a state-feedback control gain such
that A+BK is Schur; and P ∈ Snx

≻ satisfy

(A+BK)⊤P (A+BK)− P ⪯ −(Q+K⊤RK).

Let Vo(·) be a convex, positive-definite, subdifferentiable
function with Vo(0) = 0, such that the optimal solution of
miny∈Ys Vo(y − yr) is unique. Let Xa ⊆ R2nx+nu be such
that, for all (x, xa, ua) ∈ Xa:

(x,K(x− xa) + ua) ∈ Z,

(Ax+B(K(x− xa) + ua), xa, ua) ∈ Xa.

We note that the invariant set for tracking Xa can be
computed as the (maximal) positive invariant set of a system
extended by the artificial reference, as detailed in [5, §2.2],
that is, following standard procedures for the computation
of terminal invariant sets for MPC controllers. Additionally,
a common choice is to take Vo as a quadratic function
∥ya − yr∥2S , with S ∈ Sny

≻ , since in this case problem (6)
is a quadratic programming (QP) problem. The following
theorems formalize the theoretical properties of (6). We refer
the reader to [5], [6] for their proofs.

Theorem 1 (Recursive feasibility). Let x̂
.
= (x̂0, . . . , x̂N ),

û
.
= (û0, . . . , ûN−1) be any feasible solution of (6) for

the current state x(t). Then, problem (6) is feasible for the
successor state Ax(t) +Bû0 for any value of yr ∈ Rny .

The first major benefit obtained thanks to the use of an
artificial reference is that recursive feasibility is guaranteed

in the event of a reference change, even if the new reference
does not belong to the set of reachable references Ys. Notice
that the set of constraints in (6) does not depend on the
reference yr. Additionally, there is no need to recompute
any of the ingredients of (6) when the reference is changed.

Theorem 2 (Asymptotic stability). Consider (1) subject
to (2) controlled by (6), and let Assumption 1 be satis-
fied. Assume x(0) belongs to the feasibility region of (6).
Then, the closed-loop system is stable, fulfills the system
constraints, and asymptotically converges to the optimal
reachable reference y◦a given by Definition 2.

The second major benefit is that asymptotic stability to an
admissible steady state is guaranteed even if the reference
yr ̸∈ Ys, i.e., if the reference is unreachable. In particular,
the consequence of Theorem 2 is that the closed-loop system
will asymptotically converge to yr if yr ∈ Ys. Otherwise, it
will converge to the optimal reachable reference y◦a provided
by Definition 1, i.e., to the strictly reachable setpoint that
minimizes its distance to yr as measured by the offset cost
function Vo(·). We note that the MPC formulation (6) cannot
converge to references with active constraints due to the use
of σ < 1 in Ys, see (6f). However, once again, σ can be taken
arbitrarily close to 1, so in practice the closed-loop system
can converge to steady states that are arbitrarily close to the
system constraints.

Finally, another benefit of (6) is its increased domain
of attraction when compared to (4). This is best seen by
considering the following commonly-used particularization
of (6), which considers a terminal equality constraint:

min
x,u,
xa,ua

N−1∑
k=0

ℓ(xk, uk, xa, ua) + ∥xa − xr∥2T + ∥ua − ur∥2S

(7a)
s.t. x0 = x(t), (7b)

xk+1 = Axk +Buk, k ∈ N[0,N−1], (7c)
(xk, uk) ∈ Z, k ∈ N[0,N−1], (7d)
(xa, ua) ∈ Zs, (7e)
xN = xa, (7f)

where T ∈ Snx
≻ and S ∈ Snu

≻ model a quadratic offset
cost Vo(·). This formulation avoids the need to compute a
terminal invariant set for tracking Xa and does not require the
use of a terminal cost Vf (·). Additionally, it uses a quadratic
offset cost function, leading to a QP problem with a simple
structure that can be exploited by first-order optimization
algorithms (see Section VI).

An intuitive way of seeing the increase in the domain of
attraction that is typically obtained when using an artificial
reference is to compare (7) with its classical MPC counter-
part, i.e., with (4) taking (4e) as xN = xr. In (7) all states
x(0) that can reach any setpoint y ∈ Ys in N steps belong to
its feasibility region, and therefore to its domain of attraction
(as per Theorems 1 and 2). On the other hand, only states
x(0) that can reach the setpoint yr in N steps may belong
to the domain of attraction of the classical MPC counterpart
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Fig. 1: Domain of attraction of standard MPC (4) and MPC for
tracking (6). Legend: Z are the state constraints; Zs the states that
belong to the manifold of steady states; Xa the invariant set for
tracking of (6); Xf the terminal invariant set of (4); D(4) and D(6)

the domains of attraction of (4) and (6), respectively.

of (7). Similar reasoning can be used when comparing the
domains of attraction of (4) and (6), as illustrated by the
following example.

Example 1 (Domain of attraction). We consider (1) with

A =

[
1 1
0 1

]
, B =

[
0.5
1

]
, C =

[
1 0

]
, D =

[
0
]
,

and constraints |x(1)| ≤ 10, |x(2)| ≤ 2, |u| ≤ 0.5. We
also consider the classical MPC formulation (4) and the
MPC for tracking formulation (6), taking Q = 100I2,
R = 1, and N = 5. We take P as the solution of the
discrete algebraic Riccati equation and compute the terminal
invariant sets of the MPC controllers for the control gain K
of the LQR controller. The terminal set of (4) considers the
origin as the reference. Fig. 1 shows the terminal invariant
sets and domains of attraction of both controllers. The
results illustrate how the domain of attraction of the MPC
for tracking formulation can be significantly larger. This
is mostly a result of the difference between both terminal
sets. Indeed, note that the terminal set of (4) is “centered”
around the reference, whereas the terminal invariant set for
tracking of (6) is “centered” around the set of feasible steady
states Zs, leading to a much larger set. We note that as
the prediction horizon increases, the difference between their
domains of attraction becomes smaller.

As a final note, it can be shown that every admissible
steady state (xs, us) ∈ Zs is in the interior of the domain
of attraction of (6). This means that MPC for tracking can
stabilize the system for any initial state that is a strictly
admissible steady state, which is very interesting from a
practical point of view.

Local optimality: A drawback of the inclusion of the arti-
ficial reference is that the MPC for tracking formulation (6)
looses the local optimality property of classical MPC with
respect to the unconstrained LQR controller [56]. That is,
the optimal solution of (6) will generally differ from the

optimal solution of (6) with the additional constraint ya = yr
(i.e., its classical MPC counterpart) [57]. However, this local
optimality property can be recovered by a proper selection of
the offset cost function Vo(·). In particular, local optimality is
recovered if Vo satisfies α1∥y∥ ≤ Vo(y) ≤ α2∥y∥, ∀y ∈ Ys,
for a sufficiently large α1 > 0. We refer the reader to [6, §4]
for additional details.

III. EXTENSIONS OF MPC FOR TRACKING

We now present extensions of the original linear MPC
for tracking formulation [5], [6], to some of the main MPC
paradigms: robust MPC, tracking periodic references, and
economic MPC. We focus on presenting formulations that
provide a light-weight introduction into the use of artificial
references within these MPC paradigms. Therefore, we focus
on linear MPC formulations that resemble the original MPC
for tracking presented in Section II. Section IV will present
non-linear extensions of MPC for tracking.

A. Robust MPC

The use of MPC for tracking to robustly control sys-
tems with parametric and/or additive uncertainties has been
explored using different approaches [19]–[23]. We recall
here the approach presented in [19], since it more closely
resembles the problem setup presented in Section II. This
robust MPC for tracking formulation is based on the classical
tube-based robust MPC for regulation presented in [58].

Let us now consider system (1) constrained by (2) with
an additive state disturbance, i.e., we take (1a) as

x(t+ 1) = Ax(t) +Bu(t) + w(t), (8)

where w(t) ∈ Rnx is the unknown state disturbance at time t,
which is assumed to be contained within a known compact
convex polyhedron W . The control objective is to steer the
system to a desired reference setpoint yr ∈ Rny while
satisfying the system constraints (2) despite the presence of
the unknown state disturbance.

The tube-based robust MPC for tracking formulation
from [19] is given by

min
x,u,
xa,ua

N−1∑
k=0

ℓ(xk, uk, xa, ua) + Vf (xN , xa) + Vo(ya − yr)

(9a)
s.t. x(t) ∈ x0 ⊕ ϕK , (9b)

xk+1 = Axk +Buk, k ∈ N[0,N−1], (9c)
(xk, uk) ∈ ZϕK

, k ∈ N[0,N−1], (9d)
ya = Cxa +Dua, (9e)
(xa, ua) ∈ Zw, (9f)
(xN , xa, ua) ∈ Xw, (9g)

where its ingredients satisfy the following assumption and
its control law is given by u(t) = K(x(t)− x∗

0) + u∗
0.

Assumption 2. The ingredients of (9) satisfy:
(i) Q ∈ Snx

⪰ , R ∈ Snu
≻ , and (Q1/2, A) is observable.

(ii) Vo(ya − yr) = ∥ya − yr∥2S , with S ∈ Sny

≻ .
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(iii) K, K̄ ∈ Rnx×nu are such that AK
.
= A + BK and

AK̄
.
= A+BK̄ are Schur stable matrices.

(iv) ϕK is a robust positive invariant set for the uncertain
system x(t+ 1) = AKx(t) +w(t), i.e., a set satisfying
AKϕk ⊕W ⊆ ϕk.

(v) ZϕK

.
= Z ⊖ (ϕK ×KϕK).

(vi) Zw
.
= {(x, u) ∈ σZϕK

: x = Ax+Bu}, for some
given σ ∈ [0, 1) that is taken arbitrarily close to 1.

(vii) Vf (xN , xa) = ∥xN − xa∥2P , with P ∈ Snx
≻ satisfying

P − (A+BK̄)⊤P (A+BK̄) = Q+ K̄⊤RK̄.

(viii) Set Xw ⊆ R2nx+nu is an invariant set for tracking for
system (1) constrained by (x(t), u(t)) ∈ ZϕK

for the
control gain K̄, i.e., for all (x, xa, ua) ∈ Xw:

(x, K̄(x− xa) + ua) ∈ ZϕK
,

(Ax+B(K̄(x− xa) + ua), xa, ua) ∈ Xw.

Notice that formulation (9) is similar to (6). The main
difference if that (9d) considers constraints that are tightened
by means of the robust positive invariant set ϕK , whose
computation, as well as the computation of a suitable K,
can be done following standard results [19, §7], [58]. Ad-
ditionally, the initial predicted state x0 is constrained to a
region around x(t), and the terminal invariant set for tracking
Xw considers the tightened constraints ZϕK

and a terminal
control gain K̄ which can be different to the one used for the
computation of ϕK . Indeed, the two gains K and K̄ can be
designed independently, so as to improve the performance
of the controller [19, §7]. We refer the reader to [59] for
guidelines on the design of the ingredients of (9).

Under the satisfaction of Assumption 2, the robust MPC
for tracking formulation (9) provides the following recursive
feasibility and asymptotic stability guarantees.

Theorem 3 ( [19], Theorem 1). Let Assumption 2 hold and
suppose that (9) is feasible for x(0). Then, the closed-loop
system formed by (8)-(9) satisfies:

i) Recursive feasibility: Problem (9) remains feasible for
all t, regardless of the realization of w(t) ∈ W and
even if yr is changed online.

ii) Asymptotic stability: If yr ∈ Yw, where

Yw
.
= {Cx+Du : (x, u) ∈ Zw}

is the set of reachable setpoint considering the tightened
constraints Zw (cf. Definition 1), then the output y(t)
converges asymptotically to the set yr ⊕ (C+DK)ϕK .
Otherwise, output y(t) asymptotically converges to the
set y◦a⊕(C+DK)ϕK , where y◦a is the optimal reachable
setpoint considering the tightened constraints Zw, i.e.,

y◦a = arg min
y∈Yw

∥y − yr∥2S .

B. Tracking periodic references

Periodic systems and references naturally occur in many
applications, such as water distribution networks [60], HVAC
system [54], robotics [61], [62], or aerospace [51], [63]. This
has motivated the application of MPC to control periodic

systems and/or to track periodic references [62]–[66]. In this
subsection, we present the extension of the MPC for tracking
piece-wise affine reference setpoints presented in Section II
to this control paradigm. The extension naturally follows by
considering a periodic artificial reference.

We focus on the periodic MPC for tracking formulation
presented in [10], which can be viewed as an extension of the
linear MPC for tracking with terminal equality constraint (7)
to the problem of tracking a periodic reference. That is, the
control objective is to steer the output y(t) of system (1) to a
given periodic reference trajectory yr(·) ∈ Rny with known
period τ ∈ N, i.e., a trajectory satisfying yr(t) = yr(t+ τ),
∀t, while satisfying the system constraints (2). The notion of
reachable setpoints presented in Definition 1 readily extends
to the notion of a reachable periodic reference.

Definition 3 (Reachable periodic trajectory). For a given
σ ∈ [0, 1) and period τ ∈ N, the set of (strictly) reachable
periodic trajectories of (1) constrained by (2) is

Yτ
s

.
=

y(·) ∈ Rny :

y(t) = Cx(t) +Du(t)
x(t+ 1) = Ax(t) +Bu(t)
x(t) = x(t+τ), u(t) = u(t+τ)
(x(t), u(t)) ∈ σZ

, ∀t

 .

The periodic MPC for tracking formulation makes use of
a periodic artificial reference (xa,ua), with period τ , where
xa

.
= (xa,0, . . . , xa,τ ), ua

.
= (ua,0, . . . , ua,τ−1), leading to

min
x,u,
xa,ua

N−1∑
k=0

ℓ(xk, uk, xa,k, ua,k) + Vp(ya,yr) (10a)

s.t. x0 = x(t), (10b)
xk+1 = Axk +Buk, k ∈ N[0,N−1], (10c)
(xk, uk) ∈ Z, k ∈ N[0,N−1], (10d)
xa,k+1 = Axa,k +Bua,k, k ∈ N[0,τ−1], (10e)
(xa,k, ua,k) ∈ σZ, k ∈ N[0,τ−1], (10f)
ya,k = Cxa,k +Dua,k, k ∈ N[0,τ−1], (10g)
xa,0 = xa,τ , (10h)
xN = xa,N , (10i)

where ya
.
= (ya,0, . . . , ya,τ−1),

Vp(ya,yr) =

τ−1∑
k=0

∥ya,k − yr(t+ k)∥2S ,

for S ∈ Sny

≻ , is the offset cost function. Constraints (10e)-
(10h) force the artificial reference (xa,ua) to describe a
reachable periodic trajectory (Definition 3) for the given
σ ∈ [0, 1), which, once again, is taken arbitrarily close to 1.
Finally, (10i) is a terminal equality constraint that forces the
predicted terminal state xN to reach the artificial periodic
reference.

The MPC controller (10) shares analogous recursive fea-
sibility and asymptotic stability guarantees to the ones pre-
sented in Theorems 1 and 2, as shown in [10]. That is,
if (10) is feasible for x(0), then the closed-loop system
remains feasible at future sample times, even if the reference
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trajectory yr(·) is changed to a different periodic trajectory
with the same period. Furthermore, if initially feasible,
the closed-loop system converges to the optimal reachable
periodic trajectory given by the optimal solution of

min
ya

{Vp(ya,yr), s.t.ya ∈ Yτ
s } .

That is, if yr(·) describes a reachable periodic trajectory, for
the σ used in (10), then the closed-loop system asymptoti-
cally converges to it, i.e., ∥y(t) − yr(t)∥ → 0 as t → +∞.
Otherwise, the closed-loop system asymptotically converges
to the closest reachable periodic trajectory, as measured by
the offset cost function Vp(·).

Periodic system: The periodic MPC for tracking formu-
lation (10) can be easily adapted to consider a time-varying
periodic system, with period τ ∈ N,

x(t+ 1) = A(t)x(t) +B(t)u(t), (11)

where A(t) = A(t+τ), B(t) = B(t+τ), ∀t. In particular, we
refer the reader to [9] for an MPC for tracking formulation
that considers this paradigm, which naturally arises in several
practical applications and has been widely researched within
the MPC community [63], [66].

C. Harmonic MPC for tracking

One of the main disadvantages of (10) is that its number
of constraints and decision variables grows with the period
τ ∈ N of the reference, since the system dynamics and
constraints must be imposed along the complete period of
the artificial reference, as shown in (10e)-(10f). This can
result in long solve times if the period is too long. This
issue inspired the development of the MPC for tracking
formulation presented in [39], [40], named Harmonic MPC
(HMPC). This formulation was originally developed for
tracking piece-wise affine setpoints, although it has recently
been extended to the problem of tracking harmonic (aka
sinusoidal) reference trajectories [41]; a particular class of
periodic reference that arises in many practical applications.
We now present its original setpoint tracking formulation,
since it provides a less notation-heavy introduction of the
main idea behind it.

HMPC is an MPC for tracking formulation that considers
system (1) taking the constraints (2) as

Z =
{
(x, u) ∈ Rnx × Rnu : y ≤ Cx+Du ≤ y

}
for some y, y ∈ Rny satisfying y < 0 < y. As in the MPC
for tracking formulation (7), HMPC considers the problem
of tracking a given setpoint (xr, ur) and makes use of a
terminal equality constraint. However, its artificial reference
is given by a harmonic signal, whose value at each prediction
step k is given by

xh,k = xe + xs sin(ωk) + xc cos(ωk), (12a)
uh,k = ue + us sin(ωk) + uc cos(ωk), (12b)

where ω > 0 is its frequency and its parameters xe, xs, xc ∈
Rnx , ue, us, uc ∈ Rnu are included as decision variables in
the optimization problem.

Using the notation xh = (xe, xc, xc), uh = (ue, us, uc),
ye = Cxe +Due, ys = Cxs +Dus, yc = Cxc +Duc, the
optimization problem of HMPC is given by

min
x,u,

xh,uh

N−1∑
k=0

ℓ(xk, uk, xh,k, uh,k) + Vh(xh,uh, xr, ur)

(13a)
s.t. x0 = x(t), (13b)

xk+1 = Axk +Buk, k ∈ N[0,N−1], (13c)
y ≤ Cxk +Duk ≤ y, k ∈ N[0,N−1], (13d)

xN = xe + xs sin(ωN) + xc cos(ωN), (13e)
xe = Axe +Bue, (13f)
xs cos(ω)− xc sin(ω) = Axs +Bus, (13g)
xs sin(ω) + xc cos(ω) = Axc +Buc, (13h)√
y2s(i) + y2c(i) ≤ σy(i) − ye(i), i ∈ N[1,ny ] (13i)√
y2s(i) + y2c(i) ≤ ye(i) − σy

(i)
, i ∈ N[1,ny ], (13j)

where σ ∈ [0, 1) is taken arbitrarily close to 1, the terminal
equality constraint (13e) enforces the terminal predicted state
xN to reach xh,N , i.e., the value of the artificial harmonic
reference at prediction time k = N , and the offset cost
function is given by

Vh(·) =∥xe − xr∥2T + ∥ue − ur∥2S
+ ∥xs∥2Th

+ ∥xc∥2Th
+ ∥us∥2Sh

+ ∥uc∥2Sh
,

with T ∈ Snx
≻ , Th ∈ Snx

≻ , S ∈ Snu
≻ , Sh ∈ Snu

≻ , and Th, Sh di-
agonal. In [40] it is shown that the equality constraints (13f)-
(13h) impose the satisfaction of the system dynamics on (12),
whereas the second order cone constraints (13i)-(13j) impose
the satisfaction of the system constraints. Notice that, even
though the HMPC formulation makes use of a periodic
artificial reference, the number of constraints of (13) does
not depend on its period, determined by the choice of ω.

The terms of Vh corresponding to T and S are analogous
to the terms from the offset cost function in (7), in that they
penalize a measure of the distance with the desired reference
(xr, ur). The other terms of Vh penalize the magnitude of
the sin and cos terms of the artificial harmonic reference.
The idea is that the “center” (xe, ue) will converge towards
the reference (xr, ur), whereas the other parameters of the
artificial harmonic reference will converge to 0. Indeed,
as shown in [40], the HMPC formulation (13) shares the
same recursive feasibility guarantees and asymptotic stability
properties of (7). In particular, it is shown that the HMPC
formulation asymptotically converges to the optimal reach-
able reference of (7), i.e., to the admissible steady state
(x◦, u◦) ∈ σZ that minimizes ∥x◦ − xr∥2T + ∥u◦ − ur∥2S .

The main benefit of the HMPC formulation (13), when
compared to (7), is its increased domain of attraction and
performance when working with small prediction horizons,
as reported in [39]. This benefit is particularly apparent when
working with systems that have integrator states and/or slew-
rate constraints on the control inputs.
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Tracking harmonic references: HMPC (13) has been re-
cently extended in [41] to the problem of tracking a harmonic
reference trajectory of frequency ω > 0, i.e., a reference
trajectory whose value at time t is given by

xr(t) = xre + xrs sin(ωt) + xrc cos(ωt),

ur(t) = ure + urs sin(ωt) + urc cos(ωt),

for some parameters xre, xrs, xrc∈Rnx , ure, urs, urc∈Rnu .
The formulation is very similar to (13), as well as its proper-
ties, which guarantee asymptotic stability to the admissible
harmonic reference that minimizes its offset cost function.
Since the complexity of its optimization problem does not
depend on the period of the reference, this formulation
could be rather useful when dealing with harmonic/sinusoidal
references with large periods.

D. Economic MPC for tracking

Optimal operation and control of processes is a widely
studied field in the overall control community, as well as in
the MPC community, where it receives the name of economic
MPC [67]. There are several formulations of economic
MPC that consider artificial references and/or deal with the
problem of changing economic criteria [9], [15]–[18], as well
as several applications, e.g., [8], [54]. In this subsection, we
recall the economic MPC for tracking presented in [17], since
it considers the problem setup from Section II applied to
the problem of minimizing an economic performance metric,
given by the function ℓe(x, u, θ) : Rnx × Rnu × Rnθ → R,
where θ ∈ Rnθ are the parameters that characterize the
economic criterion. This economic cost leads to the following
notion of the optimal economic setpoint.

Definition 4 (Optimal economic setpoint). The optimal
economic setpoint (x∗, u∗) of system (1) subject to (2) for a
given economic cost ℓe(·) parameterized by θ is given by

(x∗, u∗) = arg min
(x,u)∈Zs

ℓe(x, u, θ). (14)

The economic cost is assumed to satisfy the following
standard assumption [17], [68].

Assumption 3. The economic cost ℓe(·) is locally Lipschitz
continuous at (x∗, u∗), i.e., there exist scalars ϵ, Le > 0 such
that ∀θ, ∀(x, u) ∈ Z , ∥(x, u)− (x∗, u∗)∥ ≤ ϵ implies

∥ℓe(x, u, θ)− ℓe(x∗, u∗, θ)∥ ≤ Le∥(x, u)− (x∗, u∗)∥.

Additionally, for each θ ∈ Rnθ there exists a multiplier λ
such that (x∗, u∗) is the unique solution of

min
(x,u)∈Z

ℓr(x, u, θ).

where, additionally, the rotated stage cost

ℓr(x, u, θ)
.
= ℓe(x, u, θ)+λ⊤(x−(Ax+Bu))−ℓe(x∗, u∗, θ)

can be lower bounded by two K∞ functions αx, αu as

ℓr(x, u, θ) ≥ αx(∥x− x∗∥) + αu(∥u− u∗∥), ∀(x, u) ∈ Z.

The economic MPC for tracking from [17] adds an ar-
tificial reference (xa, ua) to the classical economic MPC
formulation from [68], leading to

min
x,u,
xa,ua

N−1∑
k=0

ℓe(xk−xa+x∗, uk−ua+u∗, θ)+Vo(xa, ua, x∗, u∗)

(15a)
s.t. x0 = x(t), (15b)

xk+1 = Axk +Buk, k ∈ N[0,N−1], (15c)
(xk, uk) ∈ Z, k ∈ N[0,N−1], (15d)
(xa, ua) ∈ Zs, (15e)
xN = xa, (15f)

where the offset cost Vo(·) satisfies the following assumption.
Note that (15) requires (x∗, u∗). Therefore, problem (14)
must be solved online every time θ is changed.

Assumption 4. Vo(·) is a positive definite function such that
(x∗, u∗) is the unique minimizer of

min
(x,u)∈Zs

Vo(x, u),

and there exists a scalar γ > 0 such that, ∀(x, u) ∈ Zs,

Vo(x, u, x∗, u∗)− Vo(x∗, u∗, x∗, u∗) ≥ γ∥x− x∗∥.

Formulation (15) provides recursive feasibility guarantees
following the same arguments as the original MPC for track-
ing formulation. Indeed, notice that the constraints of (15)
coincide with the constraints of the MPC for tracking with
terminal equality constraint (7). Additionally, the formulation
has the following asymptotic stability guarantee.

Theorem 4 ( [17, Theorem 1]). Let Assumptions 3-4 be
satisfied. Assume that N is greater than the controllability
index of system (1), that there exists a control gain Ke such
that A+BKe has null eigenvalues, and that (x∗, u∗) ∈ Zs.
Then, for a sufficiently large γ, the closed-loop system
formed by (1) and (15) asymptotically converges to x∗.

We refer the reader to [17, Eq. (21)] for the lower bound
that γ must satisfy for the claim in the previous theorem to
hold, which depends on the values of Le, N and Ke. We
note that, in the case of the economic MPC for tracking for-
mulation (15), asymptotic stability to a reachable steady state
is only guaranteed if (x∗, u∗) ∈ Zs. Therefore, asymptotic
stability is not always guaranteed under online changes of θ,
although recursive feasibility is always guaranteed.

Periodic economic control: Economic MPC for tracking
has also been extended to periodic control, either due to the
use of a periodic economic cost [8], [69] or to its application
to a periodic system (11), as in [9].

E. Other extensions of MPC for tracking

As mentioned in the introduction, linear MPC for tracking
has also been extended to many other control paradigms.
Some notable examples include:

• Stochastic MPC [24], [25], which consider an uncertain
system and allow a certain level of constraint violation
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with the use of chance constraints [70], typically lead-
ing to less conservative controllers when compared to
robust MPC.

• Zone-control [26], where the control objective is to steer
the system output to some given set (aka zone), instead
of to a specific setpoint. Within the reference set, there is
no preference between one point or another. The use of
an artificial reference provides recursive feasibility if the
reference set is changed online. The extension of zone
control MPC for tracking to the robust paradigm was
presented in [27]. A practical example is the problem
of blood-glucose control presented in [28].

• Collision avoidance [31], where obstacles are consid-
ered, leading to non-convex constraints.

• Distributed/coordinated control [14], [32]–[34], where
various (coupled) agents that share a common objective
are controlled by a distributed optimization algorithm.

IV. MPC FOR TRACKING WITH NON-LINEAR SYSTEMS

In this section, we discuss how the MPC for tracking
formulations naturally generalize to non-linear system dy-
namics. We first explain the setpoint tracking formulation
for non-linear systems and discuss the design of terminal
ingredients, convexity, and theoretical properties (Sec. IV-A).
Then, we discuss extensions to periodic reference tracking
problems (Sec. IV-B) and robust designs (Sec. IV-C).

A. Setpoint tracking

First, we explain the basic non-linear setpoint tracking
formulation based on [7] and then address convexity and
the design of terminal ingredients following [12], [29]. We
consider non-linear discrete-time constrained systems

x(t+ 1) = f(x(t), u(t)), (16a)
y(t) = h(x(t), u(t)), (16b)

(x(t), u(t)) ∈ Z, ∀t ∈ N, (16c)

with Z compact and continuous functions f, h. We define
the set of (strictly) feasible steady-state and setpoints

Zs
.
=

{
(xa, ua) ∈ Z̄ : xa = f(xa, ua)

}
(17a)

Ys
.
= {h(xa, ua) : (xa, ua) ∈ Zs} , (17b)

with some user chosen set Z̄ ⊆ int(Z). Given a reference
yr, an optimal setpoint can be computed using

min
ya∈Ys

Vo(ya, yr), (18)

and a minimizer is denoted by (x◦
a, u

◦
a, y

◦
a). Analogous to

Problem (6), the MPC formulation is given by

min
x,u,
xa,ua

N−1∑
k=0

ℓ(xk, uk, xa, ua) + Vf (xN , xa, ua) + Vo(ya, yr)

(19a)
s.t. x0 = x(t), (19b)

xk+1 = f(xk, uk), k ∈ N[0,N−1], (19c)
(xk, uk) ∈ Z, k ∈ N[0,N−1], (19d)
ya = h(xa, ua), (19e)

(xa, ua) ∈ Zs, (19f)
(xN , xa, ua) ∈ Xf . (19g)

We solve Problem (19) at each time t and apply the input
u(t) = u⋆

0 to system (16). For simplicity of exposition, we
consider a quadratic cost ℓ (5) and Vo(ya, yr) = ∥ya−yr∥2S ,
with Q,R, S positive definite, see also [7] for a more general
setting. Similar to Assumption 1, we consider the following
conditions on the terminal ingredients Vf ,Xf .

Assumption 5. There exists a feedback κf : Xf → Rnu ,
such that for any steady-state (xa, ua) ∈ Zs and any x ∈
Rnx : (x, xa, ua) ∈ Xf , u = κf (x, xa, ua) satisfies

• Constraint satisfaction: (x, u) ∈ Z;
• Positive invariance: (f(x, u), xa, ua) ∈ Xf ;
• Control Lyapunov function:
Vf (f(x, u), xa, ua)− Vf (x, xa, ua) ≤ −ℓ(x, u, xa, ua).

Theorem 5 (Recursive feasibility [7, Thm 1]). Let Assump-
tion 5 hold and suppose that Problem (19) is feasible at
t = 0. Then, Problem (19) is feasible and the closed-
loop system satisfies the constraints (16c) for all t ∈ N,
independent of yr.

To ensure stability and convergence to the optimal steady-
state, we require the following additional conditions.

Assumption 6.
a) Convexity: The set Ys is convex.
b) Uniqueness: There exists a unique Lipschitz continuous

function g : Ys → Zs, such that for any ya ∈ Ys,
(xa, ua) = g(ya) ∈ Zs satisfy ya = h(xa, ua).

c) Local upper bound on value function: There exists a
constant ϵ > 0, such that for any (xa, ua) ∈ Zs and any
x ∈ Rnx : ∥x − xa∥ ≤ ϵ, Problem (19) is feasible and
the optimal cost is quadratically bounded [12, Asm. 2].

Theorem 6 (Exponential stability [12, Thm. 8])). Let As-
sumptions 5–6 hold and suppose Problem (19) is feasible
at t = 0. Then, the optimal steady-state x◦

a is exponentially
stable for the resulting closed-loop system.

Next, we discuss the role and constructive satisfaction or
relaxation of the conditions in Assumptions 5–6. Note that
in the absence of Assumption 6, the closed-loop system may
in general converge to some steady-state xa, which is not the
global minimizer of (18).

Design of terminal ingredients: The simplest design of
terminal ingredients uses a terminal equality constraint, i.e.,
xN = xa. This trivially satisfies Assumption 5, while
Assumption 6c) holds if the linearized dynamics around any
steady-state are controllable and the prediction horizon is
larger than the controllability index, see [7, Sec. III.A], [12,
Prop. 4]. In [7], [12], a less restrictive terminal cost and set
of the form

Xf = {(x, xa, ua) : Vf (x, xa, ua) ≤ α(xa, ua)} (20a)

Vf (x, xa, ua) = ∥x− xa∥2P (xa,ua)
(20b)

κf (x, xa, ua) = ua +K(xa, ua)(x− xa) (20c)
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have been proposed with P,K, α parametrized by the arti-
ficial reference. The standard design of terminal ingredients
for non-linear systems involves the linearization at a fixed
steady-state, computing P,K based on the LQR, and then
choosing a constant α [1]. To extend this design to MPC for
tracking formulations, [7, App. B] suggest to partition Zs and
apply a similar design of each partition, resulting in piece-
wise constant parametrizations of P,K, α. This design was
improved in [12] by deriving a continuous parametrization
of P,K using gain-scheduling techniques and determining
α implicitly using linear inequality constraints, see also (24)
below.

While good terminal ingredients can significantly improve
performance, it can also increases the overall complexity of
the offline design. One attractive alternative is to remove or
relax the requirements on Xf , Vf . In particular, the terminal
set constraint Xf can be removed if the terminal cost Vf

or the prediction horizon N are chosen sufficiently large [7,
Sec. III.B]. Furthermore, under a suitable cost-controllability
condition, the terminal cost Vf can be removed if the
prediction horizon N is chosen large enough [29]. This
is particularly relevant for applications with non-holonomic
vehicles (cf., e.g., [35]), as the linearized dynamics are not
stabilizable but an exponential cost controllability condition
can still be satisfied by choosing a non-quadratic stage cost,
see [71] for details.

Convexity and obstacle avoidance: The (strongly convex)
quadratic offset cost Vo in combination with Ys convex (cf.
Asm. 6a)) is crucial to ensure that the closed-loop system
converges to the globally optimal setpoint y◦a. Notably,
convexity is only required in the output space Ys, which
is crucial as the steady-state manifold Zs is often non-
convex. Nonetheless, especially for motion-planning appli-
cations with collision avoidance constraints, Ys is typically
non-convex and hence the system may get stuck at a local
minima. Different solutions have been proposed to address
this problem, such as using a homeomorphism to a convex
space to define a non-quadratic offset cost Vo [72] or choos-
ing a large weighting Vo [73]. In [31], it was suggested to
replace the non-convex constraints with corresponding penal-
ties, which allows for simple implementation with (input-to-
state) stability guarantees, see also [30, Sec. 5] for a related
approach. Lastly, in [29, Prop. 2], a method is presented
that ensures convergence to the globally optimal setpoint y◦a
for any connected non-convex set Ys. This is achieved by
defining the offset cost Vo implicitly as the shortest (feasible)
distance using a continuous path γ:

Vo(ya, yr) := min
γ

length(γ(·)) (21)

s.t. γ(0) = ya, γ(1) = yr, γ(s) ∈ Ys,∀s ∈ [0, 1].

By using a finite parametrization, this cost can be embedded
in Problem (19) with additional decision variables and thus
ensure convergence for arbitrary (connected) non-convex
constraints Ys, see also [29, Rk. 3].

Uniqueness: The uniqueness condition (Asm. 6b)) ensures
that not only the optimal output y◦a is unique, but also the

corresponding state and input (x◦
a, u

◦
a). This condition can be

reduced to a so called trackability condition for the linearized
system (cf. [7, Rk. 1]). However, even if this condition is
not satisfied, the system will instead converge to the set of
optimal steady-states.

B. Tracking periodic references

In the following, we discuss how the methodology for
tracking periodic references (Sec. III-B) can be extended to
non-linear systems based on [12]. On a conceptual level,
this extensions is a relatively straightforward combination of
the results for linear periodic tracking (Sec. III-B) and non-
linear setpoint tracking (Sec. IV-A), see [12] for correspond-
ing details. However, this indirectly comes with additional
challenges regarding the design of terminal ingredients and
in general an increased online computational demand.

Terminal ingredients: A method to design terminal ingre-
dients for generic reference trajectories has been proposed
in [12], [74]. This approach mirrors the design of continu-
ously parametrized terminal ingredients in (20), which can be
related to a gain-scheduling design for quasi-linear param-
eter varying systems. Simply choosing a terminal equality
constraint is also quite attractive in the non-linear periodic
case, as the offline design becomes more challenging.

Computational complexity and partially decoupled
tracking-planning: Another issue inherent to the usage of
periodic artificial references is the increased computational
demand. While this issue is also present for the linear
formulation (Sec. III-B), in the non-linear case this issue
is exacerbated as the non-linear optimization problems
are computationally more demanding. Furthermore, the
Harmonic MPC parametrization (Sec. III-C) is difficult to
generalize to non-linear system. Thus, we present a different
methodology based on [12, Sec. 3.4] and [49, Sec. 4.4].
The main idea is to split the periodic tracking MPC (cf.
Problem (10) for the linear case) into two problems:

• a periodic reference planner, which optimizes the arti-
ficial references xa,ua to track the target yr;

• a trajectory tracking MPC that optimizes u to track the
artificial reference xa.

The main idea is that the computationally intensive long
horizon planner does not need to be re-optimized at every
time t, while the trajectory tracking MPC requires a fast
sampling rate to react to disturbances. The challenge is that
running the planner and tracker independently could lead
to references that cause feasibility issues in the terminal
set constraint of the tracking MPC. This issue is addressed
by adding additional constraints to the planning problem
that consider the current tracking error on the terminal set,
such that the usual candidate solution remains feasible in
the tracker, see [12, Sec. 3.4] for details on a tractable
formulation. As a result, a standard trajectory tracking MPC
can be implemented at each time t, while a partially coupled
planner can solve a larger optimization problem over a
user chosen sampling period. The partial coupling ensures
that both optimization problems remain recursively feasible.
Furthermore, if a suitable terminal set is designed, then the
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reference xa converges to the optimal target in finite time
and the state x converges exponentially to the corresponding
optimal trajectory x◦

a [12, Prop. 13]. This strategy has been
further refined in [75] to address (non-periodic) motion-
planning problems in embedded autonomous mobile robots.

C. Robust tracking MPC

In the following, we focus on designing a robust formula-
tion that ensures safe operation in the presence of bounded
model-mismatch. This design leverages non-linear robust
MPC formulations [76]–[78] which are integrated into the
MPC for tracking formulation following [21]. We consider
the perturbed dynamics

x(t+ 1) = fw(x(t), u(t), w(t)), w(t) ∈ W ⊆ Rnw , (22)

with disturbances w and some known compact set W
containing the origin. The dynamics fw are assumed to
be continuous and we denote the nominal dynamics by
f(x, u)

.
= fw(x, u, 0). Furthermore, we assume that the

constraint set is characterized as

Z =
{
(x, u) : gj(x, u) ≤ 0, j ∈ N[1,nc]

}
with Lipschitz continuous scalar functions gj . In contrast
to linear systems (Sec. III-A), the error propagation for
non-linear systems also depends on the nominal dynam-
ics, which makes exact propagation challenging. We focus
on computationally efficient approaches that provide robust
guarantees based on a simple offline computed constraint
tightening [76]–[78]. To this end, we consider the follow-
ing conditions on an offline computed stabilizing feedback
κ(x, z, v) and corresponding (incremental) Lyapunov func-
tion Vδ(x, z).

Assumption 7. There exist a feedback κ : Rnx ×Z → Rnu ,
an incremental Lyapunov function Vδ : Rnx × Rnx → R
and constants ρ ∈ [0, 1), w̄, cl, cu > 0, cj ≥ 0, j ∈ N[0,nc],
such that for all (z, v) ∈ Z , all w ∈ W and all x ∈ Rnx ,
u = κ(x, z, v) satisfies:

cl∥x− z∥ ≤ Vδ(x, z) ≤cu∥x− z∥ (23a)
Vδ(fw(x, u, w), f(z, v)) ≤ρVδ(x, z) + w̄, (23b)

gj(x, u)− gj(z, v) ≤cjVδ(x, z). (23c)

Furthermore, the following triangular inequality holds for
any x, z, ξ ∈ Rnx :

Vδ(x, ξ) + Vδ(ξ, z) ≥ Vδ(x, z). (23d)

Conditions (23a)–(23b) ensures that the feedback κ drives
the state x exponentially to a neighborhood around any
nominal trajectory z, which is called incremental stability.
Inequalities (23c) follows naturally if gj , κ are Lipschitz
continuous, see [77, Prop. 5] for analytical formulas. General
incremental Lyapunov functions Vδ and feedbacks κ can be
constructed offline using (control) contraction metrics [77],
[78].1 In case of only mildly non-linear dynamics, a simple

1Following [77, Prop. 2,5], condition (23b) does in fact not hold for all
x ∈ Rnx but for all states visited during closed-loop operation due to the
tightened constraints.

weighted norm Vδ(x, z) = ∥x − z∥M and linear feedback
κ(x, z, v) = v + K(x − z) can be constructed, in which
case w̄, ρ can be computed as (weighted) Lipschitz constants.
Condition (23d) follows naturally if Vδ is defined as a
weighted norm or with a contraction metric.

Given this offline design, we formulate the following
robust MPC for tracking formulation from [21]:

min
x,u,

xa,ua,α

N−1∑
k=0

ℓ(xk, uk, xa, ua) + Vf (xN , xa, ua) + Vo(ya, yr)

(24a)
s.t. x0 = x(t), (24b)

xk+1 = f(xk, uk), k ∈ N[0,N−1], (24c)

gj(xk, uk) + cjw̄
1− ρk

1− ρ
≤ 0, (24d)

j ∈ N[1,nc], k ∈ N[0,N−1],

ya = h(xa, ua), (24e)
xa = f(xa, ua), (24f)
gj(xa, ua) + cjα ≤ 0, j ∈ N[1,nc], (24g)

α ≥ w̄

1− ρ
, (24h)

Vδ(xN , xa) +
1− ρN

1− ρ
w̄ ≤ α. (24i)

This formulation initializes the predictions at the measured
state x(t) and the applied control input is u(t) = u⋆

0. Con-
trary to the nominal formulation (19), the constraints (24d)
are tightened proportional to the disturbance bound w̄. The
terminal set constraint is characterized by (24g)–(24i), which
incorporates an online optimization of the scaling α follow-
ing [12]. In particular, Condition (24i) defines the terminal
set as a sublevel set of the Lyapunov function around the
artificial steady-state xa with an online optimized scaling
α > 0, while Condition (24g) ensures that this set lies in the
(tightened) constraints. Furthermore, Condition (24h) pro-
vides a lower bound on the size of the terminal set to ensure
robust positive invariance and recursive feasibility. Notably,
these formulas are particularly simple as the feedback κ and
Lyapunov function Vδ from the robust formulation are also
used to define the terminal ingredients.

Theorem 7 ( [21, Thm. 1]). Let Assumption 7 hold and
suppose that Problem (24) is feasible at t = 0. Then,
Problem (24) is feasible and the closed-loop system satisfies
the constraints (16c) for all t ∈ N, independent of yr and
for any disturbance realization w(t) ∈ W .

Given the additional conditions regarding the terminal
cost Vf , convexity, and uniqueness (Asm. 5–6), and uni-
form continuity of all the involved functions, this approach
also ensures input-to-state stability of the (robustly) optimal
steady-state, see [21, Thm. 1] for details.

D. Other extensions and experimental results

Other notable extensions of the MPC for tracking frame-
work include non-linear MPC formulations that leverage the
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flexibility of artificial references but aim to directly minimize
some economic cost ℓe. Corresponding results for non-linear
systems have been developed in [15], [16], [18], see also [49,
Chap. 5] for an in depth overview. Experimental hardware
results for non-linear MPC for tracking formulations include
setpoint tracking with a four-tank [7], robotic manipulation
with collision avoidance [21], and distributed coverage and
collision avoidance with a fleet of miniature race cars [35].

V. APPLICATION TO LEARNING-BASED MPC

In this section, we highlight how MPC for tracking formu-
lations can be a key enabler to address problems in learning-
based MPC. Learning-based techniques are typically lever-
aged if the system model or the external environment (ob-
jective, constraints) are uncertain, see [79] for an overview.
We first provide a general discussion, highlighting where
MPC for tracking formulations are a crucial component in
learning-based approaches. Then, we explore two applica-
tions in more detail:

• safely exploring uncertain constraints [43];
• distributed coverage with unknown objectives [35].
Learning system dynamics: In many applications, the

system model (16) is subject to significant uncertainty and
hence online generated data can be used to improve the
model knowledge and thus boost performance. However,
the fact that our model changes during runtime also poses
challenges in determining an optimal steady-state that should
be regulated. This issue can be naturally addressed with MPC
for tracking formulations as the desired steady-state is jointly
optimized in the MPC. Corresponding results for different
data-driven and learning-based models can be found in [22],
[42], [77], [80]–[82].

Exploring unknown environment: Especially in robotics
applications, we often do not have an accurate ‘map’ re-
garding the location of possible obstacles, which are needed
to ensure safe exploration with the MPC. This problem is
typically solved by having a cautious approximation of the
obstacle free space which expands by exploring the unknown
environment during online operation. For such problems, we
naturally do not know beforehand where exactly we want to
go and in general the targets we may wish to reach can be
very far away. These problems can be naturally addressed by
using MPC for tracking formulations, see [43], [73], [83].

Guaranteed safe exploration: In [43], an MPC-based
method to systematically guarantee safe exploration of un-
known environments is developed. In addition to the user-
specified system constraints (x, u) ∈ Z , safe operation re-
quires q(y) ≤ 0 where q : Rny → R is an unknown/uncertain
function. By collecting n (noisy) measurements of this
function (e.g., through LIDAR) and given suitable regularity
conditions on q, one can learn a function qn(y) ≤ q(y),
which can be used to pessimistically ensure safe operation.
In particular, this is achieved by leveraging Gaussian pro-
cesses [84], a versatile machine learning method with guar-
anteed error bounds. During runtime, an MPC determines
a location that can be safely reached and where collecting

measurements will maximize the information about the un-
certain environment. This method ensures that (with high
probability) the system is safely operated for all times and the
unknown domain is explored up to a user chosen tolerance
in finite time. While the theoretical guarantees largely rely
on methods from machine learning and optimal control, the
practicality hinges on the utilization of concepts from MPC
for tracking. In particular, persistent safety is ensured by
planning trajectories that end in some positively invariant
safe set. While in principle such a set could be designed
offline, this would require a computationally prohibitive
prediction horizon to ensure exploration of a large domain.
These issues are circumvented by relying on techniques
from MPC for tracking to implicitly define the safe set
with an artificial reference. In particular, the online learned
(pessimistic) constraint qn(y) is used to define a (time-
varying) terminal set constraint given by

Xn
f = {x : ∃u : (x, u) ∈ Zs, y = h(x, u), qn(y) ≤ 0}.

By leveraging techniques similar to Section IV, [43,
Lemma 3] shows that for path-connected (non-convex) con-
straints Ys and locally controllable dynamics, any point in
this set can be reached with finite time, which is crucial to
ensure exploration of the complete domain in finite time.

Distributed coordination and learning: In [35], a learning-
based tracking MPC framework is presented to address the
distributed coverage problem. The coverage problem requires
distributed agents to optimally cover an area, which can be
posed as minimizing the coverage cost with partitions Yi ⊆
Rny and density ϕ : Rny → R:

min
yi,Yi

∑
i

∫
p∈Yi

∥p− yi∥2ϕ(p)dp. (25)

This formulation can, e.g., be used to model optimal repo-
sitioning of a fleet of taxis or aerial robots observing a
wild fire. The key challenge lies in the fact that methods
need to be scalable to a large number of agents, ensure
collision avoidance, and deal with uncertain density functions
ϕ. The framework in [35] addresses all these problems
simultaneously by leveraging non-linear MPC for tracking
formulations on multiple levels. By adapting the MPC for
tracking formulation without terminal ingredients from [29],
a controller is developed to steer non-holonomic vehicles to
arbitrary position references. Given these strong properties
of the local controllers, distributed coordination is enabled
independent of the dynamics of the system by simply co-
ordinating positions and Voronoi partitions based on the
Lloyd algorithm. Furthermore, a framework is developed to
enable efficient exploration and learning. This formulation
achieves active exploration by using an offset cost Vo that
also depends on the variance of the density function ϕ(y) at
the artificial steady-state.

2987



VI. OPTIMIZATION AND ASPECTS AND PRACTICAL
IMPLEMENTATION OF MPC FOR TRACKING

A. Implementing linear MPC for tracking

The linear MPC for tracking formulations presented in
Section II can be posed as QP problems if the offset cost Vo

is taken as a quadratic or linear function and the invariant
set for tracking Xa is computed as a polyhedron. From a
computational standpoint this is rather advantageous, since
QP problems are a particularly simple class of optimization
problem for which there are many state-of-the-art efficient
solvers, such as [85]–[87], to name a few. Furthermore, the
resulting QP problem is sparse; a feature that is exploited by
most modern solvers [85], [88]. In fact, the resulting sparsity
pattern is rather simple, and can thus be exploited by tailored
solvers [46], [48], [50], see Section VI-B.

The robust and periodic formulations presented in Sec-
tions III-A and III-B, respectively, are also QP problems
under the previous two conditions. The HMPC formulation
presented in Section III-C is not a QP problem due to the
inclusion of second-order cone constraints (13i)-(13j), lead-
ing instead to a second-order cone program (SOCP), which
can also be rewritten as a quadratically constrained quadratic
program (QCQP); both of which can be solved using several
state-of-the-art solvers, e.g., [88], [89]. In particular, [47]
presents a solver tailored to the HMPC formulation (available
in [50]) and shows that it can be solved in computation times
comparable to state-of-the-art QP solvers.

A tool that is rather useful for prototyping and testing lin-
ear MPC for tracking formulations is the MATLAB toolbox
YALMIP [90], which provides a simple syntax to build the
optimization problem and to then solve it by selecting from
a large pool of state-of-the-art solvers, including most of the
ones referenced above.

Computing the invariant set for tracking: As mentioned in
Section II, and as discussed in detail in [5, §2.2], Xa can be
obtained as the maximal invariant set of a system obtained
by extending (1) with the artificial reference. This results
in a polyhedral set than can be computed using standard
procedures [1], [91]. The MATLAB MPT3 toolbox [92] can
be rather useful to this end.

Computation of the maximal invariant set can be very
expensive. Several alternatives are typically considered: use
a terminal equality constraint, as in (7); dynamically scale
the terminal set [93]; avoid the use of a terminal set
by choosing a sufficiently large prediction horizon [7]; or
compute an elliptic terminal invariant set [94, §4.1] by
solving an optimization problem with linear matrix inequality
constraints [95]. The downside of using an ellipsoid is that
the resulting optimization problem is no longer a QP, but
instead a SOCP/QCQP. However, as previously discussed,
there are several state-of-the-art solvers well suited for these
problems [88], [89], [96].

Soft constraints: In spite of the larger domain of attraction
typically obtained with the use of artificial references, the
presence of constraints can still lead to feasibility issues
when dealing with real systems or in the presence of un-

known uncertainties. To avoid feasibility issues, a common
practical solution is to make use of soft constraints [44], [45].

B. Exploiting the semi-banded structure of linear MPC for
tracking

The stage cost ℓ(xk, uk, xa, ua)
.
= ∥xk − xa∥2Q + ∥uk −

ua∥2R, commonly used in many MPC for tracking for-
mulations, includes cross products between (xk, uk) and
(xa, ua) that break down the strictly banded structure of
the optimization problem related to standard MPC [46],
[97]. Consider, for example, the cost of the linear MPC for
tracking formulation with equality constraints (7):

V (z) =

N−1∑
k=0

ℓ(xk, uk, xa, ua) + ∥xa − xr∥2T + ∥ua − ur∥2S ,

where z denotes the vector of decision variables, i.e.,

z =
[
x⊤
0 , u

⊤
0 , x

⊤
1 , u

⊤
1 , . . . , x

⊤
N−1, u

⊤
N−1, x

⊤
a , u

⊤
a

]⊤
.

In this case, the cost V (z) is a quadratic function on z that
can be rewritten as V (z) = z⊤(HB + HLR)z + q⊤z + c,
where

HB =



Q 0 0 0 · · · 0 0
0 R 0 0 · · · 0 0
0 0 Q 0 · · · 0 0
0 0 0 R · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · NQ 0
0 0 0 0 · · · 0 NR


,

HLR =



0 0 0 0 · · · −Q 0
0 0 0 0 · · · 0 −R
0 0 0 0 · · · −Q 0
0 0 0 0 · · · 0 −R
...

...
...

...
. . .

...
...

−Q 0 −Q 0 · · · T 0
0 −R 0 −R · · · 0 S


.

We notice that HB is a banded matrix and HLR is a low-
rank matrix. Thus, the matrix defining the quadratic terms
of V (z) has a semi-banded structure that prevents the direct
use of the efficient optimization techniques developed for
the fully banded case of standard MPC [97], [98]. Two
different approaches have been presented in the literature
to address this issue. The first approach involves using
an extended ADMM formulation that recovers the banded
structure by considering three primal decision variables in
the ADMM formulation [46]. The second approach relies
on the use of the Woodbury matrix identity [99], which
allows for solving, in an efficient way, the semi-banded
systems of equations required to implement the standard
ADMM algorithm (instead of the extended one) [45], [48].
The obtained computational times are similar to the ones
corresponding to standard MPC.
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C. Solving non-linear MPC for tracking
Assuming f, h are smooth, non-linear MPC for tracking

problems can be efficiently coded with CasADi [100] in
MATLAB or Python. This provided automatic differentiation
and interfaces general purpose sparse non-linear optimization
solvers like IPOPT [101]. For embedded application and
long prediction horizons, Acados [102] can offer efficient
implementation by also leveraging QP solvers that exploit
the stage wise structure of MPC [87]. Problem (19) can be
written in this form by augmenting the state space with the
artificial reference, as, e.g., done in experiments in [35].

VII. CONCLUSION

We have provided a tutorial exposition on MPC for track-
ing formulations, which incorporate an artificial reference as
an additional decision variable of the MPC’s optimization
problem. The addition of the artificial reference in linear
and non-linear MPC provides several important benefits:
an increase of the domain of attraction, the ability to deal
with non-reachable references, recursive feasibility under
online operational changes, and asymptotic stability to the
“best” reachable objective. This paradigm is very versatile,
as exemplified by the many extensions developed in the
literature, including robust designs, economic costs, periodic
references, or zone control. Furthermore, tailored solvers
have been developed that provide solve-times in the order
of milliseconds for some of the linear formulations. Finally,
MPC for tracking can be a key enabler to address problems
beyond tracking in learning-based MPC.
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tive control framework using reference generic terminal ingredients,”
IEEE Transactions on Automatic Control, vol. 65, no. 8, pp. 3576–
3583, 2020.

[75] D. Benders, J. Köhler, T. Niesten, R. Babuška, J. Alonso-Mora, and
L. Ferranti, “Embedded hierarchical MPC for autonomous naviga-
tion,” arXiv preprint arXiv:2406.11506, 2024.
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