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Abstract— The approximation of complex dynamical systems
models by reduced order models has been considered an
important research problem for over four decades, not only
in the field of control, but also in economics, image processing,
circuit analysis, statistical mechanics, aircraft structures, and
more recently in hybrid energy systems, to name just a sampling
of fields. In this paper, we provide an overview of the develop-
ment of balanced truncation and interpolation approaches for
reducing linear and non-linear dynamical systems models for
the purpose of control analysis and design.

I. INTRODUCTION

The construction of reduced order models for dynamical
systems has long been considered an important research
problem in the field of control, beginning perhaps with
the linear system realization problems proposed by Ho and
Kalman for learning minimal models from data [1]. Model
reduction, however, transcends the field of control, and
has also garnered interest in the fields of economics [2],
image processing [3], circuit analysis and simulation [4],
and statistical mechanics [5], [6], to cite just a few specific
examples. The classic problem formulation is this: given a
difference or differential equation model for a dynamical
system, determine a relevant simplified model that facilitates
tractable system analysis and controller synthesis where none
may have existed before. Interest in this problem grew with
the interest in optimal controller synthesis when it was
realized that the growth in computational complexity for
an optimal control design is faster than O(n3), where n
represents the state dimension of the model or the order of
the differential equations describing the dynamical behavior
of the system. Any particular reduction approach has since
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been judged, generally speaking, on the level of complexity
reduction achieved, how closely the reduced model captures
the original system behavior, and the complexity of the
reduction process itself.

The classic formulation of the model reduction problem
in the controls community, following the foundation in
realization theory, began more directly with the balancing
and principal component analysis perspective elegantly stated
by B. Moore [7]. With time, the mathematical models
considered relevant in system and control problems have
increased in both dimension and complexity, involving dis-
tributed and interconnected systems of dynamical systems,
switching systems, and complex nonlinear dynamics. At this
point, the main model reduction approaches that have been
extensively pursued for the purpose of control are balanced
truncation, and interpolation or moment matching methods
(see, for example [8], [9, Chapters 7, 8], [10, Chapters
9, 10]. While the development of these methods typically
has origins in linear systems theory, they have been fully
extended to nonlinear systems [11]–[16], with data-based
approaches more recently being pursued [17]. In this tutorial
paper, we provide an overview of the development of these
methods for linear and nonlinear control systems models.

A. A Brief Overview of Model Reduction from Classic to
Current

Since its introduction to the control community around
40 years ago, balanced truncation has been a cornerstone
of model reduction, especially for the reduction of linear
systems. So-called balanced realizations were introduced in
1976 [18], to minimize round-off errors in digital imple-
mentations of linear filters. In 1981 [7], B. Moore proposed
to truncate such realizations to construct reduced order
models, motivated by the principal component analysis of
the controllability and observability operators; E. Verriest
provided the first extension of these notions to analytic
time-varying systems [19]. The key features of balanced
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truncation, including guaranteed preservation of model sta-
bility [20], [21] and the a priori error bounds established in
the mid-80’s [21]–[23], make it an attractive first method of
choice. The extension of these results to the discrete time
case in 1990 introduced the use of Lyapunov inequalities
[24], opening the door to Linear Matrix Inequality (LMI)
approaches to model reduction.

Based on the LMI framework, notable extensions of
balanced truncation methods were then developed for lin-
ear parameter varying (LPV) systems [25]; uncertain and
multi-dimensional systems [26]; linear time-varying (LTV)
systems [27], [28]; non-stationary LPV systems [29]; jump-
linear systems [30]; and interconnected and structured sys-
tems [31], with some of the more recent work including
extensions to nonstationary LPV distributed systems [32].

Additional related model reduction results have been
established for optimal H∞ model reduction [33]; Krylov
and projection-based reduction methods [34]; and stochastic
model reduction [35]. Algorithms that improved the com-
putational efficiency of balanced model reduction early on
also played a main role in establishing the popularity of the
method, with key examples including Schur and Cholesky
factorization based algorithms [36]–[38].

Remark 1. Mainstream balancing-based model reduction
methods assume the underlying linear systems of interest
are stable. This constraint was addressed in 1988 by Meyer,
who proposed the use of coprime factorizations for unstable
system reduction [39]. Extensions of the coprime factors
approach to more complex unstable systems followed [40]–
[42].

Remark 2. Direct connections of the principal component
analysis concepts underlying balanced truncation methods
clearly exist with the subspace identification methods first
proposed in the 1980s [43]–[45]. Specifically, the princi-
pal components of linear systems are those that are both
strongly controllable and observable, or equivalently, those
components with large associated Hankel singular values.
Both balanced truncation and subspace identification are
based on determining these components. Details are provided
in Section II. Interestingly, recent results on learning low-
order models from data based on finite-size sample data sets
have brought the field full-circle back to consideration of the
original Ho-Kalman realization algorithm; see for example
[46]–[48].

Extensions of the balanced truncation approaches for
model reduction of nonlinear systems was first developed
in [11], where “local” results were established, that is results
on a neighborhood of an equilibrium admitting smooth
solutions to Lyapunov type equations for the nonlinear state
space. These local results were shown to be applicable to
larger regions than would be obtained by simply lineariz-
ing the nonlinear system. The relation to balancing of the
linearized system was also established.

Data-based reduction of nonlinear systems in a balanced
system framework were established in [49], where empirical

balanced realizations for nonlinear systems are constructed
from both simulated and observed data, which coincides with
balanced realizations when considering linear systems. A
specific projection is then applied (the Galerkin projection)
to the balanced realization to construct low-dimensional non-
linear models. Related empirical methods based in proper or-
thogonal decomposition (POD)s were further developed [50],
which generalized some of these results.

An alternative approach to model reduction is that based
on rational interpolation theory. Over the past two to three
decades, substantial progress has been made in interpolation
based reduction methods, leading to these methods emerging
as another main choice for model reduction of large dynam-
ical systems and nonlinear systems. A projection framework
for interpolatory model reduction was introduced by Skelton
and collaborators [51], [52]. For SISO systems these methods
are sometimes referred to as rational Krylov methods, but for
MIMO systems these are known more widely as interpolation
or moment-matching methods. These methods are based on
the use of projections, and thus have some connections to the
earlier mentioned POD methods; for details see [53]–[56].

In the remainder of this tutorial paper, we present an
overview of the classic model reduction problem formulation
and review the timeline of developments in linear, nonlin-
ear, and interpolation-based model reduction methods. We
provide in-depth discussions of linear balanced-truncation
based methods in Section II, including results for linear time-
varying systems; data-based balanced reduction methods for
nonlinear systems in Section III; and moment matching re-
duction methods based on closed-loop interpolation schemes
for nonlinear systems in Section IV-A. Open problems in
model reduction will be highlighted throughout.

II. BALANCED TRUNCATION OF LINEAR SYSTEMS:
FUNDAMENTALS AND EXTENSIONS

In this section, we will first review the fundamentals
of balanced truncation. We will discuss the balancing of
controllability and observability Gramians and how this leads
to classes of reduced-order models with desirable properties.
We will highlight the definition and importance of Hankel
singular values for model-order selection and both upper
and lower bounds on the H∞-approximation error [22], [23].
After this, we will mention some of the extensions to bal-
anced truncation that have appeared since its inception. There
are several excellent books available that cover balanced
truncation and its extensions in much greater detail; see [8]–
[10], [57], [58]

A. The Fundamentals

Consider a linear state-space system G with realization

ẋ = Ax+Bu

y =Cx+Du,
(1)

with state x(t) ∈ Rn, input u(t) ∈ Rm, and output y(t) ∈ Rp.
Balanced truncation applies in continuous and discrete time
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with only minor differences1. We will focus on continuous
time here for simplicity. Often we assume A is a Hurwitz
matrix, and (1) is asymptotically stable. We denote its trans-
fer function by G(s) :=C(sI−A)−1B+D, which lies in the
space H∞ (∥G∥∞ := sups∈C+

σ̄(G(s))< ∞). As mentioned in
the previous section, the goal of model reduction is to find
a reduced-order model Gr with realization

ż = Arz+Bru

yr =Crz+Dru,
(2)

with reduced state z(t)∈Rr, same input u(t)∈Rm, and same
output yr(t) ∈ Rp. As previously noted, model reduction
seeks to find Gr such that (i) r≪ n; and (ii) error(G,Gr)
is small. The success of balanced truncation is based on the
fact that it provides suggestions for reasonable dimensions
r, together with (Ar,Br,Cr,Dr) and simple a priori bounds
on the error in the H∞-norm. We will review the required
steps next.

The first step involves quantifying the controllability and
observability properties of (1). The great insight of B. Moore
in [7] was that states that are simultaneously hard to influence
from u and difficult to see from y are good candidates
for truncation from the model. Hence, we need to choose
coordinates of the state space x that reflect both these
properties. The controllability Gramian P and observability
Gramian Q satisfy the Lyapunov equations

AP+PA⊤+BB⊤ = 0,

A⊤Q+QA+C⊤C = 0.

When A is Hurwitz, Gramians P and Q are unique and
always positive semidefinite (positive definite in case the
system realization is minimal). The eigenvectors of P and Q
characterize the principal components of the controllability
and observability operators of (1), respectively; see [7]. Thus,
the controllability and observability of state elements should
not be viewed as merely binary concepts; instead, they can
be quantitatively assessed.

If we perform the coordinate transformation x← T−1x,
for invertible matrices T , the controllability and observability
Gramians transform as

P← T−1PT−⊤, Q← T⊤QT. (3)

Interestingly, we see that the eigenvalues

σi :=
√

λi(PQ), i = 1,2, . . . ,n,

are invariant under coordinate transformations of (1). It is
shown in [22] that these eigenvalues are the singular values
of the Hankel operator of the system G. Hence, σi are called
the Hankel singular values of G, and are system invariants
with many interesting properties.

More importantly, it was shown in [7], [18] that there
exists a specific transformation T that balances the state

1Stronger results on the stability of reduced models are available in
discrete time [24].

coordinates2 and achieves

P = Q = Σ, (4)
Σ = diag{σ1,σ2, . . . ,σn}, σ1 ≥ σ2 ≥ . . .≥ σn > 0. (5)

Hence, for such a balanced realization of G, the Grami-
ans are identical and diagonal, and the elements coincide
with the Hankel singular values. The state coordinate xn,
corresponding to σn, is the least simultaneously controllable
and observable state direction. Intuitively, it is the state
coordinate that participates the least in the mapping from u
to y in G, and appears suitable for truncation. The balanced
Gramian is partitioned as

Σ =

[
Σ1 0
0 Σ2

]
,

where

Σ1 =

σ1Ir1 0 0

0
. . . 0

0 0 σlIrl

 , Σ2 =

σl+1Irl+1 0 0

0
. . . 0

0 0 σNIrN

 ,

where n = r1 + . . .+ rN , r = r1 + . . .+ rl , and the singular
values are re-arranged in strictly decreasing order such that
σi ̸= σ j, i ̸= j. This notation is introduced to strengthen the
results when singular values have a multiplicity greater than
one, i.e., ri > 1 for some i. Conformably to Σ1 and Σ2, the
balanced realization (1) of G is partitioned into

A =

[
A11 A12
A21 A22

]
, B =

[
B1
B2

]
, C =

[
C1 C2

]
.

As already hinted at, balanced truncation now proceeds by
truncating all the states xr+1, . . . ,xn to obtain the realiza-
tion (2) of Gr as

(Ar,Br,Cr,Dr) = (A11,B1,C1,D).

Intuitively, we expect a small approximation error if the
elements in Σ2 are much smaller than those in Σ1. Remark-
able and powerful results have been proven to support this
intuition. First, L. Pernebo and L. Silverman [20] showed
that Ar = A11 is guaranteed to be asymptotically stable if no
elements in Σ1 and Σ2 coincide. The assured maintenance of
stability throughout the reduction process has consistently
been a significant consideration in model reduction, and
the result has been rightfully celebrated. Two years later,
K. Glover [22] and D. F. Enns [23] independently showed
an elegant upper a priori error bound that has been equally
celebrated. We state the bound in the following theorem,
which closely follows the statement in [23].

Theorem 1. Suppose (A,B,C,D) is a balanced realization
and that (A11,B1,C1,D) is a balanced truncation such that
Σ1 and Σ2 have no entries in common. Then A11 is Hurwitz,

2Numerically efficient methods for computing such coordinate trans-
formations are discussed in, for example, [8]. However, computing and
balancing the Gramians remain the main computational bottleneck for
applying balanced truncation to very high-dimensional systems.
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and (A11,B1,C1,D) is a minimal and balanced realization of
Gr with Gramian Σ1. Furthermore,

∥G−Gr∥∞ ≤ 2
N

∑
i=l+1

σi.

When l = N−1, equality holds and σ̄(G(0)−Gr(0)) = 2σN
if rN is odd.

The upper error bound in Theorem 1 should be compared
with the following fundamental lower bound on the approx-
imation error [22],

inf
Gr∈H∞(r)

∥G−Gr∥∞ ≥ σr+1, (6)

where H∞(r) denotes transfer functions in H∞ with McMil-
lan degree less than or equal to r. The lower bound cannot
always be attained with equality, but Theorem 1 shows that
balanced truncation is no worse than a factor of two when
l = m− 1. The lower bound (6) also illustrates that the
Hankel singular values reveal what approximation orders r
are possible for a given threshold on the H∞-norm error.

Since Dr = D for balanced truncation, a perfect model fit
is achieved at infinite frequency, G(∞) = Gr(∞). It is often
more desirable to have a good approximation at smaller fre-
quencies. To this end, a singular perturbation approximation
of a balanced realization of G,

(Ar,Br,Cr,Dr) = (A11−A12A−1
22 A21,B1−A12A−1

22 B2,

C1−C2A−1
22 A21,D−C2A−1

22 B2),

achieves G(0) = Gr(0) and was shown to satisfy the same
error bounds as balanced truncation in [59].

B. Time-Varying and Other Extensions

Early extensions of these classic results included balanced
truncation of frequency-weighted [23], time-varying [19],
[27], [28], [60], uncertain [26], parameter-varying [25], [61],
and stochastic systems [35], [62], [63].

To provide some detail, consider the linear time-varying
system G with realization

ẋ = A(t)x+B(t)u

y =C(t)x+D(t)u.

In the works [19], [60], it was proven that it is possible
to balance the coordinates using time-varying transforma-
tions (3), under appropriate assumptions on the smoothness
of the realization (A(t),B(t),C(t),D(t)). (See [64] for the
discrete-time case.) This balancing process leads to diagonal,
time-varying Gramians,

P(t) = Q(t) = Σ(t),

Σ(t) = diag{σ1(t),σ2(t), . . . ,σn(t)},

which satisfy time-varying differential Lyapunov equations,
or LMIs more generally, that is,

A(t)Σ(t)+Σ(t)A⊤(t)− Σ̇(t)+B(t)B⊤(t)≤ 0

Σ(t)A(t)+AT
Σ(t)+ Σ̇(t)+C⊤(t)C(t)≤ 0.

(7)

The time-varying Hankel singular values σi(t), i= 1,2, . . . ,n,
have a similar meaning here as in the time-invariant case,
for each time t. However, one now needs to take some
care in specifying the boundary conditions of Σ(t) and the
considered time interval [t0, tf]. After balancing, one can
proceed to truncate states to obtain a time-varying reduced
system Gr with realization (A11(t),B1(t),C1(t),D(t)). In the
works [27], [28] error bounds generalizing those given in
Theorem 1 and (6) were obtained. For example, in [28] it
was shown that

max
t

σr+1(t)≤ ∥G−Gr∥ ≤ 2
N

∑
i=l+1

STi(σi), (8)

where STi is the so-called max-min ratio (see (9) below).
Here we understand G and Gr as operators on L2[t0, tf],
and ∥ · ∥ is the induced norm on L2[t0, tf]. The lower bound
in (8) assumes the boundary conditions Σ(t0) = Σ(tf) = 0 and
applies to any r-th order linear time-varying system. The
upper bound, on the other hand, applies to systems arising
from truncated balanced realizations, and any solution Σ(t)
to (7) can be used. If we find a solution Σ(t) where the sin-
gular values truncated are monotonic, the max-min ratio STi

simplifies to a maximum. In particular, if a constant solution
Σ(t) = Σ to the LMIs is found, the bound in Theorem 1
is recovered. The existence of constant solutions is further
discussed in [27].

The max-min ratio STi appearing in (8) is defined as

S[t0,tf](σ) := σ(t0)∏
i

σ(tmax
i )

σ(tmin
i )

, (9)

where the local minima and maxima of σ over the time
interval [t0, tf] have been ordered as

t0 ≤ tmin
1 < tmax

1 < tmin
2 < tmax

2 · · · ≤ tf.

The magnitude and the time-variation of the singular values
affect the bound. An interesting feature of model reduction
of time-varying systems is that some states may be of
importance to the system G only over some subset of time
Ti⊂ [t0, tf]. It is then possible to construct a reduced model Gr
of time-varying order, where state xi is only truncated over
time intervals Ti where STi(σi) is small [28].

Further extensions considered generalized balanced trun-
cation, which is based on generalized Gramians that satisfy
Lyapunov LMIs. Attractive reduction properties using gener-
alized Gramians include potentially better error bounds [24]3

and that underlying structural constraints in the system
of interest can be enforced in the reduction process [40],
[66]. Generalized Gramians are particularly applicable in
the model reduction of multi-dimensional and uncertain
systems [26], [41], [67]. The so-called extended balanced
truncation approach [31] was later introduced to handle
interconnection constraints between connected subsystems in
the model reduction process.

3Generalized Gramians also appear in the characterization of the solutions
to the optimal H∞-model approximation problem [26], [65].
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There are numerous related open research problems, with
perhaps those receiving the greatest focus at this time being
related to finite sample learning of low-order LTI mod-
els [48]. Along these lines, related finite sample analyses of
subspace system identification methods have very recently
been considered [68]. Future directions include improved
sample complexity bounds, and extending non-asymptotic
low-order LTI model learning to bilinear and nonlinear
system models.

III. DATA-BASED MODEL REDUCTION FOR NON-LINEAR
SYSTEMS BASED ON DIFFERENTIAL BALANCING

For linear systems, the controllability Gramian P and
observability Gramian Q can be computed using impulse
and initial state responses, respectively, e.g., [8]. This allows
for balanced truncation of LTI systems using empirical data.
The application of linear data-driven methods to nonlinear
systems has garnered significant research interest, e.g., [49],
[69]–[73]. These methods aim to reduce the computational
complexity of nonlinear controller design, such as model
predictive control, e.g., [74], [75]. However, these data-
driven methods have traditionally been proposed only around
a steady-state. To capture nonlinear behavior, data-driven
methods explicitly taking nonlinearity into account have
been developed for controllability in a stochastic setting [76]
and for observability [77], [78]. However, neither method
addresses both controllability and observability Gramians
simultaneously, and there is no direct connection between
these two approaches.

In this section, we discuss a data-driven balancing method
for a nonlinear system by utilizing its variational system.
This theoretical framework is referred to as differential
balancing theory [13], [79], [80]. Since the variational system
can be viewed as an LTV system along the trajectory of
the nonlinear system, one can extend the concept of the
controllability and observability Gramians of the LTV system
[27], [28], [81], [82]. We call these extensions the differential
reachability and observability Gramians, respectively. These
Gramians depend on the state trajectory of the nonlinear
system, and their values at each fixed trajectory can be
computed from the impulse and initial state responses of the
variational system along this fixed trajectory. The obtained
trajectory-wise Gramians are constant matrices, allowing for
the computation of balanced coordinates and a reduced-order
model in a manner similar to the LTI case.

A. The Fundamentals

Consider a nonlinear system with constant input vector
fields, described by {

ẋ = f (x)+Bu
y = h(x) (10)

with state x(t) ∈ Rn, input u(t) ∈ Rm, and output y(t) ∈ Rp,
where f : Rn → Rn and h : Rn → Rp are of class C2 and
B ∈ Rn×m. Let ϕt−t0(x0,u) denote the state trajectory x(t)
of the system (10) starting from x(t0) = x0 ∈ Rn for each
continuous and bounded u : R→Rm. Note that since f is of

class C2, if u is also of class C2, then the solution ϕt−t0(x0,u)
is a class C2 function of (t,x0) as long as it exists.

The variational system of (10) along its trajectory
ϕt−t0(x0,u) is 

δ̇x =
∂ f (ϕt−t0)

∂ϕt−t0
δx+Bδu

δy =
∂h(ϕt−t0)

∂ϕt−t0
δx

(11)

with state δx(t) ∈Rn, input δu(t) ∈Rm, and output δy(t) ∈
Rp. As long as ϕt−t0(x0,u) exists, the solution δx(t) exists for
any δx(t0) ∈ Rn and continuous and bounded δu : R→ Rm

because the variational system is an LTV system for fixed
(x0,u).

Mimicking the LTI and LTV cases [81], [82], the differ-
ential reachability and observability Gramians are defined as
Gramians of the variational systems [79].

Definition 1. Given x0 ∈ Rn and class C2 bounded u :
[t0, t f ]→Rm, the differential reachability Gramian is defined
by

GR(t0, t f ,x0,u) :=
∫ t f

t0

∂ϕt−t0
∂x0

B
(

∂ϕt−t0
∂x0

B
)⊤

dt (12)

and the differential observability Gramian is defined by

GO(t0, t f ,x0,u)

:=
∫ t f

t0

(
∂h(ϕt−t0)

∂ϕt−t0

∂ϕt−t0
∂x0

)⊤
∂h(ϕt−t0)

∂ϕt−t0

∂ϕt−t0
∂x0

dt, (13)

where the arguments of ϕt−t0 are (x0,u).

The differential Gramians exist in [t0, t f ] because the
solution ϕt−t0(x0,u) exists and is a class C2 function of
(t,x) in [t0, t f ]×Rn from the assumption. In the LTI case,
the Gramians defined by (12) and (13) respectively are
the controllability Gramian P and observability Gramian
Q. The differential reachability Gramian does not coincide
with the differential controllability function [13] whereas the
differential observability Gramian does with the differential
observability function. The motivation of introducing the
reachability Gramian is to develop its numerical computa-
tional method by using trajectories forward in time.

Similarly to the LTI case, one can define a balanced
realization between the differential reachability and observ-
ability Gramians. Since these differential Gramians depend
on a trajectory ϕ(x0,u), we define our balanced realization
trajectory-wise as follows [79].

Definition 2. Given ϕt−t0(x0,u), suppose that the differential
reachability Gramian GR(t0, t f ,x0,u)∈Rn×n and differential
observability Gramian GO(t0, t f ,x0,u) ∈ Rn×n are positive
definite. A realization of the system (10) is said to be a
differentially balanced realization along ϕt−t0(x0,u) if there
exists a constant diagonal matrix

Λ = diag{σ1, . . . ,σn}, σ1 ≥ ·· · ≥ σn > 0

such that GR(t0, t f ,x,u) = GO(t0, t f ,x,u) = Λ.
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It is possible to show that there always exists a differen-
tially balanced realization along ϕt−t0(x0,u) if the differential
Gramians are positive definite [79].

Theorem 2. Suppose that the differential Gramians
GR(t0, t f ,x0,u) and GO(t0, t f ,x0,u) are positive definite at
fixed ϕt−t0(x0,u). Then, there exists a non-singular matrix
Tϕ ∈ Rn×n which achieves

Tϕ GR(t0, t f ,x0,u)T⊤ϕ
= T−⊤ϕ GO(t0, t f ,x0,u)T−1

ϕ = Λ. (14)

Note that Tϕ in Theorem 2 is a constant matrix. Therefore,
as in the LTI case, a reduced-order model can be constructed
by applying a change of coordinates z = Tϕ x. The obtained
reduced order model is expected to have similar input-output
behaviour as that of the original system (10) around the
trajectory ϕt−t0(x0,u).

B. Data-Based Computations of Differential Gramians

It is computationally challenging to compute the differen-
tial Gramians analytically as typically the implementation of
nonlinear balancing theory requires solving nonlinear partial
differential equations (PDEs), e.g., [13], [83]–[85]. However,
computing the values of the differential Gramians along a
fixed trajectory ϕt−t0(x0,u) is numerically tractable as shown
in this subsection.

First, we show that the differential reachability Gramian
GR(t0, t f ,x0,u) along a fixed trajectory ϕt−t0(x0,u) can be
computed by using an impulse response of the variational
system. Let δD(·) be Dirac’s delta function, and let δxImp,i(t)
be the impulse response of the variational system (11)
along the trajectory ϕt−t0(x0,u) with δu(t) = em

i δD(t − t0),
where em

i ∈Rm is the standard basis. Then, substituting δx0 =
0 and u(t) = em

i δD(t− t0) into (11) yields

δxImp,i(t) =
∂ϕt−t0(x0,u)

∂x
Bi, (15)

where Bi is the ith column vector of B. Note that δxImp,i(t)
exists as long as ϕt−t0(x0,u) exists. From (12), we obtain

GR(t0, t f ,x0,u) =
∫ t f

t0
δxImp(t)δx⊤Imp(t)dt,

δxImp(t) :=
[

δxImp,1(t) · · · δxImp,m(t)
]
.

Thus, for each ϕt−t0(x0,u), the value of the differential
reachability Gramian GR(t0, t f ,x0,u) is obtained by using the
impulse response of the variational system (11). It is worth
mentioning that (15) does not hold if B is not constant in
general, which is the main reason of focusing on constant
input vector fields.

Next, we show that the differential observability Gramian
GO(t0, t f ,x0,u) along a fixed trajectory ϕt−t0(x0,u) can be
computed by using initial state responses. Substituting δx0 =
en

i and δu = 0 into (11), we have the following initial output
response of the variational system (11) along ϕt−t0(x0,u),

δyIs,i(t) =
∂h(ϕt−t0(x0,u))

∂x
∂ϕt−t0(x0,u)

∂x
en

i , (16)

From (13), we obtain

GO(t0, t f ,x0,u) =
∫ t f

t0
δy⊤Is(t)δyIs(t)dt,

δyIs(t) :=
[

δyIs,1(t) · · · δyIs,n(t)
]
.

Therefore, for each ϕt−t0(x0,u) , the value of the differential
observability Gramian GO(t0, t f ,x0,u) is obtained by using
the initial state responses of the variational system (11).

In summary, the values of the differential reachabil-
ity/observability Gramian at given (x0,u) is obtained by
computing impulse/initial state responses of the variational
system (11) along ϕt−t0(x0,u). Hence, trajectory-wise differ-
ential balanced truncation is doable based on empirical data.

C. Approximation without Variational Dynamics
The data-based approach in the previous subsection re-

quires the variational system model in addition to the original
system model. Computing the variational system model may
need an effort, which motivates us to develop an approxi-
mation method based on trajectories of the original system
only.

The main idea for the approximation is based on the fact
that the variational system (11) coincides with the Fréchet
derivative of a nonlinear operator (x f ,y) = Σ(x0,u) induced
by the system (10), where the Fréchet derivative is the
following linear operator

dΣ(x0,u)(δx0,δu)

:= lim
s→0

Σ(x0 + sδx0,u+ sδu)−Σ(x0,u)
s

.

Its simple approximation is

dΣ(x0,u)(δx0,δu)

≈ dΣ
app
(x0,u)

(δx0,δu)

:=
Σ(x0 + sδx0,u+ sδu)−Σ(x0,u)

s
.

Since the nonlinear operator Σ(x0,u) is given by the sys-
tem (10), a state space representation of the discretized
approximation dΣ

app
(x0,u)

(δx0,δu) is
ẋ = f (x)+Bu, x(t0) = x0, u = u
ẋ′ = f (x′)+Bu′, x′(t0) = x0 + sδx0, u′ = u+ sδu

xv f =
x′(t f )− x(t f )

s
, yv =

h(x′)−h(x)
s

.

Therefore, we have the following approximations

δx(t)≈ x′(t)− x(t)
s

δy(t)≈ yv(t),

where δx0 and δu coincide with the differences of a pair of
the initial states (x′0− x0)/s and a pair of inputs (u′−u)/s,
respectively.

Consequently, an approximation of the impulse response
(15) is computed by

δxImp,i(t)≈
x′(t)− x(t)

s
δx0 = 0, δu = em

i δD(t− t0), i = 1,2, . . . ,m.
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Similarly, an approximation of the initial state response (16)
is computed by

δyIs,i(t)≈ yv(t)

δx0 = en
i , δu = 0, i = 1, . . . ,n.

One notices that these computations only require trajectories
of the system (10). If these data are available, one can
compute a change of coordinates z = Tϕ x for a differential
balanced realization along ϕt−t0(x0,u) without a system
model.

The remaining challenge is to construct a reduced or-
der model having a good approximation for all trajec-
tories, because this essentially requires solving nonlinear
PDEs. A potential approach is to employ the basic idea of
proper orthogonal decomposition [8], [86]. First, we compute
the summation of differential reachability and observability
Gramians,

GR(t0, t f ) :=
1
r

r

∑
i=1

GR(t0, t f ,xi,ui)

GO(t0, t f ) :=
1
r

r

∑
i=1

GO(t0, t f ,xi,ui)

for different choices of trajectories ϕt−t0(xi,ui), i = 1, . . . ,r.
Then, we construct a linear change of coordinates which
simultaneously diagonalizes GR(t0, t f ) and GO(t0, t f ).

D. Remarks

Related nonlinear balanced realizations are found in flow
balancing [83]–[85]. In flow balancing, variational systems
represent small perturbations, with a primary focus on local
analysis. In contrast, differential balancing [13], motivated
by contraction theory [87], [88], emphasizes global analysis.
Leveraging contraction theory, differential balancing can
preserve the incremental exponential stability of the original
model through generalized or extended differential balanc-
ing [80], [89]. In this section, we have tailored differential
balancing to a data-based approach. For approximating the
Fréchet derivative, we utilized a pair of trajectories of the
original system, reminiscent of incremental balancing, which
is based on a pair of trajectories [14]. Unlike differential bal-
ancing, incremental balancing lacks a data-based approach.
Investigating this is an interesting topic in itself. On the other
hand, balanced truncation has been explored for preserving
the structure of positive or monotone systems [90], [91].
These methods have strong connections with steady-state
responses to constant inputs, such as DC gains, making
them compatible with data-based approaches. For monotone
systems, model reduction methods based on nonlinear DC
gains have been investigated [92]. Since DC gains can
be viewed as zero-moments, this suggests a possible link
among balanced truncation, moment matching, and data-
based approaches for monotone systems.

IV. MOMENT MATCHING OF NONLINEAR SYSTEMS:
FUNDAMENTALS AND EXTENSIONS

A. The Fundamentals

In this section we introduce the building blocks of model
reduction by moment matching for nonlinear systems. Before
we dive into the theory, we take a brief journey into the
notion of moment for linear systems, making the connection
between the classical (rational) interpolation theory [8], [93]
and the interconnection-based interpretation [15] that has
paved the way for the extension of the method to nonlinear
systems.

1) Linear Systems [94]: Consider a linear, single-input,
single-output, continuous-time, system described by the
equations4

ẋ = Ax+Bu,

y =Cx,
(17)

with state x(t) ∈ Rn, input u(t) ∈ R, output y(t) ∈ R, and
matrices, A, B, and C of appropriate dimensions. Let

W (s) =C(sI−A)−1B

for all s ∈ C be the (rational) transfer function associated
with (17) and assume that the state-space realization (17) is
minimal, i.e. reachable and observable.

Definition 3 (See [95]). Let si ∈ C \σ(A) and k ∈ N. The
0-moment of system (17) at si is given by η0(si) = W (si).
For k≥ 1, the k-moment of the system (17) at si is given by

ηk(si) =
(−1)k

k!
dkW
dsk (si).

From the definition, it results that the moments of sys-
tem (17) at si determine the coefficients of the Laurent series
expansion [95] of the transfer function in the neighborhood
of si.

With this notion of moment at hand, the moment matching
problem can be formulated as an interpolation problem at
operating points si’s on the complex plane [95].

Moment Matching Problem: Given {si}v
i=1 and {ki}v

i=1
and ki ∈ N, find a (rational) transfer function of order ρ

such that the associated ki-moment at si, which is defined as
ηki

(si), verifies the interpolation condition

ηki
(si) = ηki(si). (18)

It is clear that the notion of moment, as per Definition 3,
is limited to linear systems. The turning point result, which
allows going beyond the frequency domain, has been rec-
ognized in [54], [55], where the moments η0(si), . . . ,ηk(si)
were linked to a Sylvester equation.

Lemma 1 (See [96]). Consider system (17) with si ∈ C \
σ(A). Then the moments η0(si), . . . ,ηk(si), for i = 1, · · · ,N,

4The discussion in this section directly extends to DAE multi-input, multi-
output (MIMO) systems, regardless of the time domain (discrete-time or
continuous-time systems).
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are in one-to-one relation with the matrix CΠ, where Π is
the (unique) solution of the Sylvester equation

AΠ+BL = ΠS, (19)

with S, any non-derogatory real matrix with characteristic
polynomial given by det(sI−S) = ∏

N
i=1(s− si)

k+1, and L is
such that the pair (S,L) is observable.

This intimate connection between η0(si), . . . ,ηk(si) and
CΠ inspired [94] to revisit the moment matching problem
for linear systems from a time-domain perspective. Indeed,
from a geometric viewpoint, it can be shown that the cascade
interconnected system

ω̇ = Sω,

ẋ = Ax+BLω,

y =Cx,
(20)

has a well-defined invariant set described by the equation x=
Πω and, accordingly, the restriction of (20) to the invariant
set reproduces the behaviour of Sω . With this in mind, the
moment of system (17) can be redefined from a property of
a point in the complex plane to a (linear) mapping on a real
vector space. In particular, the moment of system (17) can
be reinterpreted by means of the invariant set described by
the equations x = Πω with interpolation points generated by
σ(S) ∈ C\σ(A).

Definition 4 (See [96]). The moment of system (17) at (S,L)
is defined as CΠ.

The key fact stemming from the algebraic characterization
of the moments is that, under certain assumptions, the
moments boil down to the mapping characterizing the steady-
state output response (if any) of (20). By leveraging these
arguments, the concept of moments has been extended in [96]
to nonlinear systems by taking advantage of the steady-state
property of the cascade interconnected system.

2) Nonlinear Systems [96]: Consider a nonlinear, single-
input, single-output, continuous-time, system described by
the equations

ẋ = f (x,u),

y = h(x),
(21)

with state x(t) ∈ Rn, input u(t) ∈ R, output y(t) ∈ R, and
mappings5 f and h of appropriate dimension such that
f (0,0) = 0 and h(0) = 0. We assume that (21) is (locally)
observable and (locally) accessible. For the notion of moment
to be well-defined, we need a (locally) observable signal
generator described by the equations

ω̇ = s(ω),

u = ℓ(ω),
(22)

where ω(t)∈Rν and the mappings s and ℓ are of appropriate
dimension and such that s(0) = 0 and ℓ(0) = 0. The role of
the signal generator is to excite the system (21) with signals

5All functions and mappings are assumed sufficiently smooth.

Signal
Generator

Systemu y

Fig. 1: Diagrammatic illustration of the cascade intercon-
nection between the signal generator (22) and the nonlinear
system (21).

of interest so that one can analyze (21) at specific operating
conditions associated to the interconnected system

ω̇ = s(ω),

ẋ = f (x, ℓ(ω)),

y = h(x).
(23)

However, to extend the notion of moment to nonlinear sys-
tems we need to assume that there exists a (unique) mapping
π(·), locally defined in a neighborhood of ω = 0, which is the
unique (analytic) solution of the partial differential equation

f
(
π(ω), ℓ(ω)

)
=

∂π

∂ω
s(ω), π(0) = 0. (24)

Note that, the partial differential equation (24) is the nonlin-
ear enhancement of the Sylvester equation (19).

Definition 5 (See [96]). The moment of system (21) at (s, ℓ)
is defined as h(π(·)).

Analogous to the linear case, the existence of π(·) im-
plies that the interconnected system (23) has a well-defined
invariant manifold described by the equation x = π(ω) and
the restriction of (23) to the invariant manifold reproduces
the behaviour of ω̇ = s(ω).

Theorem 3 (See [96]). Consider the system (21) and the
signal generator (22). Assume that x = 0 is a locally expo-
nentially stable equilibrium for ẋ = f (x,0) and that ω = 0
is a neutrally stable6 equilibrium for ω̇ = s(ω). Then the
moment of system (21) at (s, ℓ) has a one-to-one relation
with the (locally well-defined) steady-state output response
of (23).

Stated another way, the moment h(π(·)) is in one-to-one
relation with the (locally well-defined) steady-state response
of the output of the interconnected system (23) [96]. With
this notion of moment at hand, the moment matching prob-
lem can be formulated as an interpolation problem at an
operating signal in the time domain.

Moment Matching Problem (Revisited): Given the sig-
nal generator (22) and the solution of (24), find a (nonlinear)
system such that the associated moment at (s, ℓ), which is
defined as κ(p(·)), verifies the matching condition

h(π(·)) = κ(p(·)). (25)

Specializing the revisited moment matching problem to a
state-space realization of order ρ < n of the form

ξ̇ = φ(ξ ,u), (26a)
ψ = κ(ξ ), (26b)

6ω = 0 is a neutrally stable equilibrium if it is stable (in the sense of
Lyapunov) and each ω(0) is Poisson stable, see [97, Sec. 8.1].
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with ξ (t) ∈ Rρ , we say that (26) is a reduced order model
of (21) if κ(p(·)) is a (well-defined) moment at (s, ℓ) which
satisfies (25), where p : Rρ → Rν is the unique analytic
solution of the partial differential equation

φ(p(ω), l(ω)) =
∂ p
∂ω

s(ω), p(0) = 0. (27)

In [96] it is also shown that, for ρ = ν , there exists a partic-
ular state-space realization of the reduced-order model (26),
which is given by selecting

φ(·,u) = s(·)−δ (·, ℓ(·))+δ (·,u),
κ(·) = h(π(·)),

(28)

where δ (·, ·) is a free mapping that can be chosen arbitrarily
to achieve moment matching with specific properties.

3) Bibliographical Notes: The literature on model reduc-
tion by moment matching from a time-domain perspective is
rich and has evolved over the last decade. Exploiting (28), the
problem of constructing reduced order models by preserving
properties of interest has been studied in various works,
such as passivity, zero dynamics, port-Hamiltonian structure,
general second-order structure [98]–[100]. The nonlinear
Petrov–Galerkin projection given in [101] is based on [102],
whereas a general family of parameterized models achieving
moment matching has been studied in [103]. The problem
of model reduction by moment matching for other classes
of systems has also received significant attention. This
includes systems of differential–algebraic equations [103]–
[106], systems with delays, stochastic systems, Lur’e type
systems, hybrid systems [107]–[113]. Moment matching with
an explicit signal generator (which generates a richer class
of input signals) has been studied in [114], [115]. While
most moment matching approaches rely on the availability
of the model of the underlying system, data-driven moment
matching techniques have gained popularity due to their abil-
ity to derive reduced-order models without the knowledge of
the full-order model [116]–[119]. The interconnection-based
framework was extended to the Loewner framework for
linear and nonlinear systems [120]–[124]. We refer the reader
to [56] for a comprehensive survey on the interconnection-
based moment matching problem.

B. The Extensions

In this section, we focus on two main challenges: first, the
design of a data-driven procedure for computing reduced-
order models for an unknown system driven by an unknown
implicit signal generator [118], [119]; second, the develop-
ment of a model-based procedure for computing reduced-
order models for a system without requiring internal stability
of the system to be reduced [110], [111].

1) Signal Generator Agnostic Moment Matching [119]:
While the majority of the literature on moment matching
has focused on deriving reduced-order models from known
models of the underlying system driven by a known signal
generator, a breakthrough was achieved in [116], which
provided a way of constructing reduced-order models given
data obtained from an unknown underlying system. Even

Signal Generator
(unknown)

System
(unknown)

u y

Fig. 2: Diagrammatic illustration of the interconnection
between the (unknown) signal generator (35) and the (un-
known) nonlinear system (21) in [119].

though this procedure serves as a point of departure in the
realm of moment matching by not requiring the knowledge
of the underlying system, it is still limited by its dependence
on the knowledge of the structure of the signal generator and
its internal state. In this respect, [118] has proposed a method
to construct reduced-order models from input-output data in
the case in which the models of the underlying system and
of the signal generator driving it are unknown. Recall that
the output response of the full-order model (21) is given by

y(t) = h(π(ω(t)))+ ε(t). (29)

In a similar fashion, the output response of the reduced-order
model (26) is given by

ψ(t) = κ(ξ (t))+ ε(t). (30)

With this in mind, we can state the result of [118] that
allows the definition of the moment of the underlying system
in terms of the state of the reduced-order model.

Lemma 2. Consider the system (21), the system (26), and the
signal generator (22). Then system (26) matches the moment
of system (21) at (s, l) and

lim
t→∞

(h(π(ω(t)))−κ(ξ (t))) = 0. (31)

The result stated in Lemma 2 is particularly useful as it
allows equation (29) to be transformed into a form in which
the output of the underlying system is related to the state
of the reduced-order model. To construct the reduced-order
model, the mapping κ(·) must be identified. However, an
exact identification may not be feasible and an approxima-
tion should be considered. Thus, we consider a standard
assumption for approximating a mapping by a family of
basis functions [125]. Typically, the family of basis functions
representing the mapping can be implemented by a trial
and error procedure by using a polynomial expansion or an
expansion based on the class of input signals. It is worthwhile
to note that there are results of “universal” approximation for
some families of basis functions [126], [127]. In light of this,
we now introduce an assumption on the mapping κ(p(·)).

Assumption 1. The mapping κ(p(·)) belongs to the function
space described by the family of continuous basis functions
ϕ : Rρ →R, with i = 1, . . . ,M, i.e., there exist constants Γi ∈
with i = 1, . . . ,M, such that κ(ξ ) = ∑

M
i=1 Γiϕi(ξ ). If M = ∞,

then we assume that the series is uniformly convergent.

While it may be true that a specific family of basis functions
may be able to exactly represent a certain mapping κ(p(·))
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with a finite basis, this is not the case generally. Therefore,
consider the following approximation

Γ =
[
Γ1 Γ2 . . . ΓN

]
,

ΩN(ξ ) =
[
ϕ1(ξ ) ϕ2(ξ ) . . . ϕN(ξ )

]
,

such that N ≤ M. Using a weighted sum of these basis
functions, equation (30) can be rewritten as

y(t) =
N

∑
i=1

Γiϕi(ξ (t))+ e(t)+ ε(t)

= ΓΩN(ξ (t))⊤+ e(t)+ ε(t),

where e(t) = ∑
M
i=N+1 Γiϕi(ξ (t)) is the error due to the

termination of the summation at N. Finally, since ε is an
exponentially decaying signal, consider the approximation

ỹ =
N

∑
i=1

Γiϕi(ξ ) = ΓΩN(ξ )
⊤, (32)

which neglects the truncation error e and the transient error
ε . Since ε is not known, Γk needs to be approximated. This
approximation can be determined from data as follows.

Theorem 4. Consider the system (21), the system (26), and
the signal generator (22). Let the time snapshots Uk ∈w×N

and Ξk ∈w, with w≥ N > 0, be defined as

Ũk =


Ω(ξ (tk−w+1))

...
Ω(ξ (tk−1))
Ω(ξ (tk))

 , Ξ̃k =


y(tk−w+1)− ẽ(tk−w+1)

...
y(tk−1)− ẽ(tk−1)

y(tk)− ẽ(tk)

 ,

respectively, where ẽ(tk) = ε(tk)+e(tk) and k≥ w−1. If Ũk
is full column rank, then

vec(Γ̂k) = (Ũ⊤k Ũk)
−1Ũ⊤k Ξ̃k, (33)

is an estimate of Γk.

Γk is the estimate of the matrix Γ at T w
k , which is a moving

window of sample times T w
k := {tk−w+1, . . . , tk−1, tk}, such

that 0≤ t0 < .. . < tk−w < .. . < tk, and k > w−1≥ 0. For the
approximation Γk, defined in (33), to be well-defined for all
k, the set of sample times T w

k needs to be selected in a way
that the matrix Ũ⊤k Ũk is full column rank. This condition on
T w

k highlights a property of persistence of excitation of the
signal generator (22), which is guaranteed by the following
assumption, see [128].

Assumption 2. The initial condition ω(0) of the signal
generator (22) is almost periodic and all the solutions of
the system are analytic. Furthermore, the signal generator
(22) satisfies the excitation rank condition [128] at ω(0).

We are now ready to state a result that allows relating the
output map of the reduced-order model to the steady-state
output response of the underlying system.

Theorem 5. Consider the system (21), the system (26), and
the signal generator (22). There exist sequences {tk} such
that

lim
k→∞

(
y(tk)− lim

N→M
ΓkΩN(ξ (tk))⊤

)
= 0. (34)

Generalized
Signal Generator Systemu y

Fig. 3: Diagrammatic illustration of the cascade interconnec-
tion between the (unknown) signal generator (22) and the
(unknown) nonlinear system (21) in [111].

In essence, through this result, the model reduction by
moment matching problem is transformed into the estimation
of the output mapping for a partially constructed reduced-
order model (26). Indeed, the choice of basis functions may
affect the speed of convergence of this estimation. We refer
the interested reader to [129, Eq. 2] for more on the art
of choosing basis functions. We conclude this part of the
tutorial, by noting that this procedure is applicable to a very
general class of systems, including systems with delay, and
is robust to variations in the signal generator.

2) Stability Agnostic Moment Matching [111]: We have
observed that moments are closely linked to the steady-state
response of the nonlinear system driven by a signal generator.
We highlight “if any” because a steady-state output (if any
exists) response is ensured only when the origin is a locally
exponentially stable equilibrium. However, this condition
might be too restrictive for general nonlinear systems that
exhibit complex behaviors. For these scenarios, the method
of closed-loop interpolation has been recently introduced
in [110], [111]. The point of departure of this closed-
loop concept is the notion of generalized signal generator,
which provides an extension of the signal generator (22).
Specifically, it is described by the equations

ω̇ = s(ω), (35a)
ż = η (z,ω,y) , (35b)
u = θ(z)+ ℓ(ω), (35c)

with z(t) ∈ Rr, η and θ of appropriate dimension and
such that η(0,0,0) = 0 and θ(0) = 0. The state ω and the
mappings s and ℓ are related to the signal generator (22).
The generalized signal generator (35) must be (locally)
observable, the subsystem (35a) must be neutrally stable,
and the mappings η(·, ·, ·) and θ(·) should be such that
the equilibrium (z,x) = (0,0) is locally exponentially stable.
Moreover, the mapping η(·, ·, ·) should be such that

η
(
0,ω,h

(
π(ω)

))
= 0, ∀ω.

With this generalized signal generator at hand, we need to
redefine the associated notion of moment.

Definition 6. The moment of system (21) at (s,η ,θ , ℓ) is
defined as h(π(·)), where π(·) is the unique solution of the
partial differential equation (24).

It is readily seen that the moment of (21) at (s,η ,θ , ℓ)
is equivalent to the moment of (21) at (s, ℓ). However, em-
ploying the generalized signal generator the internal stability
condition of (21) is replaced by the local exponential stability
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of (z,x) = (0,0). Under these premises, the following results
can be proved.

Lemma 3. Consider the system (21) and the generalized
signal generator (35). Then, for every (x(0),z(0),ω(0)) in
some neighborhood of (0,0,0), the steady-state response of
the (closed-loop) interconnected system

ω̇ = s(ω), (36a)
ż = η (z,ω,h(x)) , (36b)

ẋ = f
(
x,θ(z)+ ℓ(ω)

)
, (36c)

y = h(x) (36d)

exists, is unique, and it is such that

lim
t→∞

(z(t),x(t)−π(ω(t))) = (0,0).

Theorem 6. Consider the system (21) and the generalized
signal generator (35). Then, the steady-state output response
of the (closed-loop) interconnected system (36) has a one-
to-one relation with the moment at (s,η ,θ , ℓ) of (21).

While the standard moment matching framework – in the
time domain – is limited by the strong stability requirements
of the system to be reduced, the closed-loop interpolation
scheme overcomes this limitation by designing a signal
generator that guarantees internal stability. This allows for
the relaxation of stability conditions, even when the system’s
state is not fully known or measured. We can construct
a family of nonlinear reduced-order models that achieves
moment matching (21). Specifically, consider the family of
nonlinear systems described by the equations

ξ̇a = f 1
(
ξa,ξb,u

)
, (37a)

ξ̇b = f 2
(
ξa,ξb,u

)
, (37b)

y = h
(
ξa,ξb

)
, (37c)

with ξa(t) ∈ Rν and ξb(t) ∈ Rρ−ν , u(t) ∈ R, y(t) ∈ R, and
mappings f 1, f 2, and h of appropriate dimensions such that
f 1(0,0,0) = 0, f 2(0,0,0) = 0, and h(0,0) = 0. Let f 1 and
f 2 be such that the zero equilibrium of the (closed-loop) in-
terconnected system (35)-(37) is locally exponentially stable,
and such that

f 1
(
ξa,0, ℓ(ξa)

)
= s(ξa),

f 2
(
ξa,0, ℓ(ξa)

)
= 0,

h(ξa,0) = h(π(ξa)).

Theorem 7. Consider the system (37) and the generalized
signal generator (35). Let h(π(·)) be the moment of the
system (21) at (s,η ,θ , ℓ). Then (37) is a model of order
ρ ≥ ν which matches the moment of (21) at (s,η ,θ , ℓ).

The parameterized model (37) boils down from the pa-
rameterization of all moment matching models discussed
in [103], [106]. Hence, following [103], one can further prove
that if (26) is a model of order ρ ≥ ν achieving moment
matching at (s,η ,θ , ℓ), then the family of systems (37)
defines a parameterization of (26), and thus it contains
all the nonlinear moment matching interpolants with the

same structure of the underlying system. Finally, it is worth
mentioning that if ω(t)≡ 0 the generalized signal generator
plays the role of a stabilizer of order r for any system of
order ρ which is contained in the family of systems 37.
Hence, the family of systems (37) defines also the set of all
admissible plants stabilized by a given stabilizing controller.
This leads to a moment-matching interpretation of the dual
Youla-Kučera parameterization for nonlinear systems, which
again provides strong connections to results in linear systems,
namely via coprime-factorizations and associated reduction
approaches.

V. SUMMARY

A brief yet broad overview of the state of the model
reduction problem for the purpose of control has been pre-
sented. The focus of this overview runs from classic balanced
truncation methods through more recent moment-matching
methods, including some discussions of error bounds, com-
putability, and closed-loop reduction.
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