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Abstract— This paper gives a tutorial on iterative learning
control nearly five decades after what is widely regarded as the
first substantive paper in the literature. The focus is on algo-
rithm development under a number of general headings (linear,
optimization, frequency domain, and nonlinear), together with
supporting experimental validation/industrial applications and
also applications in healthcare.

I. INTRODUCTION

Iterative learning control (ILC) applies to systems that
complete the same finite duration operation over and over
again, with resetting to the starting location at the end of each
operation, or a stoppage time between one operation and the
start of the next. In the literature various terms are used to
denote each operation, e.g., trial, pass and iteration, but this
paper will only use the term trial and the duration of the trial
will be termed the trial length. The unique feature of ILC is
that once a trial is complete all information generated over
the trial length is available for use in constructing the control
input for the subsequent trial, with the aim of improving
performance from trial-to-trial.

An example to illustrate how ILC can be applied is a
robot undertaking a pick and place task, where the operations
are i) collect the payload from a specified location, ii)
transfer it over a finite duration, iii) place the payload at
a specified endpoint location or under synchronization onto
a moving conveyor (for example), iv) return to the starting
location, and v) repeat i)-iv). In application areas, such as
manufacturing, there will be requirements for high accuracy
and completing the maximum possible number of trials
before a halt is needed because system errors cause a loss
of synchronization, resulting in, e.g., failure to place the
payload on the moving conveyor. To control this system, a
starting point is to specify a reference trajectory between start
and end that represents the ideal path for the robot to follow
on each trial, and then many design methods are possible.

The ILC literature typically uses a subscript on variables
representing signals or operators to index the trial number,
representing each execution of the task. Thus, for continuous-
time variables one notation is of the form yk(t), 0 ≤ t ≤
α, k ≥ 1, where y is the vector or scalar valued variable
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under consideration, α < ∞ is the trial length and the integer
k ≥ 1 denotes the trial number (or index). In the case of
discrete dynamics, the form is yk(p), 0 ≤ p ≤ N −1, k ≥ 1
where the integer N denotes the number of samples along
a trial (N times the sampling period gives the trial length).
(Other notation will be used in parts of this paper.)

Once a trial, say k, is completed, then all values of vari-
ables generated on trial k− 1 over the complete trial length
is, at the cost of storage, available for use in constructing
the control input for the subsequent trial. (More generally
information from a finite number, say M, of previous trial
data could be used, and the resulting ILC law is termed
higher order.) The core question is: how to make use of this
previous trial data?

In the literature, [1] used such data to enhance the perfor-
mance of robotic motion. Let r(t), 0 ≤ t ≤ α, denote the
specified reference trajectory, most often directly specified
for the application and not changing from one trial to the
next. (In some work the reference trajectory is assumed
to be generated as the output of a stable system and it is
also possible to consider switching, i.e., complete a number
of trials with one reference trajectory and then switch to
another. Analysis for these cases is returned to later in the
paper.) On trial k the error ek(t) = r(t) − yk(t), 0 ≤
t ≤ α, k ≥ 1, where yk(t) is the system output. Hence,
the sequence of errors {ek(t)}k can be formed and the
convergence of this sequence in k is of critical interest
(performance in t is also of interest).

The results in [1] did not directly address these critical
issues. Instead, a rigorous treatment of ILC convergence
analysis and design was first reported in [2] (with simultane-
ous and independently-derived results in [3]). This analysis
assumed that i) the reference trajectory was specified, ii)
resetting at the end of each trial is to the same initial state
vector, iii) the system dynamics are invariant throughout
the trials, iv) the error on, say, trial k is used in forming
the input for trial k + 1, and v) the system dynamics are
invertible in the sense that for a specified r(t) (assumed
to have a piecewise continuous derivative) there exists a
unique input that produces the output r(t). These assump-
tions will be considered below after an example is given to
highlight the structure of ILC laws. However, we comment
that much of the research effort in ILC has been aimed at
relaxation of these various assumptions, including allowing
for non-uniform reset conditions, varying system dynamics
(in time and in trial), trial-varying reference signals, noise
and stochastic dynamics, and various forms of robustness
and optimal performance analysis, and more.
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In the case of discrete dynamics Fig. 1 shows a schematic
of the application of an ILC law. This figure also shows that
ILC has the structure of a two-dimensional (2D) system,
i.e., information propagation from trial-to-trial (in k) and
along-the-trial (in p). The systems theory for 2D systems
is one setting for ILC analysis and design with a follow
through to experimental validation and nonlinear dynamics.
In particular, the stability theory for linear and nonlinear
repetitive processes is a very powerful setting for design.

Sample

Time

Sample
Time

k+1k+1

k

Trial Trial

1 1

0
0

Control

Signal

P

Error

NN−1
1

+ +

+
−

Disturbance Reference

k

Q

L

0

Fig. 1. The 2D structure of ILC.

Essentially, ILC design and application is critically de-
pendent on how the previous trial information is exploited.
In [2] one form of ILC law considered for continuous time
dynamics has the structure

uk+1(t) = uk(t) + Γėk(t) (1)

where uk(t) is the system input, ek(t) is the error on trial
k, Γ is a constant to be designed and in this paper the dot
notation is used to represent differentiation with respect to
time. Immediately it is seen that ILC designs the input, which
is a signal, instead of a controller, which is a system. At
first sight, this ILC law appears to be non-causal, which is
a critical feature of ILC. The law actually acts on past data,
the resetting of the initial conditions at the start of each trial
allows ‘non causal’ processing of the errors from the previous
trial. One immediate consequence is that zero-phase filtering,
which is non-causal, can be applied to enable high frequency
attenuation without introducing any lag.

Suppose the system to be controlled, denoted by the state
space triple {A,B,C}, is defined as

ẋk(t) = Axk(t) +Buk(t)

yk(t) = Cxk(t)

In [2] it is shown that the ILC law (1) for such a system with
the same number of inputs and outputs ensures convergence
(in k) of the error sequence {ek(t)}k if

||I − CBΓ|| < 1 (2)

where I denotes the identity matrix of compatible dimen-
sions and || · || denotes the norm on the underlying function
space. This result shows that trial-to-trial error convergence
can occur for systems with an unstable state matrix (A),
due to the finite trial length. Also, convergence cannot
occur for systems whose first Markov parameter (CB) is
zero. In the first of these cases, feedback action must be

introduced to stabilize the state dynamics, resulting in an
ILC law with a feedback (in t) and feedforward (in k)
structure. This structure for the ILC law can be designed
and applied in a number of different ways as seen later in
this paper. Similarly, the first Markov parameter problem can
be overcome (see below).

For discrete dynamics, let q denote the time forward time
shift operator acting on a signal, say h(p), as qh(p) ≡ h(p+
1). Then, in the single-input, single-output (SISO) case for
simplicity, the dynamics in the ILC setting can be written as

yk(p) = G(q)uk(p) + d(p) (3)

where G(q) is a proper rational function of q with relative
degree m and d(q) is an exogenous that repeats on each trial.
In the particular case of systems described by the state space
triple {A,B,C} we have

G(q) = C(qI −A)−1B, d(p) = CApx(0)

It is also commonly assumed that G(q) is stable (if not then a
stabilizing controller must first be designed and ILC applied
to the resulting dynamics).

An extensively used ILC law, see, e.g., the survey pa-
pers [4], [5] for references to the early work is

uk+1(p) = Q(q)[uk(p) + L(q)ek(p+ 1)] (4)

where Q(q) and L(q) are referred to as the Q-filter and
learning function, respectively. Current trial ILC extends the
last law to incorporate feedback. The structure is

uk+1(p) = Q(q)[uk(p)+L(q)ek(p+1)]+C(q)ek+1(p) (5)

where the last entry on the right-hand side is the current trial
error feedback term. The design of an ILC law of this form
is considered again in the 2D systems setting in the paper.

A particular case of (5) is

uk+1(p) = uk(p) + hpek(p+ λ) (6)

where λ > 0, hp is a proportional gain term to be selected
and this law is known as phase lead ILC. It is also possible
to specify a discrete time PD-type laws as

uk+1(p) = uk(p)+hpek(p+1)+hd[ek(p+1)−ek(p)] (7)

where hd is the derivative gain. Moreover, many other simple
structure ILC laws can be defined. Indeed, in Arimoto’s early
work he went so far as to define a full-on proportional-
integral-derivative (PID) ILC control law for continuous-time
systems given by:

uk+1(t) = uk(t) + Φek(t) + Γėk(t) + Ψ

∫ α

0

ek(τ)dτ

Such laws and other ILC algorithms have been extensively
developed applied, see, e.g., the book [6], which, in turn,
cites the original work.

The PD-type and related relatively simple structure ILC
laws have been extensively studied from the standpoint of
developing tuning rules that do not need an accurate model
of the dynamics for design and implementation. A point
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Fig. 2. Iterative learning control architecture.

of particular note is that there is no ILC equivalent of the
Ziegler Nichols rules for three term proportional plus integral
plus derivative (PID) design. Despite this, the literature gives
many examples of physical processes where an ILC law
designed by tuning has been applied. One approach is to
use gradient methods to optimize the gain Gk in:

uk+1(p) = uk(t) +Gkek(p+ 1)

See for example [7], which introduces Gauss-Newton as
well as other approaches, like steepest descent and Newton-
Raphson for selecting the gain. These approaches led to the
norm-optional ILC approach discussed below.

It is also useful for design to specify the learning control
algorithm in the frequency domain, for example, viewing the
update algorithm for continuous-time system as

Uk+1(s) = L(s)[Uk(s) + aEk(s)]

We will consider this in more detail later in the paper.
The design of ILC laws requires performance specifica-

tions and algorithms for design, the subject of the rest of
this paper, which focuses on model based design, again
with emphasis on those that have seen experimental valida-
tion. Both linear and nonlinear dynamics are treated, along
with expositions of the norm-optimal approach to ILC and
frequency-domain techniques.

II. LINEAR MODEL BASED ANALYSIS AND DESIGN

From a signal flow perspective the basic idea of ILC is
depicted in Fig. 2. Under certain assumptions on the system
and a prescribed structure for the learning controller algo-
rithm, which may use all past information from the system’s
operation, the goal is to achieve a form of convergence, e.g.,
zero error between the desired (reference) output r(t) (or
r(p)) and the actual output yk(t) (or yk(p)).

To give a flavor of the effectiveness of ILC, consider the
linear plant [8]

xk(p+ 1) =

[
−0.8 −0.22
1 0

]
xk(p) +

[
0.5
1

]
uk(p)

yk(p) = [1, 0.5]xk(p)
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Fig. 3. Iterative learning control example.

with reference r(p) = sin(8.0p/100). Fig. 3 shows the
trajectory evolution for the simple linear control update

uk+1(t) = uk(t) + γek(t+ 1)

with four different gains: γ = 0.5, γ = 0.85, γ = 1.15,
γ = 1.5, assuming zero initial conditions on each trial
and defining ek(t) = r(t) − yk(t). For each gain, the ILC
algorithm converges, but the convergence rate depends on
γ. So, even in the absence of a model, perfect tracking is
obtained through iteration.

A. An Operator-Theoretic Perspective

For the linear case, although many possibilities exist for
designing and tuning ILC update algorithms, we can take
a general operator-oriented perspective that contains all of
these, at least for the case of using only data from the
previous trial to update the input for the current trial. For
instance, if we consider the system or plant to be a general
linear operator (continuous or discrete-time) given by Ts,
living in a specific vector space with a prescribed topology,
and consider the ILC controller to be a general linear
operator, then we have this result [9]:

Theorem 1: For the plant yk = Tsuk, the linear time-
invariant learning control algorithm

uk+1 = Tuuk + Te(r − yk)

converges to a fixed point u∗(t) given by

u∗(t) = (I − Tu + TeTs)
−1Ter(t)

with a final error

e∗(t) = lim
k→∞

(yk − yd) = (I − Ts(I − Tu + TeTs)
−1Te)r(t)

defined on the interval (t0, tf ) if

∥Tu − TeTs∥i < 1

Further, if Tu = I then ∥e∗(t)∥ = 0 for all t ∈ [to, tf ],
otherwise the error will be non-zero.

Such an operator-theoretic approach helps us understand
the limits of performance and the nature of ILC as follows:
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Theorem 2: Let T ∗
n solve the problem:

min
Tn

∥(I − TsTn)r∥

Then u∗(t) from Theorem 1 is given by u∗(t) = T ∗
nr(t) (and

we can define Tu and Tc in terms of T ∗
n ).

This means that the essential effect of a properly designed
learning controller is to produce the output of the best
possible inverse of the system in the direction of yd.

The development above is quite general, arguably covering
the entire linear case (see [10] for more on the operator-
theoretic perspective). In the next subsection, we restrict our
attention to a more specific framework.

B. Discrete Dynamics – Lifting Setting

Considering the SISO case for ease of presentation, the
finite trial length enables the values of a variable along a
trial to be assembled into a finite dimensional column vector.
This leads to the so-called lifted model description where
the trial-to-trial dynamics are described by a standard linear
systems state space model. Let Yk, Uk, D,Ek and R denote
the lifted model representations on trial k for the output,
input, disturbance, and reference, respectively, where, e.g.,

Yk =
[
yk(1) yk(2) . . . yk(N)

]T
(8)

Uk =
[
uk(0) uk(1) . . . uk(N − 1)

]T
(9)

Then the dynamics of (3) can be written as

Yk = GUk

Ek = R− Yk (10)

where

G =


g1 0 . . . 0
g2 g1 . . . 0
...

...
. . .

...
gN gN−1 . . . g1

 (11)

where gj = CAj−1B. If, for example, the first Markov
parameter CB = 0 then in (8) the first entry in this
vectors is removed and the matrix G is adjusted accordingly,
with a natural generalization to the other cases. In effect,
control over the corresponding number of samples is lost.
Note, however, that it is common to assume the linear plant
has relative degree one, which is almost always true when
working with a sampled-data system.

Consider application of the control law (5), where both Q
and R can be non-causal functions. Let these functions have
impulse responses

Q(q) = . . .+ q−2q
2 + q−1q + q0 + q1q

−1 + q2q
−2 + . . .

L(q) = . . .+ q−2l
2 + q−1l + l0 + l1q

−1 + l2q
−2 + . . .

(12)

The lifted representation of (5) is

Uk+1 =


q0 q−1 . . . q−(N−1)

q1 g0 . . . q−(N−2)

...
...

. . .
...

qN−1 gN−2 . . . q0

Uk

+


l0 l−1 . . . l−(N−1)

l1 l0 . . . l−(N−2)

...
...

. . .
...

lN−1 gN−2 . . . l0

Ek

(13)

where the entries in these last two matrices are defined by
the impulse responses of Q(q) and L(q), respectively. In
the case when Q(q) and L(q) causal functions the matrices,
denoted by Q and L respectively, in (12) are lower triangular.
Moreover, the matrices G,L and Q are Toeplitz, i.e., all
entries along each diagonal are the same.

The controlled system is said to be asymptotically stable
if there exists a number, say β, such that

|uk(p)| ≤ β, 0 ≤ p ≤ N − 1, k ≥ 0

and also ∀k limk→∞ exists. Also let r(·) denote the spectral
radius of its matrix argument. Then the controlled system is
asymptotically stable if and only if

r(Q(I − LG) < 1 (14)

In the particular case when Q and L are causal, Q(I−LG) is
lower triangular with repeated eigenvalues. In this case (13)
is equivalent to

|q0(1− l0g1)| < 1

Moreover, g1 = CB, confirming that trial-to-trial error
convergence can occur independent of the state matrix A
(due to the final trial length).

A critical performance issue is the final value of the
error e∞(k) = limk→∞ ek(p). If the design considered is
asymptotically stable then the asymptotic error is

E∞ = [I −G[I −Q(I − LG)]−1QL](R− d) (15)

Note that this is equivalent to the expression for e∗ in
Theorem 1. Similar to that theorem, we can see that if
convergence to zero error is required then, on the assumption
that G and L are not identically zero, this property holds if
and only if the controlled system is asymptotically stable and
Q(q) = 1. The requirement of Q(q) = 1 is often enforced
in the specification of the ILC law. Including Q(q) ̸= 1
can help with transient learning, i.e., the response along-the-
trials. One way to limit large transient growth is to enforce
monotonic trial-to-trial error conference, i.e., require that for
a specified norm || · ||

||e∞ − ek+1|| ≤ λ||e∞ − ek||, k ≥ 0 (16)

where λ ∈ (0, 1) is the convergence rate. There has been
much study of the so-called “transient” problem. In fact, the
error might grow very large in the trial direction before later
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converging to zero. See [11], [12] for early discussions of
this problem and [13] for a more recent analysis.

An alternative approach to this last problem is to design
a feedback control law and apply it to the system and
then apply ILC to the controlled dynamics. The 2D sys-
tems/repetitive processes setting allows one step design for
this case and is covered below. Applications of the control
law considered here are widespread, see, e.g., [5], [14] and
for more recent applications [6].

C. 2D systems/Repetitive Processes Analysis

As discussed in the opening section of this paper, ILC
has a 2D systems structure, i.e., information from trial-
to-trial and along-the-trial, respectively. The theory of 2D
systems based on the well known Roesser [15] and Fornasini
Marchesini [16] models has been extensively investigated
since at least the mid 1970s. The first work on applying
this theory to ILC design is widely credited to [17]. Since
this first paper, a very large volume of literature has been
produced but none of the designs have been experimentally
validated.

Repetitive processes make a series of trials (also termed
a pass in the repetitive process literature) through a set of
dynamics defined over a finite duration known as the trial
length. The novel feature of these processes is that the output
produced on any trial acts as a forcing function on the
subsequent trial and contributes to its dynamics. The result
can be oscillations in the sequence of trial outputs whose
amplitudes increase with k. A detailed treatment of these
processes, focusing on the case of linear dynamics, is given
in [18] (including their industrial origins). To highlight the
distinction between such repetitive process and traditional
dynamic systems, consider a typical model for a discrete
repetitive process:

xk+1(p+ 1) = Axk+1(p) +Buk+1(p) +B0yk(p)

yk+1(p) = Cxk+1(p) +Duk+1(p) +D0yk(p) (17)

The distinction between (17) and conventional linear system
is the introduction of the term yk(p). We emphasize that there
are such physically occurring processes as detailed in [18].
Further, we point out that in such processes once can consider
that the trial-to-trial memory in the system is inherent in the
plant dynamics. This is in contrast to ILC, whereby the ILC
controller creates a system in which the trial-to-trial memory
in the system is contained in the controller. As such, ILC is
as a special case of repetitive processes, as described below.

In a repetitive process, information propagation in one
direction, along-the-trials, is of finite duration, which is
physics based and not a mathematical assumption, and in
this sense they are a better fit to ILC, and some of the
designs developed using this setting have been experimen-
tally validated, including robust designs. The focus in this
section is again on design for discrete dynamics, but it is
also possible to consider the case when the along-the-trial
dynamics are described by linear differential equation, see,
e.g., [6] (Chapter 7).

Consider again the ILC problem for discrete linear dy-
namics over 0 ≤ p ≤ N − 1, k ≥ 0,

xk+1(p+ 1) = Axk+1(p) +Buk+1(p)

yk+1(p) = Cxk+1(p), xk+1(0) = 0 (18)

and write the state equation of this model in the form

xk(p) = Axk+1(p− 1) +Buk(p− 1) (19)

Also introduce

ηk+1(p+ 1) = xk+1(p)− xk(p) (20)

and
uk+1(p) = uk(p) + ∆uk+1(p) (21)

where

∆uk+1(p)=K1ηk+1(p+ 1)+K2ek(p+ 1) (22)

The resulting controlled system dynamics are described by

ηk+1(p+ 1) = (A+BK1)ηk+1(p)+BK2ek(p)

ek+1(p) = −C(A+BK1)ηk+1(p)

+ (I−CBK2)ek(p) (23)

This last description of the ILC dynamics is a particular
case of the discrete linear repetitive process state space
model [18] with zero input, current trial state vector ηk+1(p)
and previous trial profile vector ek(p). The stability theory
for linear repetitive processes requires that a bounded initial
trial profile produces a bounded sequence of trial profiles,
i.e., the sequence {ek}, where the bounded property is
defined in terms of the norm on the underlying function
space. The bounded property can be either over the finite
and fixed trial length, or the stronger requirement that this
property holds for all possible (i.e., finite) trial lengths. These
properties are termed asymptotic stability and stability along-
the-trial, respectively.

The stability theory for linear repetitive processes has been
developed [18] based on an abstract model of the dynamics
in a Banach space setting that includes all such processes
as special cases. Hence application to a particular example
requires interpretation of these general conditions. For the
case of systems described by (23), let

Â = A+BK1, B̂0 = BK2

Ĉ = −C(A+BK1), D̂0 = I − CBK2 (24)

The following is Theorem 1 in [19].
Theorem 3: Suppose that the pair {Â, B̂0} is controllable

and the pair {Ĉ, Â} observable. Then the ILC dynamics
described by the discrete linear repetitive process state space
model (23) (with the notation of (24) has the stability along-
the-trial property if and only if

a) ρ(D̂0) < 1
b) ρ(Â) < 1
c) all eigenvalues of the transfer function matrix

G(z) = Ĉ(zI − Â)−1B̂0 + D̂0 (25)
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have modulus strictly less than unity for all |z| = 1.
Condition a) is the condition for the asymptotic stability

property and guarantees trial-to-trial error convergence, con-
dition b) requires that the dynamics along any trial are stable,
and condition c) (in the SISO case for ease of presentation)
requires that each frequency component of the initial error
is attenuated from trial-to-trial at a geometric rate.

The following result is Theorem 2 in [19].
Theorem 4: The ILC dynamics described by the discrete

linear repetitive process state-space model (23) has the
stability along-the-trial property if there exist compatibly
dimensioned matrices X1 ≻ 0, X2 ≻ 0, R1 and R2 such
that the following LMI is feasible

M =
[
H1 H2

]
≺ 0 (26)

H1 =

 −X1 0 X1A
T +RT

1 B
T

0 −X2 RT
2 B

T

AX1 +BR1 BR2 −X1

−CAX1 − CBR1 X2 − CBR2 0



H2 =


−X1A

TCT −RT
1 B

TCT

X2 −RT
2 B

TCT

0
−X2


If this LMI is feasible, stabilizing control law matrices K1

and K2 are given by

K1 = R1X
−1
1 , K2 = R2X

−1
2 (27)

The control law (21) can be written as

uk+1(p) = uk(p) +K1(xk+1(p)− xk(p))

+K2(r(p+ 1)− yk(p+ 1)) (28)

where the last term on the right-hand side is phase-lead
ILC action. Moreover, the second term on the right-hand
side involves the state vectors’ difference on the current and
previous trials. Experimental verification of this design by
application to a gantry robot completing a pick and place
task is also reported in [19]. If all state vector entries cannot
be measured, one option is to use an observer to estimate
them. Another option is to replace the state feedback by
output, i.e., trial, information, for the details see [20].

D. Robust Design and Other Applications

Design in the presence of uncertainties in the model is as
relevant as in standard control design. The robustness filter
approach will be considered in Section IV. A comprehensive
overview of results in this area can be found in, e.g., [6],
which cites the relevant literature. The designs include those
developed using the lifted setting and those based on 2D
systems/repetitive process theory.

In recent years, the application of ILC to healthcare has
emerged. The early work was based on linear model design
but substantial progress has been made using nonlinear
dynamic models and control schemes and is discussed in
the section of this paper on nonlinear ILC design.

III. OPTIMIZATION-BASED ITERATIVE LEARNING
CONTROL DESIGN

This section introduces optimization-based ILC design
techniques. We focus on the well-established Norm-optimal
ILC (NOILC) framework to illustrate the key design prin-
ciples, convergence properties, and its ability to handle
constraints. We also briefly discuss alternative optimization-
based approaches at the end. An extensive cover of the topics
in this section and detailed proofs are found in the text [10].

A. Prologue – Gradient ILC and Parameter Optimization

To illustrate how optimization techniques can be used in
ILC design, consider trial k+1. We have the input signal uk

and the tracking error ek available from the previous trial k.
We need to design an ILC law that updates the input signal
uk+1 such that the tracking error ek+1 is as small as possible.
If we use the squared 2-norm as a measure of how ‘small’
the error is, we then aim to minimize:

min
uk+1

∥ek+1∥2, s.t. ek+1 = r −Guk+1 − d

Here G denotes a general system operator, to be discussed
further in the next subsection. This operator was called Ts

in Theorem 1. In the discrete-time case it can be considered
the matrix G defined in (10). The variable d represents the
effect of initial conditions, as well as repeated noise and
disturbances affecting the system.

Applying classical gradient optimization techniques at the
currently available data pair (ek, uk) by using the Jacobian
of eTk+1ek+1 with respect to uk+1 leads to the following
iterative update equation

uk+1 = uk + βGT (r −Guk − d) = uk + βGT ek (29)

where β > 0 is a step size (or ‘learning gain’) chosen by the
user. This algorithm is called the Gradient ILC Algorithm
(due to the use of gradient descent optimization method).

To analyse its convergence properties, we examine how
the tracking error evolves from trial-to-trial. Substituting the
update (29) for uk+1 into the tracking error definition gives

ek+1 = r − yk+1 = r −Guk+1 − d

= r −G(uk + βGT ek)− d = (I − βGGT )ek := Leek

where the error evolution operator Le = I − βGGT .
Clearly the properties of Le control the evolution of the error
sequence, the analysis of which gives the following results:

Theorem 5: For Gradient-based ILC when the learning
gain satisfies 0 < β∥G∥2 < 2, we have ∥Le∥ ≤ 1. Con-
sequently the tracking error norm converges monotonically,
i.e.,

∥ek+1∥ ≤ ∥ek∥, ∀k ≥ 0

Furthermore, the final converged tracking error is given by

lim
k→∞

ek = Pker[GT ]e0

where Pker[GT ]e0 is the projection of the initial tracking error
e0 onto the kernel of GT .
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The learning gain β can also be trial varying (as long as it
is within the above range), or it can be chosen automatically
using a Parameter Optimization technique by minimising

Jk+1(βk+1) = ∥ek+1∥2 + ωβ2
k+1

where w > 0 is a weighting parameter introduced to limit the
value of βk+1 used. Solving it gives the following solution

βk+1 =
∥GT ek∥2

ω + ∥GGT ek∥2

resulting in the same convergence properties as stated in
Theorem 5 with the additional property that the sequence
of optimal learning gains satisfies limk→∞ βk = 0.

B. Norm Optimal Iterative Learning Control

The previous subsection shows how optimization tech-
niques can be used to design ILC algorithms. In this subsec-
tion, we introduce a comprehensive optimization-based ILC
design framework – the NOILC design. It can handle many
different practical design situations. We first introduce a
general mathematical representation of the system dynamics.

1) Operator Form Description of System Dynamics: The
system is represented in the following operator form

y = Gu+ d (30)

where the system dynamics are assumed to be linear and
described by a bounded linear operator G mapping a real
Hilbert space U of input signals u ∈ U into a real Hilbert
space Y of output signals y ∈ Y , and d ∈ Y represents the
initial condition or repeated disturbances. The inner product
in U (resp. Y) is denoted by ⟨u, v⟩U (resp.⟨y, w⟩Y ). The
induced norms in U (resp. Y) are then given by ∥u∥U =

⟨u, u⟩
1
2

U (resp. ∥y∥Y = ⟨y, y⟩
1
2

Y ).
The above operator form description covers many situ-

ations of practical interest including convolution and state
space descriptions of linear continuous time state space
models and sampled data and multi-rate sampling systems
plus problems where control signals have specific structure
exemplified by a requirement that it is continuous and
piecewise linear with discontinuities only allowed at specific
time instants. In a similar manner to optimal control, the
inner products and norms are design variables to the physical
properties of the system, the control objective and/or the
performance of the iterative algorithm to be used.

The following are two examples. Note that in this section,
we use t to denote time in both continuous and discrete cases
for notational simplicity, taking advantage of the generality
of the operator form representation.

• A linear discrete-time, time-invariant, ℓ-input, m-output
state space system with input vector u(t) and output
vector y(t) on the time interval 0 ≤ t ≤ N can be
associated with an input-output convolution relationship

y(t) =
t∑

t′=0

CAt′−1Bu(t′) + CAtx0

which has the form of (30) where G represents the
convolution operator defined by the impulse response

matrix H(t) = CAtB, and d represents the time series
CAtx0. The spaces U and Y are chosen as Cartesian
product Hilbert spaces

U = Rℓ ×Rℓ × · · · × Rℓ︸ ︷︷ ︸
(N+1)−times

, Y = Rm ×Rm × · · · × Rm︸ ︷︷ ︸
(N+1)−times

with inner products defined by symmetric positive
definite matrices R(t) and Q(t), 0 ≤ t ≤ N , using

⟨u, v⟩U =
N∑
t=0

uT (t)R(t)v(t)

⟨y, w⟩Y =
N∑
t=0

yT (t)Q(t)w(t)

In lifted supervector form, G is the system matrix,
u, y, d are supervectors introduced previously, and the
inner products are just

⟨u, v⟩U = uTRdv, ⟨y, w⟩Y = yTQdw

where Rd and Rd are block diagonal matrices with
diagonal elements R(t), Q(t) respectively.

• Point to point tracking tasks. The above formulation
can be easily modified to describe the situation where
the system is required to track a reference defined
only at a finite number of intermediate time instants
t1, t2, · · · , tM . In this case, the inner products are de-
fined by setting R(t) and Q(t) to zero for all other time
instants (while keeping other definitions unchanged).

The readers are referred to [10] for more examples including
the linear continuous-time, time-invariant state space system.

2) The NOILC Algorithm: We are now ready to present
the NOILC framework. Note NOILC now has a number of
interpretations and extensions. In this paper we consider its
basic and simplest form. More precisely, given data pair
(ek, uk) on the kth iteration, NOILC constructs the input
uk+1 to be used on iteration k + 1 by minimizing

J(u) = ∥e∥2Y + ∥u− uk∥2U
subject to the constraints given by the system dynamics (30).
The objective function has two parts: the first term penalizes
the tracking error norm (reflecting the reference tracking
requirement), and the second term limits the input change for
caution and robustness and also provides an integral action
(over the trial domain) that is necessary for zero tracking
error to be achieved.

Solving this optimization problem gives the solution that

uk+1 = uk +G∗(I +GG∗)−1ek (31)

where G∗ is the adjoint operator of G, i.e. the uniquely
defined and bounded linear operator Y → U satisfying the
condition that ⟨w,Gu⟩Y = ⟨G∗w, u⟩U for all w ∈ Y, u ∈
U . The calculation of G∗ for a number of discrete and
continuous time state space problems can be found in [10].
As an example, for linear discrete time state space model
introduced in the previous subsection, in lifted matrix form
it is just G∗ = R−1

d GTQd.
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It is worth noting that if G is a state space model outlined
in the previous subsection and Y and U are spaces with
inner products defined therein, this problem is simply a linear
quadratic optimal control problem with a familiar Riccati-
style tracking solution consisting of both feedforward and
feedback terms – please refer to [10] for details.

3) Convergence Properties: Substituting the NOILC up-
dating law (31) into the tracking error definition gives the
following error evolution

ek+1 = (I +GG∗)−1ek := Leek

where the error evolution operator Le = (I + GG∗)−1.
Analysis of it shows NOILC has the following convergence
properties:

Theorem 6: The NOILC algorithm has the following
properties:

1) The error signal norm sequence is monotonic, i.e.,

∥ek+1∥Y < ∥ek∥Y , k ≥ 0

until input convergence has been achieved.
2) The error signal converges to the signal given as the

orthogonal projection of e0 onto the subspace of Y
defined as the kernel of GG∗. If ker[GG∗] = {0}, then
the limit error is precisely zero.

3) The minimum value of J(u) is J(uk+1) =
⟨ek, Lek⟩Y ≤ J(uk) = ∥ek∥2Y .

4) Finally, if the input sequence converges, it converges to
a limit u∞ that minimizes ∥u− u0∥2U . That is

u∞ = argmin{ ∥u− u0∥2U : r = Gu+ d }
The inner product definitions in the underlying space Y

and U (through the choices of Q(t), R(t)) determine the
relative weight given to the error and change in the control
signal. If more emphasis is put on the tracking error, a faster
tracking error convergence is expected. Note however this
may result in a ‘high gain’ form in feedback implementation
that might introduce sensitivity and robustness problems.

C. NOILC with Constraints

Using the NOILC framework, system constraints that are
widely existing in practice can be easily incorporated into
the design. Taking input constraints as an example. Suppose
the system input is constrained to be in a set Ω, taken to be
a closed convex set in the input space U , for example:

• Ω = {u ∈ U : |u(t)| ≤ M(t)}
• Ω = {u ∈ U : λ(t) ≤ |u(t)| ≤ µ(t)}
• Ω = {u ∈ U : 0 ≤ u(t)}

where M(t), λ(t), µ(t) are known bounds on the input at
time t. Then the input sequence uk+1, k = 0, 1, 2, · · · ,
defined by Constrained NOILC Algorithm 1 as follows

uk+1 = arg min
u∈Ω

s.t. (30)

{
∥e∥2Y + ∥u− uk∥2U

}
(32)

satisfies the constraint and iteratively solves the constrained
ILC problem. The algorithm has the following properties:

Theorem 7: Constrained NOILC Algorithm 1 achieves
monotonic convergence in the tracking error norm, i.e.,

∥ek+1∥Y ≤ ∥ek∥Y , k ≥ 0

Furthermore, if the underlying spaces U and Y are finite-
dimensional, the input converges to a point u∗

s given by

u∗
s ∈ arg min

u∈Ω
s.t. (30)

∥e∥2Y

i.e., an input producing the minimum tracking error norm.
The above algorithm requires the solution of constrained

quadratic programming problem (32) which in general does
not admit a closed form solution. Many efficient numerical
solvers are available. An alternative, computationally simpler
algorithm (Constrained NOILC Algorithm 2) using the fol-
lowing input sequence uk+1, k = 0, 1, 2, · · · , defined by the
solution of the unconstrained NOILC optimization problem

ũk = arg min
u

s.t. (30)

{
∥e∥2Y + ∥u− uk∥2U

}
(33)

followed by the simple input projection

uk+1 = argmin
u∈Ω

∥u− ũk∥U (34)

also satisfies the constraint and iteratively solves the con-
strained ILC problem.

Note that the first step of Constrained NOILC Algorithm 2
is a standard NOILC step which can be implemented easily.
The second step requires the solution of the problem (34). In
practice the input constraint Ω is often a point-wise constraint
and the solution of (34) can be computed straightforwardly,
e.g., when Ω = {u ∈ H : |u(t)| ≤ M(t)}, the solution is
simply

uk+1 (t) =

 M (t) : ũk (t) > M (t)
ũk (t) : |ũk (t)| ≤ M (t)
−M (t) : ũk (t) < −M (t)

This approach is much simpler than Constrained NOILC
Algorithm 1. Not surprisingly, this may sacrifice some
convergence performance, e.g., monotonic convergence in
the tracking error norm may no longer be preserved. As a
consequence, the users may need to make a compromise
based on the available computational resources and the
desired convergence properties.

D. A Case Study on a Robotic Arm

The NOILC design has been tested on a six degree of
freedom anthropomorphic robotic arm (shown in Figure 4).
The system is required to track a point-to-point task replicat-
ing an industrial multiple ‘pick and place’ process in which
payloads are manipulated during an assembly operation
(shown in Figure 5 as stars). Frequency response tests have
established that a linear model adequately represents the
system dynamics, with angular input and output specified
in degrees (see [21] for more details) which is used in the
NOILC design.

Results are presented for the first joint which is aligned in
the horizontal plane as illustrated in Figure 4. For comparison
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Fig. 4. Robotic manipulator system showing actuated output, y.

the predicted limiting solution is given using the nomi-
nal model. Results for the scalar, time invariant weighting
choices Q(t) = 1 (for the intermediate tracking points,
otherwise zero), and R(t) = 0.2, 0.1, and 0.02 are shown
in Figure 5 which illustrates the effect on convergence speed
of reducing the weighting on the input norm term in the
cost. In all cases the algorithm enforces rapid convergence
to similar low levels of input and error norm. The minimum
energy property of the approach results in an input norm
that does not match that of the nominal solution, due to the
presence of modeling uncertainty and noise.
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Fig. 6. Traditional motion control architecture.

E. Discussion and Further Reading

The use of optimization techniques in ILC design has a
long history. Some earliest results on Gradient ILC can be
found in [7], [22], and more recently in [23]–[25]. NOILC
was first proposed in [26], [27] and further developed in
[21], [28]–[34]. It now also has a number of different forms
and interpretations, examples of which include introducing a
penalty on the norm of the input (in addition or in place of
penalizing the input change) [35], the use of basis functions
[36], the use of data-driven methods [37]–[40]. Parameter
optimal ILC was introduced in [41], [42]. Computational
aspects are explored in [43], [44]. H∞ based design was
studied in [45], [46] and related robust designs in [47]–[49].
ℓ0 and ℓ1 based designs that promote sparsity are developed
in [50]. Cross-coupled designs that involve time-varying
weighting filters are investigated in [51]–[53], whereas spa-
tial norms are investigated in [54] and intermittently sampled
systems in [55]. The above list is by no means exhaustive –
the reader is referred to the literature for more results.

Many of the optimization-based designs have found suc-
cessful applications. Some examples include industrial robot
[35], free electron lasers [56], [57], industrial flatbed printer
[58], healthcare [59], broiler production [60], quantum con-
trol [61], nuclear fusion [62], additive manufacturing [63],
[64], servo systems [65], [66]. The readers are referred to
the recent text [67] for more examples.

IV. FREQUENCY-DOMAIN ILC DESIGN AND
APPLICATIONS

A. Introduction and Motivation

Frequency domain approaches to iterative learning control
are commonly applied to systems where frequency response
models are used for their analysis and feedback control.
Typical examples include mechatronic systems that are suf-
ficiently linear, and where feedback designs are often made
through frequency domain design methodologies [68].

A common control structure is depicted in Fig. 6, where r
denotes the reference signal, G the system, vj measurement
noise, yj the system output, K a stabilizing feedback con-
troller, and fj the ILC command signal. This parallel struc-
ture is most common in applications such as mechatronic
systems, where fj is the feedforward signal.

B. Design Approach

1) Learning filter L: The main idea in ILC is to learn
from past measured error signals ej to design the future
command signal fj+1. Suppose that an initial task j = 0
in Fig. 7, where a feedback controller K is implemented
and feedforward f0 = 0.
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Fig. 7. Learning from past tasks.

After each task j, the ILC algorithm should generate a
command signal for the next task fj+1. Hence, command
signal f1 is determined prior to starting task 1, i.e., based
on measured data in task 0. Assume for the moment that the
same task is performed, and that only access to measured
error signal e0 is available. In addition, the disturbance v1 is
neglected to facilitate the exposition, i.e., v1 = 0. The ILC
problem now involves determining f1 based on the measured
signal e0, such that e1 is small. Note from Fig. 7 that

e0 = Sr (35)
e1 = Sr −GSf1 (36)

with

S =
1

1 +GK
(37)

Frequency-domain ILC can be directly derived by following
two key steps. First, substitute (35) into (36):

e1 = e0 −GSf1 (38)

Second, define f1 as a filtered version of e0, see Fig. 7, i.e.,

f1 = Le0 (39)

In this case,

e1 = (1−GSL)e0 (40)

Next, e1 = 0 is obtained by (1 − GSL) = 0. This is
achieved by L = (ĜS)−1, where ĜS is a model of the true
closed-loop system, comprising both G and K.

In practice, model errors, i.e., ĜS ̸= GS may lead to a
situation where f1 leads to an error signal e1 that is not
exactly zero. This leads to the concept of iterative learning
control:

fj+1 = fj + Lej (41)

The intuition is as follows: if f1 leads to e1 = 0, then in the
next task j = 2 this command input is retained, i.e., f2 = f1.
Otherwise, a small correction Le1 is added to f1.

2) Design of the robustness filter Q: Despite that ILC
generates a feedforward signal in Fig. 7, the iteration (41)
in fact involves an iteration-domain feedback mechanism,
and its convergence must be analyzed. In the analysis, the
extended learning update

fj+1 = Q(fj + Lej) (42)

is considered, where (41) is recovered by setting Q = 1. The
freedom in the design of Q is exploited later on to improve
convergence properties.

To analyze convergence, note from (36) that

ej = Sr −GSfj (43)

By evaluating (43) for both j and j + 1, and using (42),

ej+1 = Q(1−GSL)ej + (1−Q)Sr (44)

The ILC convergence question reduces to whether the it-
eration (44) converges. The following theorem addresses
this through a contraction mapping. Here, the notion of
monotonic convergence is used, which is defined as follows.

Definition 1: The iteration (44) is monotonically conver-
gent in the ℓ2 norm if, for some k ∈ [0, 1) and for all ej ,

∥e∞ − ej+1∥2 ≤ k∥e∞ − ej∥2 (45)
Theorem 8: The iteration (44) is monotonically conver-

gent in the ℓ2 norm to a fixed point e∞ and corresponding
f∞ if and only if

∥Q(1−GSL)∥L∞
< 1 (46)

For a proof of Theorem 8, see [50, Theorem 2].
Here, the ℓ2 norm of a signal x is defined as ∥x∥2 =√∑∞

t=−∞ |x(t)|2.
The main point is that the condition (46) can be evaluated

in the frequency domain, since it is equivalent to

sup
ω

|Q(1−GSL)| < 1 (47)

for single-input single-output systems.
The condition (47) enables a systematic design, leading to

the frequency domain design framework. The main idea is
summarized in the following procedure.

Procedure 1: Frequency-domain ILC design procedure.
1. Identify a parametric model ĜS
2. set L = (ĜS)−1

3. check condition (46) with Q = 1
• satisfied? implement (42) with Q = 1
• not satisfied? next step

4. design Q such that condition (46) is satisfied
• design Q(ω) ≈ 1 for performance
• design |Q(ω)| < 1 to satisfy (46)

Note that Q in Step 4 of Procedure 1 should be chosen
close to 1 to ensure high performance. Indeed, Q ̸= 1 leads
to an asymptotic error, which can be directly derived from
(44) and (35) and e∞ = limj→∞ ej , leading to e∞ =

1−Q
1−Q(1−GSL)e0.

A key advantage of the approach outlined here is its
fast convergence in conjunction with a systematic design of
robustness filters. The design of the robustness filter, i.e.,
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Fig. 8. Printer system with repeating tasks.

Step 4 of Procedure 1, can be further refined. In particular,
the model ĜS is typically less accurate compared to a
nonparametric frequency response function estimate [69].
The condition (46) can even be verified for a range of
nonparametric frequency response function estimates, cor-
responding to operating conditions [70] or populations of
systems, ensuring robust monotonic convergence for the
entire system set.

Remark 1: (Implementation aspects) The inversion in
Step 1 in Procedure 1 may lead to a filter L that is analytic
outside the unit disc (in the discrete time case), due to
nonminimum phase zeros or strict delays of ĜS. In this case,
a non-causal design of L should be implemented, see [71] for
an overview of relevant algorithms. Similarly, a non-causal
design of Q is advised by filtering both with Q and its adjoint
to eliminate the phase, see [40]. In this respect, note that the
L∞ norm in (46) resembles the commonly used H∞ norm
[72]. The key difference is that the L∞ allows for non-causal
ILC algorithms [73], i.e, non-causal L and Q in (42).

C. Applications and Extensions

1) Design example: A design example is shown on the
industrial printer system in Fig. 8. The task is to track a
reference, i.e., moving the carriage over a sheet of paper.
A linear model is identified. In particular, in Fig. 9, an
identified frequency response function is depicted, as well
as a parametric model Ĝ, leading to a closed-loop model
ĜS = Ĝ

1+ĜK
.

Next, Procedure 1 is invoked, leading to a filter L, and
a design of Q in the frequency domain, see Fig. 10. Imple-
mentation leads to the error signal in Fig. 11, where it can
clearly be seen that the error converges fast and to a small
error value. The former is related to the learning filter that
is essentially based on equating (40) to zero. The latter is
due to the fact that Q ≈ 1 for a large range of frequencies
where the setpoint trajectory r has frequency content. For
more details on the design, see [74].

2) Multivariable designs: Many systems have multiple
inputs and outputs, in which case a multivariable learning
filter must be designed. This requires special care, and
suitable choices must be made regarding centralized or
decentralized learning and robustness filters. A broad range
of such algorithms is developed in [75].
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Fig. 9. Identified frequency response function of the printer system (solid
blue), parametric model Ĝ (dash-dotted green).
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Fig. 10. Convergence condition (47) based on the identified non-parametric
frequency response function of the printer system in Fig. 9 for Q = 1
(dotted magenta). Next, robust monotonic convergence is guaranteed by
inclusion of Q, leading to Q(1 − GSL) (dash-dotted green). In the latter
case, the convergence condition is met for frequencies beyond 10 Hz.
Below 10 Hz, the frequency response function is very noisy, and therefore
discarded.

3) Repetitive control: In certain applications, the error is
repeating but the system is not reset after each tasks. This
leads to a repetitive control setting, for which a very similar
design framework is available, see [76] for an approach that
is along the lines of the multivariable design in Sec. IV-C.2.

4) Noise reduction: In the analysis of Sec. IV-B, the
noise vj is set to zero. In case vj is nonzero, the algorithm
(42) may increase the error, see [50] for a detailed analysis
and advanced designs to mitigate noise in ILC. Several of
these approaches, including the sparse optimization in [50],
directly extend the norm-optimal approach explained in the
current paper.

5) Task flexibility: The basic assumption that r in Fig. 6
does not change for different tasks j is violated in many
applications [77]. In [78], a frequency domain design is
presented that incorporates basis functions for task flexibility.

V. NONLINEAR ILC DESIGN

From the beginning of ILC people have considered its use
for nonlinear systems, as well as the use of nonlinear update
laws for linear systems. Developed methods including con-
traction mapping (CM), composite energy functions (CEF),
the gap metric, Newton’s method and an extension of the 2D
systems approach to nonlinear systems. Among these, CEF
is often used for designing ILC algorithms for systems with
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Fig. 11. Measured error signal for ten tasks j using the learning update
(42) using L and Q of Fig. 10. The error reduces monotonically towards
e∞ for increasing j, achieving almost encoder resolution.

nonlinear dynamics.
In this section, we will show how CEF works to design an

ILC algorithm for a simple second-order linear time-invariant
(LTI) system and demonstrate how it can be used to explain
human motor learning. CEF offers a structured approach
to address these challenges by formulating an energy-based
criterion that guides the iterative learning process. It is
highlighted that although this example is an LTI system, the
motivation for using the composite energy function (CEF) is
to address nonlinear dynamic systems. In particular, CEF is
useful when the global Lipschitz continuity condition does
not hold, as discussed in [79]. Moreover, CEF can easily
incorporate Lyapunov functions to design appropriate output
feedback (as shown in Theorem 9). CEFs can also handle
output constraints by incorporating for tools such as barrier
control Lyapunov functions [80].

A. Design Approach

Let a second-order LTI dynamic system at the ith iteration
be given by:

ẋi(t) = Axi(t) +Bui(t)

yi(t) = Cxi(t),∀t ∈ [0, Tf ] (48)

where A and B matrices are

A =

[
0 1
a1 a2

]
, B =

[
0
b1

]
, C =

[
1 0

]
(49)

with a1 and a2 are unknown constants and b1 is an unknown
positive constant. Here xi(·) ∈ R2 is the state, ui(·) ∈ R
is the control input, and yi(·) ∈ R is the output at the ith

iteration.
The dynamic system (48) can represent a large class

of controllable systems such as unmanned ground vehicles
moving in a one-dimensional space. As it is in a controllable
canonical form, the design principles presented here can be
easily extended to high-dimensional movements, for exam-
ple, robotic systems with multiple degrees of freedom [81],
as well as other forms of nonlinear dynamics systems [82].

By checking the observability matrix, the system (48) is
also observable. As CB = 0 and CAB ̸= 0, this system has
with a relative degree of 2. It is assumed that our control
objective is to track a desired trajectory yd(t), which comes
from the following reference model

ẋd(t) = Axd(t) +Bud(t)

yd(t) = Cxd (50)

where matrices A, B, and C come from (49). At the ith

iteration, the tracking error is defined as

ei(t) = yd(t)− yi(t), ∀t ∈ [0, Tf ] (51)

where yi comes from (48).
The control objective is to find a sequence of control input

{ui}i=1,2,..., such that

lim
i→∞

|ei(t)| = 0,∀t ∈ [0, Tf ]. (52)

Two possible ILC algorithms can be used to achieve
this control objective: one is pure feed-forward, while the
other incorporates both feedback and feed-forward strategies.
The convergence analysis of the pure feed-forward approach
is based on the CM method, whereas the CEF is used
to demonstrate convergence when both feedback and feed-
forward parts are employed.

By abusing the notation, we ignore the time variable t in
our analysis when no confusion arises. For the convenience
of notation, we define

∆xi = xd − xi, δxi = xi+1 − xi (53)

Feed-Forward Law
In such a situation, we use only a feed-forward control

law:

ui(t) = uff
i (t), u0(t) = 0, ∀t ∈ [0, Tf ] (54)

As the system (48) has the relative degree of 2, the feed-
forward control law takes the following form:

uff
i+1(t) = uff

i (t) + γëi(t), ∀t ∈ [0, Tf ] (55)

where γ > 0 is the learning gain and the tracking error e is
defined in (51).

For a continuous function s(t), its time-weighted norm
is defined as ∥s∥λ = max

t∈[0,Tf ]
e−λt |s(t)| for some positive

constant λ.
Using the CM method, the following proposition shows

how the feed-forward ILC (54) works.
Proposition 1: Assuming that ëi(0) = ėi(0) =

ei(0),∀i = 0, 1, . . . , the proposed control law (54), where
uff
i (t) comes from (55), will ensure that the tracking error

converges, i.e.,

lim
i→∞

|ei(t)| = 0,∀t ∈ [0, Tf ] (56)

if the following convergence condition holds:

|1− γb1| ≤ ρ < 1, ρ ∈ (0, 1) (57)

Feedback with Feed-Forward Law
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Now let the ILC law have both feedback and feed-forward

ui = ufb
i + uff

i (58)

Assume that the state of (48) is measurable. As the system
(48) is controllable, there exists a feedback gain K ∈ R2×1

such that if the control input takes the following form

ufb
i = −K (xd − xi) (59)

then the matrix A − BK is a Hurwitz. As A − BK is a
Hurwitz, for any given Q = QT > 0, Q ∈ R2×2, there
exists a symmetric positive definite matrix P ∈ R2×2 such
that following Lyapunov equation is satisfied:

(A−BK)TP + P (A−BK) = −Q. (60)

The feed-forward control law takes the following form

uff
i+1 = uff

i +BTP∆xi (61)

where uff
0 (t) = 0, ∀t ∈ [0, Tf ], B is from (49), and P

is from (60). By combining (48) and (58), the closed-loop
system becomes

∆ẋi(t) = (A−BK)∆xi(t)−B∆uff
i (t) (62)

where

∆uff
i = ud − uff

i . (63)

Theorem 9: Assuming that ∆xi(0) = 02×1,∀i =
0, 1, . . . , the proposed control law (58), consisting of the
feedback (59) satisfying (60), and feed-forward (61), will
ensure that the tracking error converges, i.e.,

lim
i→∞

|∆xi(t)|2 = 0,∀t ∈ [0, Tf ] (64)
Remark 2: In the control law (58), we need to find a

stabilizing feedback K in the feedback (59). This feedback
K and its corresponding Lyapunov equation (60) play an
important role in the feed-forward law (61). In many applica-
tions, engineering practitioners know the nominal model. The
knowledge of the nominal model also can help to design the
appropriate K, with its corresponding matrix P . On the other
hand, when matrices A and B are unknown, designing an
appropriate feedback gain K can be challenging. However,
in certain cases, such as robotics, a high-gain PD control law
can always stabilize the system, provided that an appropriate
energy-related Lyapunov function is available.

Remark 3: CEF here consists of two parts: one related
to the state tracking energy (Vi(t) = e−λt∆xT

i (t)P∆xi(t))
and the other related to the integral performance of the input
tracking, i.e., the control input converging to the desired
control input. The feed-forward law (61) is more like a point-
wise adaptation, trying to cancel the influence of ∆ui(t) in
the dynamics in the time domain by using the updating law in
the iteration domain. It is highlighted that Vi(t) has the term
e−λt. When it moves inside the integral part, it generates
a large damping term −λ

∫ t

0
e−λτVi(τ)dτ by selecting a

sufficiently large λ. The role of λ in the CEF is similar to
that of a time-weighted norm in CM (see Proposition 1) in
the sense that both of them try to ignore some dynamics in
the convergence analysis.

Remark 4: The feedback is not needed in the conver-
gence analysis. When K = 02×1, we can select Vi(t) =
∆xT

i (t)∆xi(t) with P = I2×2. The following feed-forward
law is proposed,

uff
i+1 = uff

i +∆x2,i = uff
i + ėi (65)

By constructing the following CEF

Ei(t) = Vi(t) +
1

b1

∫ t

0

e−λτ (∆ui+1(τ))
2
dτ (66)

for the positive b1, by following similar steps to the proof of
Theorem 1, we can show that the pure feed-forward law (65)
can also ensure convergence. However, using CEF, we utilize
ėi instead of ëi for a dynamic system with the relative degree
of 2 as in (55). Consequently, this simplifies the resetting
condition since ëi(0) is no longer needed. Moreover, the
convergence condition (57) is no longer required. This shows
that the CEF provides more flexibility in designing ILC
updating laws. Moreover, recent work showed that the com-
posite energy function (CEF) [82] can be used to demonstrate
the convergence of ILC algorithms when they are designed
based on the contraction mapping (CM) method. These
findings support the assertion that the CEF is a very powerful
tool in designing and analyzing ILC algorithms.

B. Application to Healthcare

The application of ILC to healthcare problems started
in mid-2004/2005 with the stroke rehabilitation application
discussed next, but other applications have also emerged,
e.g., see [83] for ventricular assist devices.

Stroke is a leading cause of disability worldwide, with
incidence set to rise, which, in turn, will place an increasing
burden on healthcare and rehabilitation resources. If the
capacity of health services is to meet future demand, novel
approaches to rehabilitation are needed. Enabling rehabili-
tation outside the hospital, supported by mobile technology,
may lead to i) reduced cost, ii) increased intensity of therapy,
and iii) shift the emphasis of responsibility for good health
from healthcare professionals to the patients.

When people re-learn skills after a stroke, they go through
the same process as you do when you learn to play tennis, but
they have a problem because they can hardly move at all, so
they cannot practice, which means they do not get feedback.
Muscles can be made to work by Electrical Stimulation (ES).

If ES is applied to a person’s muscle, electrical impulses
travel along the nerves in much the same way as the
electrical impulses from the brain. If the stimulation is
carefully controlled, beneficial movement can be made. This
effect works better if the person is attempting the movement
themselves and hence needs to combine a person’s effort
with just enough extra electrical stimulation to achieve the
movement. Upper limb impairment is very common post-
stroke and limits many daily living activities, especially those
requiring reach to grasp actions such as picking up a drink.

Fig 12 shows the system designed in the first work based
on a reaching (2D) task where a) shows a patient using the
experimental setup and b) the actions required. In essence
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Fig. 12. a) Photograph of a patient using the robotic system, b) ILC
perspective.

the patient is presented with a task and attempts to move
the effected limb to follow a lighted path (the reference
trajectory) with a simple structure ILC law used to adjust
the stimulation applied during each trial, the development
of this system together with the modeling and control law
design is detailed in [84]. If a patient is improving with each
attempt, the voluntary effort should increase and the applied
stimulation decrease. This effect was detected in a small scale
clinical trial [85].

This initial success, has led on to research for rehabili-
tating 2D tasks, such as collecting a garment from a table,
putting it into an open drawer and then using the affected
limb to reach up and close it. This requires stimulation of two
muscles and linear model based ILC is ineffective. Moreover,
there is a considerable degree of uncertainty present and
a robust design is needed. Designs based on the Newton
method, input-output feedback linearization, and the gap
metric have been developed and supporting experimental
results/clinical trials have been reported, see, e.g., [86]–[88].

VI. POSSIBLE FUTURE RESEARCH DIRECTIONS

There are a great many areas for possible future research,
both in terms of new theory/algorithms and continuing to
develop methods to assist with applications. This section
gives some possible areas (based on the views of the authors).

The first area is ILC for distributed parameter systems,
where one approach is to continue to develop analysis as
per non-ILC applications, e.g., based on semigroup theory.
The nonlinear equations arising in applications, such as flow
over a wind turbine blade, do not lend themselves to such
analysis except under very strong assumptions.

An alternative approach is to base design on data obtained
from simulations, such as computational fluid dynamics,
which is used to construct finite dimensional approximate
models on which to base design and then test the resulting
ILC laws against, e.g., the computational fluid mechanics
model. Some initial progress in this general direction is
reported in [89], with supporting experimental results from
application to a heating process. The potential for data-driven
ILC designs is yet to be fully established, but some early
results were noted above in Section III-E, see [37]–[39].

In implementations, it can be the case that a linear model
based control design encounters difficulties due to, e.g.,
actuator saturation or backlash or windup in the actuators.
Some first results for saturation, with experimental results
are in [90]. More research is required in this general area.

For many applications, the basic assumptions in ILC are
violated. One area where ILC is exceptionally promising is
in precision mechatronics. There, systems involve position-
dependent behavior, different sensors for ILC than feedback
with nontraditional sampling schemes, and flexible tasks.
These all require new approaches, see [91] for an overview
of these challenges.

The theory of nonlinear ILC needs substantial research
effort, including stochastic designs. Also there are connec-
tions between ILC and reinforcement learning, initial results
are reported in [92] and [93]. Furthermore, there is also
a clear link between ILC and repetitive control, also for
nonlinear systems, and which approach is most applicable for
the application at hand should be carefully decided, see e.g.
[94] and [95] for recent results on a healthcare application
where such algorithms are implemented.

Regarding these healthcare applications, the broad field
is ripe for further application, especially in the ideal case
of take home technology. Further research on such learning
approaches and the applications are required, and we expect
this will lead to a major impact for future healthcare.
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