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Abstract— This paper develops rollover prevention guaran-
tees for mobile robots using control barrier function (CBF)
theory, and demonstrates the method experimentally. We con-
sider a safety measure based on a zero moment point condition
through the lens of CBFs. However, these conditions depend
on time-varying and noisy parameters. To address this issue,
we present a differentiator-based safety-critical controller that
estimates these parameters and pairs Input-to-State Stable (ISS)
differentiator dynamics with CBFs to achieve rigorous safety
guarantees. Additionally, to ensure safety in the presence of
disturbances, we utilize a time-varying extension of Projection-
to-State Safety (PSSf). The effectiveness of the proposed method
is demonstrated via experiments on a tracked robot with a
rollover potential on steep slopes.

I. INTRODUCTION

Autonomous robotic systems are increasingly deployed
in complex and real-world environments, prompting a cor-
responding rise in the importance of developing safety-
critical control methods [1]. As mobile robots often operate
on uneven terrains and in dynamic conditions, preventing
rollover is a vital aspect of their design and operation [2].
Improved rollover safety not only improves the overall safety
profile of mobile robots but also significantly contributes to
their reliability and effectiveness in real-world applications.

Several methods measure the risk of rollover in mobile
robots, including stability measures like force-angle stability,
moment-height stability, and zero moment point (ZMP) [3].
Leveraging these characterizations, a variety of control tech-
niques have been developed to prevent rollovers: nonlinear
programming [4], chance-constrained optimal control [5],
and invariance control [6]. These methods often rely on
high-fidelity models or require numerous sensors, which may
limit their practical applicability in real-world scenarios. The
goal of this paper is to develop a new approach for rollover
avoidance that is both rigorous, but also implementable.

Safety is often framed as forward set invariance; guar-
anteeing that system states stay within a predetermined set
ensures system safety. Control barrier functions (CBFs) [7]
have emerged as a tool for synthesizing controllers that
guarantee forward invariance of a given safe set. The CBF
framework also leads to safety filters, which have been
successfully applied in various domains [8]. These filters
alter control inputs only when necessary for safety. However,
accurate system dynamic models are needed for safety guar-
antees when controllers are synthesized via CBFs. Thus, the
presence of unmodeled system dynamics causes uncertainty
in the CBF condition, potentially leading to safety constraint
violation.
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Fig. 1. Experimental results for robot rollover prevention. The
proposed DA-CBF-QP safety filter maintains safety (Left, video
montage of robot motion). However, under the nominal controller,
the robot leaves the safe set (Right). The value of CBF h vs. time
(Bottom).

Projection-to-State Safety (PSSf) [9] builds upon the no-
tion of Input-to-State Safety (ISSf) [10] to establish a frame-
work for quantifying the effect of uncertainty or disturbances
on safety guarantees. But ZMP-based rollover constraints
require estimates on the noisy derivative of the gravity vector.
Safety-critical control in dynamic environments via CBFs
was proposed in [11] by using constant worst-case bounds for
the time-varying parameters, which may result in undesired
conservativeness. CBFs coupled with estimators can address
the moving obstacles avoidance problem [12]. However, the
extension to address broader dynamic parameter-dependent
safe control design problems has not yet been considered.

This paper presents a framework for synthesizing safety
filters that are robust to time-varying parameters. We intro-
duce differentiator-adaptive CBFs (DA-CBFs) that consider
the time-derivatives of time-varying parameters that are nec-
essary to enforce CBF conditions. When the differentiator
dynamics are ISS with respect to noise, the result is a
new time-varying CBF whose satisfaction ensures safety.
Moreover, to address model uncertainty in the time derivative
of a time-varying CBF, we define an extension of PSSf, time-
varying PSSf (tPSSf). The main result gives conditions on
DA-CBFs such that PSSf is guaranteed. Practically, these
contributions enable robust rollover prevention for mobile
robots via the synthesis of CBFs from ZMP constraints.
We validate the efficacy of the proposed approach through
experiments on a tracked mobile robot (Fig 1) encountering
rollover issues triggered by slopes.
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II. PRELIMINARIES

Consider a nonlinear control affine system of the form:

ẋ = f(x) + g(x)u, (1)

where x∈X⊂Rn is the state, f :X→Rn, g :X→Rn×m

are locally Lipschitz continuous on the open and connected
set X , and u∈U⊂Rm is the control input. A locally Lips-
chitz continuous controller u=k(x), with k :X→U , yields
a locally Lipschitz continuous closed-loop control system,
fcl :X→Rn:

ẋ = f(x) + g(x)k(x) ≜ fcl(x). (2)

Hence, given any initial condition x0≜x(t0)∈X there exists
an interval I(x0)≜ [t0, tmax) such that

x(t) = x0 +

∫ t

t0

fcl(x(τ))dτ, t > t0 (3)

is the unique solution to (2) for t∈I(x0); see [13]. Through-
out this study we assume fcl is forward complete, i.e.,
I(x0)=[0,∞), and U is a convex polytope.

In this paper, the system is considered safe as long as
its defined state remains within a non-empty set C⊂X .
In particular, let the set C be the 0-superlevel set of a
continuously differentiable function h :X→R:

C≜{x∈X⊂Rn :h(x)≥0} ,
∂C≜{x∈X⊂Rn :h(x)=0} .

This set is forward invariant if, for any initial condition
x(0)∈C, the solution (3) satisfies x(t)∈C, ∀t≥0. The
closed-loop system (2) is safe on the safe set C if C is forward
invariant. CBFs [7] have been proposed to synthesize safety-
critical controllers that can ensure forward invariance.

Definition 1 (Control Barrier Function, [7]). Let C⊂X be
the 0-superlevel set of a continuously differentiable function
h :X→R. The function h is a control barrier function for
system (1) on C if ∂h

∂x ̸= 0 for all x∈∂C and there exists
an extended class-K∞ function* α∈K∞,e such that for all
x∈C:

sup
u∈U

[
ḣ(x, u)

]
=sup

u∈U

[
Lfh(x)+Lgh(x)u

]
≥−α(h(x)), (4)

where Lfh :X→R, Lgh :X→Rm are Lie derivatives.

Note that, when U=Rm, (4) is equivalent to:

∀x∈X : Lgh(x) = 0 =⇒ Lfh(x) ≥ −α(h(x)), (5)

which implies that if U=Rm, satisfaction of condition (4) at
states where Lgh(x)=0 is necessary and sufficient for the
verification of a CBF. We note that for a bounded control
input, i.e., u∈U⊂Rm, (5) is a necessary (but not sufficient)
condition for (4).

*A continuous function α : [0, a)→R+, where a>0, belongs to class-
K (α∈K) if it is strictly monotonically increasing and α(0)=0. And,
α belongs to class-K∞ (α∈K∞) if a=∞ and limr→∞ α(r)=∞. A
continuous function α :R→R belongs to the set of extended class-K∞
functions (α∈K∞,e) if it is strictly monotonically increasing, α(0)=0,
limr→∞ α(r)=∞ and limr→−∞ α(r)=−∞. A continuous function
β : [0, a)×R+

0 →R+
0 belongs to class-KL (β∈KL), if for every s∈R+

0 ,
β(·, s) is a class-K function and for every r∈ [0, a), β(r, ·) is decreasing
and lims→∞ β(r, s)=0.

Given a CBF h and a corresponding α for (1), the
pointwise set of all control values that satisfy (4) is given by

KCBF(x) ≜
{
u ∈ U

∣∣ḣ(x, u) ≥ −α(h(x))
}
.

We can establish formal safety guarantees based on Defini-
tion 1 with the help of the following theorem [7]:

Theorem 1. If h is a CBF for (1) on C with an α∈K∞,e,
then any Lipschitz continuous controller k :X→U satisfying

ḣ (x,k(x)) ≥ −α(h(x)), ∀x ∈ C, (6)

renders (2) safe with respect to C.

Given a baseline (possibly unsafe) locally Lipschitz con-
tinuous nominal controller kd :X→U , and a CBF h with
a corresponding α for system (1), safety can be ensured by
solving the CBF-Quadratic Program (CBF-QP) [7]:

k∗(x) = argmin
u∈U

∥u− kd(x)∥2

s.t. ḣ(x, u) ≥ −α(h(x)),

which enforces k∗ :X→U to take values in KCBF(x); thus,
CBF-QP is also called a safety filter. If k∗(x)∈KCBF(x)
for all x∈X , then the set C is asymptotically stable for the
forward complete closed-loop system fcl in X [7].

III. MAIN RESULT

This section first defines tPSSf to consider model uncer-
tainty in the time derivative of a time-varying CBF. Then,
we introduce DA-CBFs.

In practice, control systems face uncertainties and distur-
bances that cannot be fully modeled. Thus, we consider a
disturbed nonlinear control affine system:

ẋ = f(x) + g(x)u+ d(t), (7)

where d :R+
0 →Rn is the disturbance that can alter the safety

property endowed by the CBF for system (1).
For the sake of generality, we consider a time-varying

continuously differentiable function h :R+
0 ×X→R, and its

0-superlevel set given by

C(t) ≜
{
x∈X : h(t, x) ≥ 0

}
, (8)

with ∂C(t)≜{x∈X :h(t, x)=0}.

A. Time-Varying Projection-to-State Safety

We assume that the effect of the disturbance d on the
derivative of CBF h, termed a projected disturbance, is
bounded:

δ(t, x)≜
∂h(t, x)

∂x
d(t); |δ(t, x(t))|≤ δ̄(t), (9)

where δ̄ :R+
0 →R+

0 . Using this upper bound, we consider a
time-varying set Cδ(t) such that for all t≥0, Cδ(t)⊂C(t):

Cδ(t) ≜
{
x∈X : h̄(t, x) ≜ h(t, x)− δ̄(t) ≥ 0

}
. (10)

This leads to the following:

Definition 2 (Time-Varying Projection-to-State Safety).
Given a state feedback controller k :X→U , the closed-loop
system with the disturbance input ẋ=f(x)+g(x)k(x)+d(t)
is time-varying projection-to-state safe (tPSSf) on Cδ(t) with



respect to the function h̄ :R+
0 ×X→R and bounded pro-

jected disturbance δ if there exists δ̄(t) such that C(t)⊃Cδ(t)
is forward invariant for all t≥0.

Remark 1. PSSf, proposed in [9], characterizes safety in
the presence of a disturbance or model uncertainty using a
time-invariant bound |δ|∞≜ess supt≥0 |δ(t, x(t)|≤ δ̄ in (10).
Moreover, PSSf defines a larger forward invariant set, given
by Cδ∞ ≜{x∈X :h(x)+|δ|∞≥0}, C⊂Cδ∞ , with a time-
invariant function h. Thus, the system can leave the safe
set C while remaining within the larger set Cδ∞ . On the
other hand, Definition 2 utilizes the time-varying bound δ̄(t)
to consider the projected disturbance, and defines a smaller
time-dependent forward invariant set Cδ(t) to guarantee
that the system stays in the original set C(t). Note that
disturbance observer-based robust CBF methods [14] utilize
a time-varying bound, which is provided by the disturbance
observer, with a corresponding subset definition similar to
(9) and (10).

Next, given the set Cδ(t), using Definition 2, the following
theorem ensures the forward invariance of the original set
C(t) in the presence of a disturbance:

Theorem 2. Let Cδ(t) given in (10) be the 0-superlevel
set of a continuously differentiable function h̄ :R+

0 ×X→R
with 0 as a regular value. Any locally Lipschitz continuous
controller k :X→U satisfying

Lf h̄(t, x) + Lgh̄(t, x)k(x) +
∂h̄(t, x)

∂t
≥−α(h̄(t, x)), (11)

for all x(t)∈Cδ(t) renders the disturbed system (7)
tPSSf on Cδ(t) with respect to the projected distur-
bance δ :R+

0 ×X→R if there exists a time-varying function
δ̄ :R+

0 →R+
0 satisfying |δ(t, x(t))|≤ δ̄(t) and α∈K∞,e such

that for all t≥0:

− ˙̄δ(t) + δ̄(t)≤−α(−δ̄(t)). (12)

Proof. Our goal is to show that the set C(t) is forward
invariant. From (10), (11), (12) and the time derivative of
h= h̄+δ̄ along the disturbed system (7) we have:

ḣ =Lf h̄(t,x)+Lgh̄(t,x)k(x)+
∂h̄(t,x)

∂t
+ ˙̄δ(t)+δ(t,x)

≥ Lf h̄(t,x)+Lgh̄(t, x)k(x)+
∂h̄(t, x)

∂t
+ ˙̄δ(t)−δ̄(t)

≥ −α(h̄(t, x))+ ˙̄δ(t)− δ̄(t)

≥ −α(h̄(t, x)) + α(−δ̄(t))

= −
(
α(h(t, x)− δ̄(t)) + α(−δ̄(t))

)
. (13)

Next, we consider a choice state such that x(t)∈∂C(t), i.e.,
h(t, x)=0, for which (13) implies ḣ ≥ 0. And we have
∂h(t,x)

∂x ̸= 0 for all x(t)∈∂C(t) from 0 as a regular value
assumption. Therefore, Nagumo’s theorem [15] guarantees
that h(0, x(0)) ≥ 0 =⇒ h(t, x(t)) ≥ 0,∀t ≥ 0.

B. Safety with Differentiator-based CBFs
When noisy parameter measurements impact safety con-

straints, a differentiator can estimate necessary time deriva-
tives for CBF conditions, such as the ZMP constraints, that
depend on noisy acceleration (gravity) measurements.

Let p0(t) with p0 :R+
0 →R be a continuously differen-

tiable function with a globally Lipschitz continuous time
derivative. A measurable noisy signal p :R+

0 →R can be
written as p(t)=p0(t)+v(t), where v is a bounded signal:
∥v(t)∥∞≜supt ∥v(t)∥<∞, denoted by v∈L∞.

The main goal of a differentiator is to estimate ṗ0(t) for
all t≥0 by taking p(t) as an input. The dynamics ṗ0(t) are
a single-input single-output system in strict feedback form:

µ̇1 = µ2; µ̇2 = p̈0(t); p(t) = µ1 + v(t), (14)

where µ≜ [µ1 µ2]
⊤
= [p0 ṗ0]

⊤∈R2 is the state, p̈0 is the
unknown input, and µ̂≜ [µ̂1 µ̂2]

⊤∈R2 will be the estimation
output of a differentiator.

A variety of approaches to real-time differentiation prob-
lems are proposed in the literature. For instance, discontin-
uous signal differentiation algorithms [16], and high-gain
observers [17], [18]. In particular, we consider a class of
differentiators that are ISS with respect to perturbations such
as noise input:

Definition 3 (Input-to-state Stable Differentiator). Consider
a continuous-time differentiator for system (14) of the form

˙̂µ = F
(
µ̂, p(t)

)
, (15)

where F :R2×R→R2 is locally Lipschitz in its arguments.
The differentiator (15) is an input-to-state stable (ISS) differ-
entiator if there exist a β∈KL and a γ∈K such that for any
input v∈L∞ and any initial differentiation error µ̂(0)−µ(0),
the solution of (15) satisfies for all t≥0:

∥µ̂(t)−µ(t)︸ ︷︷ ︸
≜eµ(t)

∥≤β(∥µ̂(0)−µ(0)∥, t)+γ(∥v(t)∥∞)︸ ︷︷ ︸
≜M(t)

, (16)

where eµ is the differentiation error, and M(t) ≥ 0,∀t≥0.

Definition 3 characterizes the performance of differentiator
(15) in terms of the boundness of the estimation error. For
example, differentiation with high-gain observers is ISS [18].
Furthermore, due to the continuity requirement of CBF con-
ditions, high-gain observers are an appropriate differentiator
for the rollover prevention problem. A high-gain observer for
the class of systems (14) is given by

˙̂µ1 = µ̂2 + k1ℓ(p(t)− µ̂1); ˙̂µ2 = k2ℓ
2(p(t)− µ̂1), (17)

where ℓ≥0 is the high-gain parameter, and k1, k2≥0 are
the design coefficients. The estimation error provided by the
observer (17) satisfies the following bound for all t≥0:∥∥µ̂(t)− µ(t)

∥∥ ≤ c1e
−c2t

∥∥µ̂(0)− µ(0)
∥∥+ c3∥v∥∞ (18)

for some c1, c2, c3≥0; see [17], [18].
In our problem setup, we consider safety con-

straints that rely on multiple time-varying parame-
ters denoted by p0(t)≜ [p0,1(t) . . . p0,z(t)]

⊤, p0 :R+
0 →Rz ,

where z is the number of parameters needing differ-
entiation, as h(x, p0(t)), h : X×Rz→R. These param-
eters are associated with a noisy measurement vec-
tor p(t)≜ [p1(t) . . . pz(t)]

⊤, p:R+
0 →Rz . We define a

new state vector xµ≜ [µ1,1 µ2,1 . . . µ1,z µ2,z]
⊤∈R2z , where

µ1,i :R+
0 →R is a continuously differentiable function,

and µ2,i :R+
0 →R represents its globally Lipschitz con-

tinuous derivative as in (14) for i=1, . . . , z. And,



x̂µ≜ [µ̂1,1 µ̂2,1 . . . µ̂1,z µ̂2,z]
⊤∈R2z is the estimation out-

put vector of a differentiator. We assume the parameters
are differentiated separately using the same ISS differen-
tiator structure. Therefore, we have a multi-input multi-
output differentiator dynamics: F≜

[
F (µ̂1,i, µ̂2,i, pi(t))

]
,

F:R2z×Rz→R2z .
As the upper bound function M(t) in (16) is valid for a

single parameter, but we have multiple differentiated parame-
ters, we need to obtain the maximum of Mi(t), representing
M(t) for i=1, . . . , z, at each time step. To construct a
smooth function representing the maximum of Mi, we can
employ a smooth maximum given by (with λ≥0):

M(t) =
1

λ
log

(
z∑

i=1

eλMi(t)

)
. (19)

Now, we define a disturbed augmented system dynamics
formed by (7) and (15) as[

ẋ
˙̂xµ

]
︸ ︷︷ ︸
≜ ˙̃x

=

[
f(x)

F(x̂µ,p(t))

]
︸ ︷︷ ︸

≜f̃(x̃,p(t))

+

[
g(x)
0

]
︸ ︷︷ ︸
≜g̃(x̃)

u+

[
d(t)
0

]
︸ ︷︷ ︸
≜d̃(t)

. (20)

Next, we incorporate the ISS differentiator (15) into the CBF
construction with the augmentation of the existing CBF h
by replacing p0(t) in h(x, p0(t)) with x̂µ. By the Lipschitz
continuity of h, there exists a constant Lh≥0 that satisfies:

|h(x, x̂µ)−h(x, xµ)|≤Lh ∥x̂µ−xµ∥
=⇒ h(x, xµ)≥h(x, x̂µ)−Lh ∥x̂µ−xµ∥

≥h(x, x̂µ)−LhM(t)≜hM(t, x̃),

(21)

for any (t,x,xµ,x̂µ)∈R+
0 ×X×R2z×R2z .

Remark 2. If the CBF h(x, p0(t)) is affine in parameter p0,
i.e., h(x, p0(t)))=h0(x)+q⊤p0(t)), q∈Rz , then Lh=q is
a Lipschitz constant.

Similar to the observer-based CBF method proposed in
[19], we consider hM and its 0-superlevel set to enhance
robustness against differentiation errors eµ:

CM(t)≜{x̃∈X×R2z : hM(t,x̃)≥0}, (22)

which is a time-varying set. Since M(t)≥0, ∀t≥0, CM(t)
is a subset of the 0-superlevel set of h(x,p0(t)), original
safe set. We assume that ∂hM(t,̃x)

∂x̃ ̸= 0 for all x̃(t)∈∂CM(t).
Finally, the following definition incorporates the dynamics
of the differentiator into a CBF constraint:

Definition 4 (Differentiator-Adaptive CBFs). Let CM(t)
given in (22) with an ISS differentiator (15) be the 0-
superlevel set of a continuously differentiable function
hM :R+

0 ×X→R with 0 as a regular value. Then hM is
a differentiator-adaptive control barrier function (DA-CBF)
for system (20), without d, on CM(t), if there exists an
α∈K∞,e such that ∀x̃(t)∈CM(t):

sup
u∈U

[
Lf̃hM(t,x̃) + Lg̃hM(t,x̃)u−LhṀ(t)

]
≥−α(hM(t, x̃)).

Next, we ensure robust safety for the disturbed augmented
system (20) via the following theorem by leveraging the
notions of DA-CBF and tPSSf.

Theorem 3. Let hM :R+
0 ×X×R2z→R be a DA-CBF for

(20), without the disturbance d, on its 0-superlevel set CM(t)
with an α∈K∞,e. Any locally Lipschitz continuous controller
k :X×R2z→U satisfying ∀x̃(t)∈CM(t):

Lf̃hM(t,x̃)+Lg̃hM(t,x̃)k(x̃)−LhṀ(t)≥−α(hM(t, x̃)), (23)

renders the set CM(t) tPSSf for (20) with respect to the
projected disturbance δ(t, x̃)= ∂hM(t,x̃)

∂x̃ d̃(t) if for all t≥0:

−LhṀ(t)+δ̄(t)≤−α(−LhM(t)).

Proof. As hM is a DA-CBF for system (20) on CM(t),
Definition 4 implies that there exists an α∈K∞,e such that

sup
u∈U

[
∂hM(t,x̃)

∂x̃

(
f̃(t,x̃)+g̃(x̃)u

)
+
∂hM(t,x̃)

∂t

]
≥−α(hM(t,x̃)),

for all x̃(t)∈CM(t). Therefore, any Lipschitz continuous con-
troller u=k(x̃) satisfying (23) renders system (20), without
d, safe with respect to the set CM(t) based on Theorem 1.

Following a similar argument to that in the proof of Theo-
rem 2 under the condition −LhṀ(t)+δ̄(t)≤−α(−LhM(t)),
we have (23) =⇒ ḣ(t,x̃,u)≥−α(h(x̃)), ∀ x̃(t)∈C(t),
where

ḣ(t,x̃,u)=Lf̃h(t,x̃) + Lg̃h(t,x̃)u+ δ(t,x̃),

thus the closed-loop system (20) is tPSSf on CM(t) with
respect to the projected disturbance δ. With this robustness,
the condition (23) leads to x̃(t)∈C(t),∀t≥0 if x̃(0)∈C(0),
which also implies that h(x(t), p0(t))≥0, ∀t≥0.

As the DA-CBF condition is affine in the control input
u, we can define a differentiator-adaptive safety filter. Under
Theorem (3), given a nominal locally Lipschitz continuous
controller kd :X→U , ISS differentiator F , DA-CBF hM,
and α∈K∞,e for system (20), the solution of the following
QP, DA-CBF-QP, ensures robust safety for system (20):

k∗(t, x̃) = argmin
u∈U

∥u− kd(x)∥2

s.t. Lf̃hM(t,x̃)+Lg̃hM(t,x̃)u−LhṀ(t)≥−α(hM(t,x̃)).

Finally, if α(h)=αch with αc>0, i.e., it is a linear ex-
tended class-K∞,e function, we have the following corollary:

Corollary 1. Let α∈K∞,e in Theorem 3 be a linear class-
K∞,e function. If there exist an αc such that:

αc ≥ 1 and Ṁ(t)≤−αcM(t), ∀t ≥ 0, (24)

then, a sufficient condition for (23) is given by

Lf̃h(t, x̃) + Lg̃h(t, x̃)u− αcδ̄(t) ≥ −αch(t, x̃), (25)

which is independent of Lh and M, and ensures that the
disturbed augmented system (20) is tPSSf on CM(t).

Proof. From the time derivative of hM along (1) and F, i.e.,
the system dynamics (20) without d̃, and (24), (25) we have:

Lf̃h(x̃)+Lg̃h(x̃)u≥−αch(x̃)+αcLhM(t)+LhṀ(t)

with Ṁ≤−αcM⇐= Lf̃h(x̃) + Lg̃h(x̃)u− αcδ̄(t)≥−αch(x̃);

therefore hM is a DA-CBF with (24), (25). Using the notion
of tPSSf, let’s analyze the safety of disturbed system (20).
From the time derivative of h along (20), and (24), (25) we
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Fig. 2. Zero moment point illustration for a mobile robot (Left).
The simple backward differentiator (BD) results in noisy values that
cause safety violations. The system leaves the safe set for a small
and time-invariant projected disturbance bound, δ̄= δ̄1. Choosing
δ̄= δ̄2 or δ̄= δ̄3, where δ̄1<δ̄2<δ̄3, ensures that h2(t) ≥ 0, but
at the cost of decreased performance due to added conservatives
(Right).

have:

Lf̃h(x̃)+Lg̃h(x̃)u−αcδ̄(t)≥−αch(x̃)

with αc≥1
=⇒ ḣ(t,x̃,u)=Lf̃h(x̃)+Lg̃h(x̃)u+δ(t,x̃)≥−αch(x̃).

We remark that, based on Corollary 1, (25) can be utilized
to replace the DA-CBF constraint within the DA-CBF-QP.

IV. ROLLOVER PREVENTION: THEORY AND
APPLICATION

This section presents a derivation of the safety constraints
for the roll motion of a mobile robot via zero moment point,
also referred to as zero-tilting moment point, (ZMP) criterion,
leading to the formulation of a (time-varying) CBF. We
leverage the main theoretic result of this paper to demonstrate
rollover prevention experimentally.

A. Rollover CBF Synthesis
Mobile robots are difficult to model exactly. In practice,

it is common to use a simplified model for the design of a
mobile robot controller, such as the following model:

ẋI

ẏI

θ̇
ω̇
v̇


︸ ︷︷ ︸

ẋ

=


v cos θ
v sin θ
ω

−τωω
−τvv


︸ ︷︷ ︸

f(x)

+


0 0
0 0
0 0
0 τω
τv 0


︸ ︷︷ ︸

g(x)

[
uv

uω

]
︸ ︷︷ ︸

u

+d(t), (26)

where d :R+
0 →R5 is the disturbance,

[
xI yI

]⊤∈R2 is the
vehicle’s planar position with respect to the inertial frame
I, θ is the vehicle’s yaw angle, v is its linear velocity, ω is
its angular velocity (see Fig. 2), and 1/τv, 1/τω>0 represent
the time constants of the electromechanical actuation system.
This model is adopted from [20] by assuming that the center
of gravity (CG) of the robot intersects with its center of
rotation.

The ZMP is the point on the ground where the gravity
and inertia forces create only a non-zero moment about
the direction of the plane normal, resulting in zero tipping
moment [21]. We compute the mobile robot’s ZMP relative
to the ground plane and constrain it so that the vehicle does

not tip over. The ZMP-based rollover constraint is given by
∀t≥0:

|yZ(t)| ≤ b, (27)

where yZ is the lateral component of the ZMP, and
b is the half width of the robot. To obtain yZ , we
model the orientation of the body-fixed frame rela-
tive to the fixed world frame via roll, pitch, and
yaw Euler angles ϕ, β, θ, respectively. The angular
rates, angular accelerations, and linear accelerations are
given by ω̄=

[
ϕ̇ β̇ ω

]⊤
; ᾱ=

[
ϕ̈ β̈ ω̇

]⊤
; ā=

[
ẍB ÿB z̈B

]⊤
,

respectively. The robot’s rigid body inertia tensor is given
by I=diag(Ix, Iy, Iz), and m is total mass. Assuming zero
total forces in the yB and zB directions, as well as zero
moments in the xB and yB directions, we have:

ÿB = −v ω; z̈B = 0,

Ixϕ̈+ (Iy − Iz)β̇ ω = 0.
(28)

In Fig. 2, Z is the ZMP point, and r̄Z =[xZ yZ −lcg]
⊤,

where lcg is the distance of the robot’s center of mass from
the ground. For the sake of simplicity, we also assume that
lcg is known. The moment vector about the ZMP is given
by

MZ = (r̄Z ×mā) + (r̄Z ×mḡ) + (Iᾱ+ ω̄ × Iω̄), (29)

where ḡ=[gx gy gz]
⊤ is the gravity vector expressed in the

body-fixed frame B. From the definition of the ZMP, the
moment at the ZMP must satisfy that

MZ =
[
0 0 MZz

]⊤
. (30)

Then solving (29) with (30) yields:

yZ =
−mÿBlcg−mgylcg−(Ixϕ̈+(Iy−Iz)β̇ ω)

mz̈B +mgz
, (31)

and substituting (28) into (31) yields:

yZ =(v ω lcg − gy lcg)/gz. (32)

From (32) and (27) we obtain two different time-dependent
safety constraints:

h1(t, x) = v ω − b/lcg gz(t)− gy(t) ≥ 0

h2(t, x) = −v ω − b/lcg gz(t) + gy(t) ≥ 0,
(33)

where gz, gy are measurable noisy parameters. The function
h1 represents safety on the right, while h2 represents the left.
Note that h1 and h2 are affine in [gy(t) gz(t)]

⊤.
Remark 3. In the unicycle model, safety constraints (33)
depend on control inputs v and ω. Inspired by integral CBFs
[22], which generalize control input-dependent CBFs, we
extend the unicycle model with first-order actuator dynamics
as given in (26), where uv, uω are the new control inputs.

B. Experimental Validation

We apply our results to an unmanned ground mobile robot,
a tracked GVR-Bot from the US Army DEVCOM Ground
Vehicle Systems Center. Our Python and C++ algorithms run
on a custom compute payload that is based on an NVIDIA
Jetson AGX Orin. Vision is provided by three synchronized
Intel Realsense D457 depth cameras, and a Vectornav VN-
100, an inertial measurement unit (IMU), provides inertial



measurements. For the test vehicle and onboard computation
details, see Section IV in [23]. We conducted experimental
tests on an approximately 27◦ inclined surface, which can
cause rollover and slip-induced model uncertainties.

We first designed a nominal controller kd:

kd(x) =
[
Kvdg Kωyg − yI/dg −Kω sin θ

]⊤
,

where Kv, Kω≥0 are the controller gains, xg, yg are the
goal position of the robot, and dg≜∥xg−xI , yg−yI∥. The
inputs were constrained such that uv∈ [−3, 3] m/s, and
uω∈ [−2, 2] rad/s. The goal position xg, yg is chosen to
yield a safety constraint violation when using the nominal
controller. The control loop operated at 50 Hz, and the states
were estimated by fusing camera data with inertial mea-
surements. The values of τω, τv in model (26) are obtained
through a system identification process. The differentiator
(17) operates on noisy accelerometer signals gz and gy .

We compared the proposed method to the PSSf with time-
invariant bounds such that 0<δ̄1<δ̄2<δ̄3. An increased
value of δ̄ results in a wider gap between the set Cδ(t) and
the forward invariant set C(t). Consequently, conservative
trajectories are produced that remain within C(t). Conversely,
a smaller value of δ̄ moves Cδ(t) closer to C(t), but allowing
trajectories to escape from C(t) in the presence of larger dis-
turbances, as can be observed in (10). Additionally, to show
the effectiveness of the proposed differentiator-based method,
we obtained the derivative of time-varying parameters with
the backward differentiator that utilizes the last three data
points:

ṗ0(tn) = (3pn − 4pn−1 + pn−2)/(2Ts), (34)

where Ts is the sampling rate, tn is the sampling time,
and pn, pn−1, pn−2 denote the last three measurements,
respectively.

The results of the experiments† are presented in Fig 1 and
Fig 2. These figures illustrate that the proposed method as-
sures the safety of the uncertain system by filtering the unsafe
nominal controller through the derived CBFs. Furthermore,
the robot reaches xg, yg as the function δ̄(t) was designed to
be close enough to δ along the trajectory. However, the robot
trajectory using a PSSf approach with δ̄1 (PSSf1) leaves the
safe set due to the violation of the assumption: |δ|∞≤ δ̄1.
Although PSSf with δ̄2 and δ̄3 (PSSf2 and PSSf3) maintain
safety, they yield conservative trajectories, which shows the
performance improvement of tPSSf compared to PSSf.

The performance of the CBF-QP controller with differ-
entiator (34) is also shown in Fig 2. Observe that due
to sensor noises and differentiation errors, this controller
violates safety. This highlights the importance of robust
differentiation along a provable convergence guarantee, as
achieved by Theorem 3.

V. CONCLUSION

This study developed a rollover prevention method for
mobile robots using CBFs and ZMP-based safety measures.
A robust safety-critical controller was proposed, incorporat-
ing the ISS differentiator dynamics and the notion of PSSf.
Experiments conducted on a tracked robot demonstrated the
effectiveness of the method in preventing rollover.

†See video at: https://youtu.be/Ekek2ikFU24
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