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Frequency Domain Auto-tuning of Structured LPV Controllers for
High-Precision Motion Control*
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Abstract— Motion systems are a vital part of many industrial
processes. However, meeting the increasingly stringent demands
of these systems, especially concerning precision and through-
put, requires novel control design methods that can go beyond
the capabilities of traditional solutions. Traditional control
methods often struggle with the complexity and position-
dependent effects inherent in modern motion systems, leading to
compromises in performance and a laborious task of controller
design. This paper addresses these challenges by introducing
a novel structured feedback control auto-tuning approach
for multiple-input multiple-output (MIMO) motion systems.
By leveraging frequency response function (FRF) estimates
and the linear-parameter-varying (LPV) control framework,
the proposed approach automates the controller design, while
providing local stability and performance guarantees. Key
innovations include norm-based magnitude optimization of the
sensitivity functions, an automated stability check through a
novel extended factorized Nyquist criterion, a modular struc-
tured MIMO LPV controller parameterization, and a controller
discretization approach which preserves the continuous-time
(CT) controller parameterization. The proposed approach is
validated through experiments using a state-of-the-art moving-
magnet planar actuator prototype.

I. INTRODUCTION

In recent years, there has been a significant focus on
motion systems. These systems play a crucial role in en-
hancing the performance and reliability of various industrial
processes and manufacturing systems, such as wafer scan-
ners, industrial printers, pick-and-place machines and wire
bonders, see [1]-[5]. Traditionally, motion control design for
MIMO systems has leaned heavily on superior mechanical
design principles, emphasizing factors such as high stiffness
and reproducibility, see [6]. This approach has led to mo-
tion dynamics primarily characterized by rigid-body (RB)
dynamics, facilitating the use of RB decoupling strategies to
effectively mitigate low-frequent channel interaction, see [7].
In industrial settings, the integration of RB decoupling with
sequential loop-closing (SLC) controller design is a common
practice due to several practical advantages. Primarily, SLC
facilitates the application of established loop-shaping tech-
niques, see [8]. Moreover, it simplifies motion control design
by relying on non-parametric models, i.e., FRFs, thereby
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obviating the necessity for precise parametric system identifi-

cation. Despite its advantages, the process of motion control

design via SLC presents formidable challenges, particularly
for high number of inputs and varying dynamics.

Modern motion systems frequently experience position-
dependent effects, as noted in [1]. To address these effects,
it becomes necessary to adapt the RB decoupling technique
to account for positional variations, thereby enabling the im-
plementation of SLC-based controller designs. While this ap-
proach is effective in achieving RB decoupling, it often leads
to persistent high-frequency position-dependent couplings,
which compel the SLC-based design to prioritize robustness,
ultimately resulting in a degradation of performance.

To automate motion control design in practice using
only FRF data, various auto-tuning methods have been
developed for single-input single-output (SISO) systems, as
documented in [9]-[12]. However, these methods are limited
in their ability to accommodate MIMO systems and position-
dependent dynamics. Despite this, a LPV MIMO auto-tuning
approach that utilizes FRFs exclusively is presented in [13].
Nonetheless, the application of this approach to structured
controller synthesis is challenging due to the orthogonal
basis function parameterization of the feedback controller.
Alternatively, optimal gain controller synthesis techniques,
such as robust H., and LPV Ly control, have emerged to
provide efficient control design for MIMO dynamics even
with position-dependent characteristics. Also, efficient tools
for structured controller synthesis based on these approaches,
i.e., using Hinfstruct, see [14], have been introduced. Never-
theless, the deployment of these latter approaches necessitate
precise low-order parametric models capable of accurately
capturing the high-frequency position-dependent channel in-
teractions, which poses a formidable challenge in the context
of modern system identification.

To facilitate the synthesis of structured LPV MIMO
feedback controllers, this paper presents a novel frequency
domain-based auto-tuning approach for LPV MIMO systems,
relying solely on FRFs of the motion system, thus bypassing
the need for complex parametric identification while pro-
viding local stability and performance guarantees. The main
contributions of this paper are:

(C1) Development of a novel structured LPV MIMO feed-
back controller parameterization for auto-tuning, ensur-
ing the modularity of controller design.

(C2) Development of a MIMO stability check for diagonal
and full block controllers, relying only on FRF data.

(C3) Development of a novel discrete-time LPV controller
implementation, preserving the CT parameterization.
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This paper is organized as follows. Section II presents the
problem formulation, followed by the proposed structured
feedback control parameterization in Section III. In Section
IV, the optimization problem is introduced, encompassing an
automated stability check, closed-loop performance shaping
and a novel controller implementation approach. Section
V presents experimental results of the frequency domain-
based LPV MIMO structured feedback control auto-tuner on
a state-of-the-art moving-magnet planar actuator (MMPA)
prototype, while Section VI draws conclusions on the pre-
sented work.

II. PROBLEM FORMULATION
A. Background

Many modern motion systems exhibit position dependent
effects due to their increasingly complex nature, see Figure
1. A common cause for this is the relative actuation and
sensing of the moving-body, necessitating position dependent
RB coordinate frame transformations to establish a rela-
tionship between the point of interest on the moving-body,
the actuation forces and the actual position measurements.
To accurately capture these effects, such systems are often
represented in LPV form, where the position dependency is
encapsulated within a scheduling vector, see [15]. Consider
the equations of motion of a motion system that exhibits
position dependent effects in the input and output:

Mi(t) + Di(t) + Kz(t) = G(p(t)) f(¢), (D)
where M, D and K € R"=*"= are the real symmetric mass,
damping, and stiffness matrices and G(p(t)) € R™ *™f maps
the forces acting on the moving body, f(t), to its center of
gravity based on the scheduling vector p(t) : R — P C R"».
To allow for independent control of the mechanical degrees
of freedom, (1) is typically represented in modal form,
see [16]. This is achieved through a state transformation
x(t) = Vn(t), where V.= M~2V. The eigenvector matrix
V' is derived from the characteristic dynamical equation
KV = MVA, where A is the eigenvalue matrix. Grouping
of the states per mode is achieved through a secondary state
transformation 7(t) = T'(n!_(t) n!, ()" with:

T=(Inyxn,®(1 07 Lnxn,®(0 D7), (2
where ® corresponds to the Kronecker-product. Furthermore,

the corresponding partitioned modal state-space representa-
tion of the motion system, denoted by P, corresponds to:

T‘]HB (t> AHB 0 ; BHB (p(t)) T]HB (t)
@ ) ={ 0 A 1 Beu(0®) | | 1@ | 3)
y(t) Cru(p(t))  Crn(p()) | 0 [

where (-)RB are the system matrices that correspond to the
rigid body modes and (-)  — are the system matrices that
coincide with the flexible modes. In the industry, motion
control design for these type of systems is simplified through
position dependent RB decoupling, which, in this case, is
achieved by introducing the input and output decoupling
matrices:

T = (Ui gy © [0 1) B 0(1)))

1, = (o (PO gy g @ [1 DT

(4a)
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Fig. 1. Set of local FRFs of a high-precision moving-magnet planar ac-
tuator prototype, illustrating the high-frequency position dependent flexible
dynamics for the RB decoupled transfer in R, -direction.

where n,, corresponds to the number of RB modes of the
system. In this context, the RB decoupled system is given
by P= T,PT,. It is noteworthy to observe that introduction
of the decoupling matrices results in an elimination of the
position dependency in the RB dynamics, see Figure 1.
Nonetheless, position dependent interaction still persists due
to the flexible dynamics, necessitating robustified controller
design at the cost of performance. An additional important
observation is that in case the scheduling vector is constant,
ie, p(t) = p for all t € R, P becomes an LTI system,
which is often referred to as local or frozen dynamics of the
LPV system. For a given fixed p, the Fourier transform of
the local signal relation is given by:

Y(jw) = Pp(ju)U(jw), (5)
where j is the imaginary unit, w € R corresponds to the
frequency and 75p (jw) denotes the local frequency response
function (IFRF) of P. In this context, a set of IFRFs, denoted
by {P;}7_,, is obtained through closed-loop identification
approaches for various forced equilibria of the system,
i.e., around various operating points p, thereby capturing
the complex position dependent high-frequent effects in
an accurate manner. Moreover, this set of 1IFRFs can be
used for analyzing the local performance of a designated
structured controller £ € R"rs *"rzs through the assessment
of the magnitude constraints associated with closed-loop
sensitivities across various frequency ranges. In this context,
one may contemplate an optimization problem aimed at
synthesizing structured controllers given a weighted plant.
Similar to optimal gain-based control design, see [17], the
construction of such a weighted plant is facilitated by shaping
performance channels through frequency dependent filters.

B. Problem Statement
The problem that is being addressed in this paper is to de-
velop a frequency-domain structured LPV MIMO feedback
control auto-tuning approach by using IFRF measurements.
We aim to accomplish this under the following requirements:
(R1) The system is locally stabilized by K for all p € P.
(R2) The control synthesis solely relies on IFRFs of the
system, thus avoiding complex parametric identification.
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III. CONTROLLER PARAMETERIZATION

This section introduces a novel modular LPV MIMO
structured feedback controller parameterization for auto-
tuning. To exploit the characteristics of typical motion sys-
tems, the structured feedback controller X is divided into
two main components as illustrated in Figure 2:

(1) A low-frequency LTI controller, aiming at shaping the
RB dynamics to achieve the desired characteristics.
(i) A high-frequency LPV controller, designed to address
position-dependent flexible dynamics.
To ensure modularity and scalability in structured con-
troller design, a novel structured parameterization approach
is proposed using linear fractional representations (LFRs).
This approach extracts the controller parameters into upper-
diagonal interconnections, resulting in diagonal parameter
matrices that can be optimized based on performance specifi-
cations. The remaining controller dynamics are incorporated
into the generalized plant for optimization.

A. Low-frequency LTI controller design

The control of RB modes conventionally employs a PID-
type controller, see [17], which is constructed by combining
a PI-type controller with lead filters in a cascaded manner. It
is worth noting that this controller configuration can also be
implemented using a parallel controller structure. Nonethe-
less, the proposed controller parameterization accommodates
both architectures as will be discussed in Subsection III-C.
Consider the time-domain representation of a PI-controller:

Tp, (t) = Up; (t), (6a)
Yor (1) = Ky, (1), (6b)

where u,, (t),y,,(t) € R"rs correspond to the input and
the output of the Pl-controller and K, € R"re*"rE is a
diagonal matrix containing the proportional gains, ensuring
that the local loop transfers, i.e., {P;K;}" ., cross the 0
dB line at the desired target bandwidths. To ensure closed-
loop stability of the system, lead filters are often integrated
alongside PI-controllers in a cascaded manner. The time-
domain representation of a first order lead-filter is given by:

Ty (t) = oz, (t) + Upp (t)a (72)

Yor (t) = (Ql - QQ)Q:LF (t) T Upp (t), (7b)
where u, . (t),y,.(t) € R"rs correspond to the input and
the output of the lead filter, and, 21,Qs € R"r8*"rB are
diagonal matrices containing the cut-off frequencies of the
differentiatiors and integrators. To accommodate sufficient
phase lead at the target bandwidth, i.e., 30 < ¢ < 60 degrees
phase margin while being subject to the integral action of the
PI controller, a third order lead filter is typically required.

B. High-frequency LPV controller design

To actively combat position dependent flexible dynamics,
position dependent notch filters are employed. Consider the
time-domain representation of a LPV notch filter:

Ty (t) - AN (p(t))mN (t) + Byuy (t)a
Yn (t) = ON (p(t))xN (t) + Dyuy (t) )

(8a)
(8b)

e(t)

Fig. 2. Closed-loop motion control interconnection, where /C is partitioned
into a low-frequency LTI controller and a high-frequency LPV controller.

where the state-space matrices are defined as follows:

_ 2
w0100 = Qﬁf@g;z@@» SA0)
BN—(I sy Onexns) s (9b)
)) 52<<>> 2 (1))
( p(t)) — w3 (p(t)) ) » 09
o= Do n (9d)

Here, ((p(t )),ﬁg(p( )) € R™s*"re represent diagonal
matrices containing the damping ratios of the notch filter,
which regulate the amplitude suppression at given notch
frequencies wy (p(t)), w2 (p(t)) € R™re *"rs

C. Controller interconnection

To allow for modularity and scalability of the controller
design, the filters presented in (6), (7) and (8) are reformu-
lated in LFR form as illustrated in Figure 2. This is achieved
by extracting the controller parameters into an upper diagonal
interconnection, i.e., u; = ®;y;, yielding the LFR:

(36) = (Reme ) (08). 0o

where u;(t),y;(t) € R"re correspond to the filter inputs
and outputs and ;(t), ;(t) € R"ar are latent variables,
describing the interconnections between the parameter blocks
and the filter blocks, where npaLr describes the number of
filter parameters per specific filter ¢ € [1 ng|. np represents
the total number of filters considered during controller de-
sign. By reformulating individual controller components into
LFR representation, a modular controller design approach
is introduced, facilitating the derivation of diverse con-
troller structures such as: (i) cascade LFR interconnection,
(ii) parallel LFR interconnection and (iii) even hierarchical
feedback loops. Integration of these LFR representations
yields a new LFR, with corresponding controller parame-
ters consolidated into a diagonal matrix. Consequently, the
closed-loop interconnection scheme, as depicted in Figure
2, is reformulated into a generalized plant description 3,
where LFR representations of controller filters are absorbed.
As a result, the resulting diagonal generalized controller
block 8 = diag({®,};F,) exclusively encompasses con-
troller parameters subject to optimization. Moreover, the
presented structured controller parameterization affords both
modularity and scalability in the design of controllers across
various structural configurations. This proposed controller
parameterization is referenced as Contribution (C1) in this

paper.
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IV. AUTO-TUNING

This Section presents a novel frequency domain-based
auto-tuning approach for structured LPV MIMO controllers
based on the control interconnection illustrated in Figure 2.
Consider the non-convex objective function:

min [ {MHy .o + Asvan, (11)

where {M;}?_; denotes a collection of weighted generalized
plants, and Ag,p represents a stability constraint. Notably,
the objective function seeks to minimize the £.,-norm of the
set of weighted plants through optimization of the parameter
matrix R, while penalizing closed-loop stability through
Astap- Note that in case closed-loop stability is ensured, the
L -norm corresponds to the H.-norm, i.e., local Lo-gain.

A. Stability Analysis

In this Subsection, an easy to check stability verification
approach is presented which solely relies on IFRFs, and it is
based on the principles of the Nyquist theorem, see [17].
Closed-loop stability is assessed through the set of local
MIMO loop transfers:

{Li}ic, = {PiKi}is. (12)
The generalized Nyquist theorem employs Cauchy’s argu-
ment principle as a pivotal mechanism to ascertain the count
of closed-loop poles situated within the D-contour, which
delineates the right half of the complex plane, see [6]. It
is important to note that in the context of MIMO systems,
poles positioned along the imaginary axis are encompassed
within the D-contour. Let P, denote the number of open-
loop poles of {L;}_, that reside within the D-contour. Then,
the system is closed-loop stable if and only if the image
of {det (I + L;(jw))}", makes P, counterclockwise encir-
clements of the origin and does not pass through the origin
as w traverses the D-contour in clockwise direction. Note
that the image of {det (I + L;(jw))}?_; can be constructed
through 1FRFs at the observed frequency points, allowing for
the assessment of local closed-loop stability. However, anal-
ysis of the encirclements made by {det (I + L;(jw))}™,
presents a significant computational challenge. Specifically,
the presence of the large number of integrators in MIMO
systems, originating from RB modes and integral action
of the structured feedback controller, results in the low-
frequency behavior of the image exhibiting computationally
unreliable characteristics, as the amplitude tends toward
infinity. As a solution to this issue, a novel extension of the
factorized Nyquist check is presented which decomposes the
contour into a more computationally attractive alternative.
Note that this is a generalization of the factorized Nyquist
theorem, see [17], towards full block MIMO controllers.
For a given local dynamics 752‘, consider the local MIMO
interaction term F;:

E; = (75i/€i - 75JQ> (ﬁi/@)il )

where K is a full-block MIMO controller and:
P; = diag({P}750),  K; = diag({K7}ID), (14)
which allows for decomposition of the Nyquist criterion as:
I+ Pk = (I+ ET) (I+PiKy), (15)

13)

where 7, = 751'/@(1 + ﬁil@i)_l. This reformulation results

in a decomposition of the stability assessment as:
NRB

det (I +L;) = det (I + ET) - [[ (1 + ﬁg'f/cg’j) . (16)
j=1

From (16) it is observed that afssessing the stability of
det(I+L;) is decomposed into n, +1 encirclement checks,
whereby the parts containing integrators are decoupled into
SISO checks, ensuring the computational feasibility of the
algorithm. The extended stability check for full block MIMO
controllers based on IFRF data corresponds to Contribution
(C2) of this paper.

B. Performance Shaping

In this Subsection, a norm-based performance optimization
approach is presented, with particular reference to the set
of weighted closed-loop IFRFs {M;}? ; in (11). The non-
convex nature of the cost function permits decomposition of
the commonly employed 4-block shaping configuration, see
[18], into four distinct shaping problems sharing common
controller parameters. In this context, by selecting the per-
formance channels as w(t) = (n(t) d(t) n(t) d(t))"T and
2(t) = (e(t) e(t) u(t) u(t))", as shown in Figure 2, the
following set of weighted closed-loop dynamics is obtained:

M}y, = {Wz - diag (Si,’CiSmSﬂSiJCiSﬂSi) };1 , (A7)

where W, = diag(W?S, WKS WSP WKESP) corresponds to
an output shaping filter and {S;}7, = {(I + P:K;) "'} ,.
Note that the partitioning of the shaping loops yields in-
creased flexibility in the design of W, due to the decoupling
of the closed-loop sensitivities. To capitalize on the non-
convex characteristics of (11), the shaping filters are designed
as piece-wise affine functions of frequency, thereby afford-
ing increased design flexibility compared to conventional
frequency-domain based shaping filters. In this context, the
sensitivity shaping filter W.° is designed to be of form:

(@ top)® s < Yhw
WZS:KS-diag<{ e M ws C*), (18)
, else

where K is set to 0.5/ to impose a 6dB upper-bound on
the sensitivity, w{ , corresponds to the target bandwidth of
the i-th RB channel and o > 1 is a tuning parameter that is
used for sharpening of the sensitivity constraints. Similarly,
the shaping filter for the complementary sensitivity W 5%
is defined as:

= —<—if waiwa
WESP Z K, - diag ({wa b > (19)

7

where K, is typically chosen as 0.5] to place a 6 dB
upper-bound on the complementary sensitivity. The control
sensitivity shaping filter WX is designed of the same
structure as (19). The design of K, involves channel scaling,
accomplished by setting K, = diag(abs((P*(jwpw)))) for
all i € [1 ng,]. This selection corresponds to the worst-case
gain concerning the modulus margin at the target bandwidth
wi ., with an additional 6 dB margin applied on top of
the filter. In a similar manner, the scaling of the process
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sensitivity is achieved by K, = diag(abs((P* (jwpw)))™ 1),
where the shaping filter for the process sensitivity W27
corresponds to:

o sh) | if <
WSP = K, - diag f if w>wl al. (20)
1, else

C. Solving the optimization problem

To facilitate the auto-tuning of the structured LPV feed-
back controller, first, a desired feedback control structure
must be specified according to the controller parameteri-
zation presented in Section III. Next, a set of weighted
generalized plants is constructed by collapsing both the LFRs
of the structured controller, and the desired shaping filters,
e.g. (18), (19) and (20), into a weighted generalized plant
representation. The resulting generalized controller K takes
the form of a diagonal gain matrix comprising the controller
parameters to be optimized. To optimize the non-convex cost
function (11), we propose a two-step optimization strategy
to converge towards a globally sub-optimal solution, aiming
to minimize the H..-norm of the weighted plants {M;}? .
This objective is achieved by penalizing closed-loop stability
through the constraint Ag,p, which is evaluated using (16).
If the closed-loop is stable, Agi,p is excluded from the
cost function; however, in the case of instability, Ag,p is
assigned a high-cost penalty. The optimization process is
initiated with particle swarm optimization (PSO), a gradient-
free optimization algorithm well-regarded for its ability to
explore the global search space for optimal parameters, see
[19]. Nevertheless, due to the random exploration of PSO,
it can reach the neighborhood of the global optimum but its
asymptotic convergence is slow and can only be guaranteed
in a probabilistic sense. Consequently, a secondary optimiza-
tion step is introduced, employing gradient-descent method-
ologies, particularly the BFGS optimization technique, see
[20]. This step is initialized with the PSO-based solution,
thereby improving cost optimization by convergence towards
a minimum, therefore satisfying (R1) and (R2).

D. Controller implementation

In this subsection, a novel discretization approach is
introduced that maintains the parameterization of CT con-
trollers, preserving their physical interpretation in the result-
ing discrete-time (DT) domain. Leveraging the modularity
of the structured controller design outlined in Section III,
the LFR representation of the controller is discretized. The
resulting DT controller is obtained by collapsing back the
CT parameters obtained from auto-tuning. Consider the CT
state-space representation of the transfer function (10):

A; B
-1 i i
Is *( C. D, >,
where s € C is the complex frequency and « is the star
product. Note that in the time-domain, s~! is replaced by an

integrator, expressed as the operator 6~!. Inspired by [21],
to maintain the CT parameterization of the controller, our

2y

objective is to articulate the discretization utilizing a time-
domain operator, as opposed to employing matrix operations
to transform the state-space realization to the z-domain.
Consider the Tustin discretization, which corresponds to

2 z—-1 2q—1

S = —— —_—
Tsz+1 Tyqg+1’

where Ty is the sampling time, ¢ denotes the forward time-
shift operator, and ¢ is the differentiation operator. Note that

here the equality corresponds to substitution of s and 6.
Then, we can provide a filter representation of the § provided

mapping

(22)

2q—-1

k =
y(k) Tog+1"

(), (23)

where k € Z{ is the discrete time and u(k), y(k) correspond

to the input and output of the operator, in the form of
Mk +1) = =A\(k) + T, u(k),

r(q) := 1 (24)
y(k) = —4A(k) + 2T u(k),

which is a time-domain equivalent of (22) in terms of an

r-operator and A(k) as an auxiliary state. The integrator,

i.e., 671, can be expressed by inverting the r-operator in the

time-domain as:

1
Ak +1) = A(K) + (k).
rH(q) = i (25)
u(k) = 2T\ (k) + §Tsy(k).
By substituting (25) for s~!, we obtain the Tustin-discretized
representation of (21), while preserving the CT controller

matrices: i B
—1 i i
Ir="(q) * ( C D, ) .

The interconnection of (26) is well-posed if and only if
det (] — Ai%) = 0, a condition automatically satisfied due
to the LFR form of the controller. Additionally, note that the
r~!-operator can be directly integrated into the optimization
of the CT controller parameters using (11), allowing for
direct DT controller synthesis through CT parameterization.
However, this adjustment necessitates adaptation of the sta-
bility analysis, as encirclements must now be considered
along the C'-contour, see [22], and the considered 1FRFs
must be treated as discrete-time ones. The presented DT
controller implementation corresponds to Contribution (C3)
in the paper.

(26)

V. EXPERIMENTAL VALIDATION
A. MMPA Prototype System

A MMPA system, illustrated in Figure 3, displays position-
dependent effects due relative actuation and sensing of the
moving-body. Comprising three key components, this system
includes a stator base with a double-layer coil array, a
lightweight translator equipped with a Halbach array of 281
permanent magnets, and a metrology frame featuring 9 laser
interferometers for precise displacement measurements of the
translator. For a comprehensive overview of such a prototype,
refer to [23].
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Fig. 3. Photograph of a moving-magnet planar actuator system prototype.

B. Experimental Results

To showcase the effectiveness of the structured feedback
control auto-tuning approach, two types of MIMO controllers
were synthesized employing the methodology detailed in
Section IV. Each controller configuration comprises a PI-
controller described by (6), augmented by three lead filters
of the form (7), and a notch filter of form (8). It is noteworthy
that for the robust controller, the notch filter is designed
invariant of position, while for the LPV controller, the notch
coefficients are assumed to exhibit a first-order polynomial
dependence on the scheduling vector, i.e., 7., 7. Synthesis
of both controllers utilized 11 IFRFs of the MMPA prototype
via the shaping approach outlined in Subsection IV-B. To
experimentally validate the efficacy of these controllers,
lithographic scanning motions were performed, see [1], in
both the z and y directions simultaneously, employing a
fourth-order motion profile, with amax = 108%, Umax =
0.2%, and maximum displacement in both z, y direction
of 0.05m.

The experimental results in Figure 4, obtained under iden-
tical conditions, compare the position tracking error in the
R, direction for two controllers: the robust controller (blue
graph) and the LPV controller (red graph). The R, axis was
chosen due to its high sensitivity to position-dependent flexi-
ble dynamics, see Figure 1. The LPV controller outperforms
the robust controller, reducing the worst-case error during
the scanning interval, i.e., constant velocity interval, from
11.55 x 1079 rad to 6.78 x 1076 rad, resulting in a relative
improvement of 43.10%. This is attributed to the position-
dependent notch filter used in the LPV controller, allowing
for increased rigid-body feedback control bandwidth.

Raw R, error
—Robust MIMO controller
—LPV MIMO controller

Scaled acceleration profile
Scanning interval

Error [rad]

0.1 0.15 0.2 0.25 0.3
Time [sec]

Fig. 4. Position tracking error in R direction during the constant velocity
interval of the motion profile with: (=) Robust controller, (=) LPV controller.

VI. CONCLUSION

This paper introduces a novel frequency domain auto-
tuning technique for structured LPV MIMO controllers,
relying solely on FRF data. The approach includes a new
controller parameterization scheme, enabling modular struc-
tured controller synthesis. Experimental validation on an
MMPA prototype demonstrates the method’s effectiveness,
with both robust and LPV MIMO controllers synthesized.
Notably, the LPV controller achieved a 43.10% relative
performance improvement in the R -direction compared to
the robust design.
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