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Abstract— Currently the large scale adoption of Battery
Electric Vehicles (BEVs) is limited due to cost, reliability and
lifetime considerations. The power converters, and more specif-
ically their semiconductor switching devices, are the second
most likely component to fail in a BEV because of the damage
caused by the current-induced temperature cycling. In this
paper we propose a novel hybrid frequency and time domain
control approach that integrates time-domain performance
requirements and frequency-domain reliability requirements,
based on a frequency model of the damage. The method is
applied to control the motor of a BEV and minimize the damage
experienced by the power converter.

I. INTRODUCTION

BEVs hold the potential to offer a sustainable alternative
to traditional Internal Combustion Engine Vehicles (ICEVs).
Today, major automotive manufacturers are transitioning
towards full-electric vehicle lineups. Together with the sci-
entific and technical communities, they face the challenge
of advancing the technology for the next generation of
automotive power converters and achieve a sustainable and
efficient system to encourage widespread BEV adoption [1]-
[4]. These challenges become even more critical when con-
sidering future Autonomous Mobility-on-Demand (AMoD)
services utilizing BEVs, as they demand significant compu-
tational and energy resources [5, 6].

Despite their numerous advantages, electric vehicles still
fall short in terms of reliability and longevity compared
to their combustion engine counterparts. The focus of the
present work is to address some of the limiting issues, specif-
ically for the power converter, by defining optimal operation
criteria to limit the damage experienced by the semiconduc-
tor components. The performance and experienced damage
of a power converter depends on the operating conditions
of semiconductor devices, which can vary depending on
the application and electrical loads. Specifically, the current
profile across the semiconductors determine the level of
stress and damage experienced. Regulating the current allows
to control the level of stress and thus damage experienced.

Responsible system operation contributes to reduce the
system long-term damage and to increase the its lifes-
pan. Reliability Control realizes this by employing damage
models of components and entire systems in the control
design phase. For example, in [7] authors model the actuator
degradation using a diffusion Wiener process and explore a
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new type of autonomous maintenance to extend the lifetime
of the system. Or in [8], a desired reliability is actively
controlled on a slow time scale in order to find a trade-
off between reliability and functionality for wind turbine
power generation. In [9], authors present an online MPC-
based framework that maximizes the lifetime of a multicore
real-time system by manipulating core frequencies.

In our previous work [10], we introduced the concept
of Reliability Control, and proposed an H.-control for-
mulation that minimizes the amplitude and frequency of
current cycling, thus resulting in a reduced thermal stress
and associated damage of the semiconductors. In this work,
we propose a hybrid formulation that integrates, in a multi-
objective MPC framework, tracking performance require-
ments encoded as time-domain constraints with reliabil-
ity requirements encoded as cost function damage in the
frequency-domain. The frequency domain formulation allows
to use the damage model in an online control policy, without
relying on traditional cycle counting.

The control policies, applied to BEV motor control are
tested on realistic case studies, where the standard drive cy-
cles speed profiles are tracked by means of the presented con-
trol algorithm under realistic load conditions. We illustrate
how the online reliability controller can effectively reduced
the experienced damage and increase vehicle availability and
lifetime without compromising tracking performance.

The paper is structured as follows: Section II describes the
model adopted in the control design, including PMSM motor
and electro-thermal models of the semiconductor devices
that will be used to capture the damage. Section III details
the semiconductor characteristics and its losses and damage
models in frequency domain used to estimate the device
reliability. Section IV present the main result, where the reli-
ability control policy is detailed. The controller performance
results are validated in Section V. Section VI is dedicated to
concluding remarks and future research directions.

II. SYSTEM MODEL

We consider a BEVs powertrain system as depicted in
Figure 1 and consisting of a Permanent Magnet Synchronous
Motors (PMSMs) driven by a Silicon Carbite (SiC)-based
voltage source converter (VSC) powered by a battery. For
the purpose of designing a motor controller that minimizes
the damage experienced by the converter, in the following
sections we define models for both components.



A. Motor model

Within the family of electric motors, permanent mag-
net synchronous machines (PMSMs) are characterized by
higher power density, stable output torque, lower noise level,
and good speed regulation performance, making them very
suitable for EV propulsion [11].In this work for simplicity
we consider a surface-mounted PMSM model where the
reluctance torque is neglected and the electrical torque re-
lationship with the current is linear:

3 .
% = 3 priy (1), M

where p is the number of pole pairs, Pr is the constant
magnetic flux of the permanent magnet and i, is the g-
component of the motor current.

The angular speed of the motor, @, (¢), is governed by the
following equation:

Jd)m(t) :Te_T]_Bfwm(t)a (2)

where 7j denotes the load torque, J is the moment of inertia,
B; is the viscous friction coefficient, and @, is the rotor
mechanical speed.
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Fig. 1. The PMSM drive system with speed tracking and semiconductors
reliability control scheme.

B. Electro-thermal model of semiconductor switches

The motor is powered by the converter current, that
produces thermal cycling in the semiconductor switches and
increases their junction temperature 7;. This temperature
variation can be modeled by a series thermal resistance and
capacitance network. For simplicity, we only consider the
following first order thermal model:

3)

where Rg and Cy are, respectively, the thermal resistance
and capacitance of the semiconductor, P(¢) denotes the
power loss in the device, and T, is the ambient (heatsink)
temperature.

For SiC MOSFET devices, the total average power losses
over the switching cycle is given by

P ronI[Z)rms + Py, 4

where r,, is the drain-source on-state resistance, Ip,,s de-
notes the rms value of the on-state current, and P, is the

switching loss which for SiC MOSFETs can be negligible
compared to the conduction loss.

III. DAMAGE ANALYSIS OF POWER SEMICONDUCTORS

Power semiconductor devices are the second most likely
component to fail in a power converter system due to their
vulnerability to current-induced thermal stress [12, 13]. The
most frequent failure in a semiconductor switch is bond wire
lift-off caused by stress cracks due to thermal cycling expe-
rienced by the device during operation. As the temperature
fluctuates, the mismatch in the thermal expansion coefficients
between the aluminium wire and the silicon results in stress
at the bond interface. Consequently, the bond wires become
disconnected, leading to an open-circuit failure [14, 15].

The number of cycles to failure can be estimated based
on a lifetime model. In this work we use the lifetime model
adopted by Semikron [16], to evaluate the semiconductor
devices reliability. This model considers only degradation of
the bond wire connection to the chip, since bond wire lift-
off is the dominant cause of failure in power switches. The
number of cycles to failure, Vg, of the power switches is given
by the following modified Coffin-Manson lifetime model:
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where T; and AT; are, respectively, the average and magni-
tude of the junction temperature cycle, and 7., is the duration
of the cycle. The remaining factors are constant parameters:
E, and xp are, respectively, the activation energy and the
Boltzmann constant, kgicx is the chip thickness factor, and
Ag, A1, Ty, A, a, C, v are empirically obtained constants
given in [16].

As the magnitude and average of the temperature cycles
increase, the number of cycles to failure decreases. For
example, if a SiC MOSFET is subjected to a temperature
stress of AT; = 40°, it can survive approximately 300k
cycles at an average junction temperature of T; = 150° and
a duration of #,, = 10s. However, at the same temperature
and cycle duration, but with a higher temperature stress of
AT; = 80°, the expected is only about 10k. It can also be seen
that as the duration of the temperature cycles, 7., increases,
the number of cycles to failure decreases slightly.

The accumulated damage Dy of the semiconductor switch
for one cycle of the mission profile can be determined via the
Miner rule, originally proposed by Palmgren and Miner [17]

as
1 }’li(S,')
Dot = , 6
ot ;Nf(s,-) (6)

where n;(S;) denotes the effective number of cycles at
stress level S; of the the stress history signal, and Ny(S;)
denotes the available number of life-cycles depending on
the material characteristics and can be calculated from (5).
The lifetime of the power switches can then be computed
by multiplying the inverse of Dy, with the duration of the



mission profile.

Remark: From the accumulated damage formula we can
infer that we can reduce the damage, either by reducing the
number of experienced cycles or by increasing the number
of lifetime cycles available to the semiconductors.
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Fig. 2. Fatigue Analysis: (a) Stress versus number-of-cycles-to-failure ( the
Wohler-curve or S-N curve), (b) The concept of the single-moment method
for damage estimation by decomposing the power spectral density (PSD)
of the stress signal into contribution of a set of narrow-band infinitesimal
spectrals.

A. Stress and lifetime model: S-N curve

In material fatigue analysis, the S-N curve, introduced by
Wohler, defines the relationship between the applied stress
cycle and the number of cycles to failure for a specific
material (see Figure 2a). This relationship can be described
by the following exponential equation, commonly known as
Basquin’s equation:

Ny = cuSHon, (7)

where cg;, and kg, are, respectively, the fatigue strength and
slope of the S-N curve.

Comparing the Basquin’s damage model with the model
described by (5) for semiconductor switches, the power law
relationship approximately holds for the temperature swing
AT; but not for the other two stress factors, i.e., the average
temperature and the cycle duration. In the following we will
work under the realistic assumption that the temperature
variation is the dominant stress factor and neglect the effect
of the other two factors variation on the number of available
life-cycles and hence on the damage.

B. Damage estimation in frequency-domain

The damage formula defined in (6), requires the knowl-
edge of the effective number of cycles n;(S;) at stress level S;.
This is obtained by counting cycles of different stress level
in the stress history. In practice cycle counting algorithms,
such as the Rainflow [18], are employed. As an alternative to
those traditional time-domain nonlinear approaches, spectral
methods in frequency domain are employed to estimate 7;(S;)
and thus fatigue damage without the drawbacks of counting
algorithms such as computational complexity.

In this work, we will employ the frequency domain based
“single moment” method described in [19] to model the dam-
age. This method considers the stress load signal as a uniaxial
stochastic process, and estimates the fatigue induced damage
as a sum of damage contributions of narrow-band processes,
defined by decomposing the original power spectrum in to
infinitesimal narrow-band PSDs with bandwidth of Aw (see
Figure 2b). In [20], authors show that, for small values of the
S-N exponent (kg ~ 3), the single moment method provide a
good approximation of the damage obtained via the Rainflow
based time-domain approach for most cases.

Using the single moment spectral approach, the total
damage is then computed as

N 2 ]“Tn
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where the damage D; is interpreted as contribution of the
infinitesimal power spectrum at around frequency @j:

D; @<,/2S(wi)Aw)kS"r<1+]§‘>, 9)
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where S(®) is the PSD of the stress signal, which in the case
of semiconductor damage, would be the temperature signal,
and I' is the gamma function.

IV. RELIABILITY CONTROL POLICY

Equipped with the models described in the previous sec-
tion, we are now ready to formulate the control design
problem. The reliability control policy, has the objective to
minimize the damage of the semiconductor switches while
fulfilling the speed tracking requirement. Using the damage
model (8), we define the objective function as
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where the PSD term, S(@;), is approximated by the energy
spectral density of the temperature signal. In other words,

: (1n
NT;
where N denotes the number of frequency bins, which is
equivalent to the length of the prediction horizon, and T
represents the sampling time.

The relationship between junction temperature, T;(j®)
and the average power over one switching cycle is given
as

S(or) ~ — [T (jor)|*,
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where k, is the torque constant of the motor.
The discrete Fourier transform (DFT) of the torque-
squared profile is given by

T(jo)
(12)

N-1
T}y = ) Tolke T, (13)
k=0



where ; = 2% r(i—1) fori=12,.N.

Remark: Mlmmlzmg the cost function (10) corresponds
to minimizing the H,-norm of the current profile with a band-
pass weight profile defined by the fractional-order band-pass
filter defined by the transfer function G(jo):

1
o)k
G(jow) = I+ joReCo” (14)
This filter confines the damping effect of the controller to
the thermal bandwidth: current fluctuations at frequencies
higher than the thermal bandwidth have minimal impact on
the damage, and are therefore discarded. Moreover, low-
frequency variations of the current result in fewer cycles. As
previously discussed, this spectral representation of fatigue
corresponds to an approximation of the Coffin-Manson fa-
tigue model given in (5), in that considers only the variation
of the stress signal and neglects the signal bias as a stress
factor.

Using the proportionality of the current to the electrical
torque, equations (1), the dependency of the temperature on
the torque, and omitting the constant terms, equation (12),
the cost function defined in (10) can be rewritten as:

N 2
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i=1
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A. Receding horizon control

We are now ready to formulate the receding horizon
control policy to minimize the damage over a prediction
horizon of length N. To better optimize and plan the thermal
cycling of the devices over the prediction horizon, we assume
that the reference trajectory for the motor speed and the
torque load are approximately known at every step for a
time interval of the length of the horizon. These assumptions
are reasonable in the majority of real-world scenarios. For
instance, the adaptation of intelligent speed assistance (ISA)
systems into vehicles enables the reference speed to be set
automatically according to the path speed limits and the
traffic conditions ahead. Furthermore, the load torque can be
continuously estimated using the system model parameters.

Since the cost function, defined in (10), is not convex in T,
we linearize Eq. (13) at each prediction step by reformulating
the torque profile as follows:

7[0] = 19 + 67[0]
7[1] = 7[0] + & 7[1] = 19 + 6 7[0] + 87[1]
(16)

N—I
T[N —1]=7[0]+ ) &[],
i=0

where T[k] and 87[k] denote, respectively, the torque profile
and its deviation over the prediction horizon, and 7y is the
the electrical torque, i.e. control variable applied to the motor
at the previous step.

With the torque profile decomposed according to (16), the
linearized DFT of the torque is given as

N—-1
T}~ L % <1+T Z 8Tk ) e Ok (17)
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Substituting (17) and (12) in (10), and omitting the con-
stant coefficients, the objective function can be rewritten as
follows:
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Note that the first frequency sample, i.e. w; =0, is omitted
as it does not contribute to the cost.

The amplitude of . {2} w40 an be expressed in terms
of its real and imaginary parts:
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Next we include the speed tracking requirements encoded as
constraints. Similar to (16) we define w,,[k] to be the speed
profile over the prediction horizon. From Eq. (2) the discrete
speed dynamic equation is given by:

19)

T N
On[k] = o[k — 1]+ = (2[k] = 7)), (20)
where 7; is the load torque estimate updated at every time

sample.
The speed tracking requirement is then expressed as:

Ok — oy [K]| < eap/[k], k=0,...,N—1, (1)
where (o,:ff [k] denotes the required speed profile over the

prediction horizon, and € is a weight that calibrates that
degree of flexibility in relaxing the tracking performance
requirements to increase the system reliability.

Rewriting the speed according to the expression (20) in
(21) leads to the following convex constraint in terms of the
torque profile:

kT kST[K'] — kf,
‘(DmoJrJ ( 0+Z 1)

(22)
— ¥ [k — 1]’ <ewk—1], k=1,..,N,
where @, is the motor speed measured at the previous time
step.
With the reliability objective defined in (18) and the
performance constraint as per (22), the optimization problem
can be setup as the following QP problem:



— Reliability

minimize J(87,)
67, (23)
subject to constraint (22).

In the following we refer to “Reliability Control” as the
control policy designed according to (23), in contrast to
“Performance-oriented Control”, designed to minimizing
the tracking error through the following LP problem:

— Performance
minimize €
8T, €

(24
subject to constraint (22).

We mention the performance-oriented control design as
an extreme case to demonstrate how much the lifetime can
be improved by integrating the reliability feature into the
control framework and allowing the tracking requirement to
vary within a defined limit.

V. SIMULATION RESULTS

To evaluate the performance of the two control methods,
we implement both controller on an automotive drivetrain
simulation and run a series of test simulations using the
Worldwide harmonized Light vehicles Test Cycles (WLTC)
as the reference speed profile (see Fig. 3). This speed profile
is frequently used by vehicle manufacturers as a standard
driving condition to determine the fuel efficiency and emis-
sions of vehicles. The WLTC driving cycle is composed
of four driving phases: urban, suburban, rural and highway,
which simulate different speeds ranging from 0 to 140 km/h.

The receding horizon controller updates the current (or
torque) reference to the inner loop controller at a rate of 1
Hz. This update rate is sufficient to capture the temperature
dynamics with a time constant of 0.45 seconds (Nyquist rate
of 0.7 Hz). The number of frequency samples is chosen as
N=36, which gives a prediction horizon of length 36 seconds.
The average computation time is 1 millisecond, as measured
on a Windows PC with an Intel Core i7 1.1GHz processor
and 16GB of RAM. The optimization problems are solved
using CVXGEN fast QP solver in Matlab [21].

Figure 3 compares the speed tracking performance ap-
plying two different control strategies. When employing the
performance-oriented controller, the simulated speed closely
matches the reference trajectory, with a minimal root mean
square error (RMSE) of 0.02 km/h. In contrast, the reliability
controller yields a larger speed tracking RMSE of 1.8 km/h,
as expected. Figure 4 compares the PSD of the current-
squared profiles for the two control strategies. The weight
function G(w) is also plotted in this figure. The objective of
minimizing the total damage, i.e. the area beneath the curve,
results in a decrease in the value of damage contribution at
some frequencies. Applying the reliability control, the total
damage reduces by approximately 60%.

Figure 5 illustrates the resulting current profiles across the
entire drive cycle for the two control strategies. Recalling that
the accumulated damage is proportional to the temperature
fluctuation and hence current fluctuation, the relative damage
assessment of the two control strategies can be done by

TABLE I
COMPARISON OF THE TWO CONTROL STRATEGIES.

Quantiy Control  formance (24)  Reliability (23)
Tracking RMSE 0.02 km/h 1.8 km/h
Damage (PSD) - -62%
Damage (Rainflow) - -66%
Battery throughput 2.5 Ah 2.1 Ah

+/-5%
reference

——— performance-oriented
reliability-aware

L L
0 200 400 600 800 1000 1200 1400 1600
Time [sec]

Fig. 3. Speed tracking performance for two different control policies
compared to the reference WLTC drive cycle.

comparing the current profiles. Notably, the reliability control
strategy demonstrates reduced torque fluctuations compared
to the performance-oriented control. Figure 6 displays the
junction temperature of a single SiC MOSFET for each
control scenarios. It is evident that the reliability control
policy leads to reduced temperature fluctuations. In all the
frequency plots we can observe the selective bandpass effect
of the reliability control policy. Moreover, recalling the
formula of the accumulated damage, we can observe that
the reliability control policy reduces the damaging effect
of the stress signal by: (i) decreasing the amplitude of the
critically damaging stress thermal cycles that correspond to
low number of available life-cycles Ny, thus transforming
those cycles into less damaging ones with a corresponding
higher value of Ny; (ii) reducing the overall number of
cycles. To analyse the reliability control policy impact on the
MOSFET lifetime, the total damage is calculated using both
the spectral method as per (8), and the Rainflow-counting
algorithm given in (6), and including the variation of AT},
T; and t,,. Both methods of damage calculation shows a
reduction of approximately 60% with the reliability control
policy. Thus, under the performance-oriented control action,
the SiC MOSFETs are predicted to endure for approximately
5000 drive cycles, which is equivalent to 2500 hours. How-
ever, when reliability control is used, the power modules
would last for 15,000 drive cycles, or an equivalent of 7600
hours. Since the realistic drive-cycle of a vehicle is different
from the WLTC, these lifetime values do not accurately
reflect the actual lifetime prediction of the semiconductor
switches. Nevertheless, these values provide a useful measure
for evaluating different control policies. The performance and
reliability metrics are summarized in Table I.
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Fig. 5. The resulting current (iy) profile for the two control strategies.

VI. CONCLUSION

As for many engineering systems, the control of BEVs
power trains focuses traditionally on performance and at
best efficiency requirements. This paper employs the concept
of reliability control, where the operation of BEVs power
converters is optimized to minimize damage, and maximize
lifetime, of individual components, i.e. power semiconductor,
and of the system, i.e. converter. In particular we proposed
a control policy that integrates the tracking and reliability
requirements in an hybrid time- and frequency-domain MPC
framework that enables to efficiently and reliably operate
BEV power converters under varying driving conditions. The
proposed approach offers a novel perspective and insights
into the sustainable operation of BEVs, paving the way for an
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Fig. 6. Representation of the SiC MOSFET junction temperature variation,
with a particular focus on relevant segments.

entire suite of studies toward a more environmentally aware
and reliable automotive future.
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