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Abstract— Quadratic performance indices associated
with linear plants offer simplicity and lead to linear feed-
back control laws, but they may not adequately capture the
complexity and flexibility required to address various prac-
tical control problems. One notable example is to improve,
by using possibly nonlinear laws, on the trade-off between
rise time and overshoot commonly observed in classical
regulator problems with linear feedback control laws. To
address these issues, non-quadratic terms can be introduced
into the performance index, resulting in nonlinear control
laws. In this study, we tackle the challenge of solving
optimal control problems with non-quadratic performance
indices using the closed-loop neighboring extremal optimal
control (NEOC) approach and homotopy method. Building
upon the foundation of the Linear Quadratic Regulator
(LQR) framework, we introduce a parameter associated
with the non-quadratic terms in the cost function, which
is continuously adjusted from 0 to 1. We propose an
iterative algorithm based on a closed-loop NEOC frame-
work to handle each gradual adjustment. Additionally,
we discuss and analyze the classical work of Bass and
Webber, whose approach involves including additional
non-quadratic terms in the performance index to render the
resulting Hamilton-Jacobi equation analytically solvable.
Our findings are supported by numerical examples.

I. INTRODUCTION

Linear optimal control offers numerous advantages
and serves as a foundational concept in optimal con-
trol theory. However, in many scenarios, non-linear
controllers are expected to outperform even the best
linear controllers. A particularly noteworthy scenario
where linear feedback control falls short is the common
tradeoff between rise time and overshoot observed
in closed-loop system step responses. It is observed
that achieving a faster rise time often leads to greater
overshoot. Similarly, when a closed-loop system in a
non-zero initial state needs to decay to zero without
any external input, a similar tradeoff arises: faster
decay to zero results in a potentially higher overshoot.
Overshoot is one of the key design requirements and
poses significant challenges in various applications.

It is widely recognized that non-linear feedback
controllers offer a potential improvement in dealing

This research is supported in part by the NASA University
Leadership Initiative (ULI) project (grant no. 80NSSC20M0161), the
NSF project (grant no. 2120430) and a gift funding from Northrop
Grumman Corporation.

Ayush Rai and Shaoshuai Mou are with School of Aeronautics
and Astronautics, Purdue University, West Lafayette, IN 47906 USA;
{rai29, mous}@purdue.edu

Brian D. O. Anderson is with the School of Engineering,
The Australian National University, Acton, ACT 2601, Australia;
brian.anderson@anu.edu.au

with the tradeoff problem, as demonstrated in [1]–[5].
These controllers exhibit a unique behavior where the
control gain increases with larger errors and decreases
with smaller errors. Consequently, larger control gains
lead to reduced rise/decay times. By also dynamically
adjusting the gain based on the magnitude of the error,
non-linear controllers have the capability to mitigate
overshoot. The introduction of non-quadratic terms in
the cost function poses however a significant challenge,
as it transforms a Linear Quadratic Regulator (LQR)
problem into a general optimal control problem, often
involving partial differential equations. The theoretical
foundations for solving these problems may rely on
constructing a Lyapunov function for the system that
is also the steady-state solution of the Hamilton–Jacobi
equation [1], [2], [5], an often challenging task.

In seminal works such as [1], [2], researchers
demonstrated the analytical solvability of specific non-
quadratic control problems. This was accomplished
by leveraging the compositional structure of the non-
quadratic terms, which consist of finite or infinite series
of non-negative definite homogeneous multinomials.
Nevertheless, while this theoretical framework is com-
pelling, it mandates the incorporation of even more
non-quadratic terms into the performance index simply
to secure an analytic solution thereby rendering it
somewhat artificial. [2].

In this paper, we provide a different approach to ad-
dress the optimal control problem with a non-quadratic
performance index. Instead of offering analytical so-
lutions, we propose a numerical algorithm to directly
tackle the resulting non-linear control challenge. Recent
studies by Rai et al. [6], [7] introduced a method to
handle neighboring extremal optimal control (NEOC)
in cases where the original control law is a closed-loop
feedback. This method revolves around adapting the
optimal control law to parameter changes within the
system dynamics or cost function without necessitating
the re-solution of the optimal control problem. Initially,
we formulate the problem as an LQR, using only the
quadratic term in the cost function to establish a base-
line. Subsequently, we introduce a parameter associated
with the non-quadratic terms in the cost function. We
utilize the NEOC and a homotopy approach to solve
the non-quadratic optimal control problem by adjusting
the parameter from 0 to 1 in a series of small steps.
In contrast to prior methodologies [1], [2], [8], our
contribution encompasses two key aspects:

1) We propose a numerical approach capable of
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handling a wider array of non-quadratic terms in
the performance index for a given LQR problem,
extending beyond solely non-negative definite ho-
mogeneous multinomials.

2) Our approach provides freedom to specify the
cost functions arbitrarily and does not necessitate
the inclusion of additional terms of unknown
consequence in the performance index to obtain
the solution.

II. Problem Formulation

We first recall the standard linear result, see e.g. [9].
Consider the linear time-invariant (LTI) system

ẋ = Ax + Bu x(0) = x0 (1)

where x ∈ Ω ⊂ Rn, A ∈ Rn×n, B ∈ Rn×m, and u ∈ Rm.
We assume that Ω is a compact set and that the system
is controllable. Consider also a nominal performance
index to be optimized

V
(

x0, u(·)
)
= lim

T→∞

∫ T

0
[∥u(t)∥2 + x⊤(t)Qx(t)]dt (2)

where Q = Q⊤ is non-negative definite, and such
that [A, Q1/2] is observable. With P the unique positive
definite solution of the steady state Riccati equation

PA + A⊤P − PBB⊤P + Q = 0, (3)

the control law given by u = −B⊤Px is optimal, linear,
and provably stabilizing. The optimal performance in-
dex is x⊤(0)Px(0). As explained in [9], this result is a
particular example of the applicability of a Hamilton-
Jacobi equation to solve the optimal control problem.
The optimal performance expressed as a function of the
(initial) state, call it ϕ(x0), satisfies, with m(x) = x⊤Qx,
the steady-state Hamilton-Jacobi equation which is

[∇ϕ(x)]⊤Ax − 1
4
[∇ϕ(x)]⊤BB⊤∇ϕ(x) + m(x) = 0 (4)

and in this case, ϕ(x) = x⊤Px. Further, the optimal
control law is given by the Hamilton-Jacobi theory as

u∗ = −1
2

B⊤∇ϕ(x). (5)

It is well known that the optimal control law for the
nominal performance index (2) can result in significant
overshoots in variables of interest. Motivated by [1],
we introduce non-quadratic terms into an otherwise
quadratic performance index in order to reduce the
overshoot. We consider the new performance index

V
(
x0, u(·)

)
= lim

T→∞

∫ T

0
[∥u(t)∥2 + x⊤(t)Qx(t) +

N

∑
ν=2

ξ2ν(x(t))]dt

(6)

where ξ2ν(x) is an arbitrary non-negative definite ho-
mogenous multinomial of degree 2ν in the entries of x.
The purpose of the arbitrary ξ2ν(x) forms (which are of
fourth or higher even degree) is to give extra weighting
to certain components of x, at least when they are large.

Remark 1: We restrict the non-quadratic terms to
homogeneous multinomials to facilitate a compara-
tive analysis with [1]. For the NEOC approach, we
only need to assume that the non-quadratic term is a
smooth, Lipschitz continuous on Ω, non-negative defi-
nite, radially increasing function that is strictly convex
(i.e., has a positive definite Hessian) at the origin. These
conditions are used to ensure the existence of a stable
and optimal control law and in the development of the
NEOC approach [6].

Our objective here is to find the admissible control
law1 that minimizes the performance index given in (6).
Note that an admissible control law results in a finite
integral in (6) for all x(0).

III. Including nonlinear control terms

In this section, we will review a result due to [1] that
shows how the introduction of non-quadratic terms
(including but not limited to ξ2ν(x)) into an otherwise
quadratic performance index for a linear system can
result in an analytically computable feedback control
law consisting of a linear part (due to the quadratic-
only terms in the performance index) and a nonlinear
part associated with the non-quadratic terms.

Reference [1] introduces a modification to the perfor-
mance index, which becomes for an arbitrary integer
N ≥ 2:

V
(
x0, u(·)

)
= lim

T→∞

∫ T

0
[u2(t) + x⊤(t)Qx(t)+

N

∑
ν=2

ξ2ν(x(t)) +
1
4
[

N

∑
ν=2

B⊤∇ϕ2ν(x(t))]2]dt, (7)

where ϕ2ν(x) is also a non-negative definite multino-
mial and homogeneous of degree 2ν in the entries of
x, and is defined by

[∇ϕ2ν(x)]⊤[A − BB⊤P]x = −ξ2ν(x) (8)

or, what is equivalent,

ϕ2ν(x) =
∫ ∞

0
ξ2ν(y(t))dt (9)

where ẏ = (A − BB⊤P)y and y(0) = x.
The purpose of the fourth summand in the perfor-

mance index (7) is to adjust the performance index so
as to allow a closed-form solution of the steady-state
Hamilton-Jacobi equation. Including both the original
and the supplementary non-quadratic terms in the
performance index introduces nonlinear terms of odd
degrees in the optimal control law. The following theo-
rem summarizes the solution to this modified optimal
control problem. The claims of the theorem, excluding
those referring to bounded-input and bounded-state
stability, are developed throughout the paper [1] but
are consolidated in a concise manner in our proof.

1A control law is admissible if it is continuous on Ω, u(0, α) = 0,
it stabilizes the system, in the sense that x(t) → 0 as t → ∞, while
also ensuring that x(t, α) ∈ Ω ∀t, and it results in a finite integral in
(6) for all x(0, α) in Ω.



Theorem 1: Consider the system (1) with [A, B] con-
trollable and associated performance indices (2), where
Q is nonnegative definite and such that [A, Q1/2] is
observable, and (7), where ξ2ν(x) is a nonnegative
homogeneous multinomial form of degree 2ν. With
P the unique positive definite solution of the Riccati
equation associated with the linear quadratic problem,
the nonnegative homogeneous form of degree 2ν des-
ignated by ϕ2ν(x) is defined by (8) and (9), and the
optimal performance index ϕ(x0) is given by

ϕ(x) = x⊤Px +
N

∑
ν=2

ϕ2ν(x) (10)

while the optimal control law is given by

u∗ = −1
2

B⊤∇ϕ(x) = −B⊤Px − 1
2

B⊤
N

∑
ν=2

∇ϕ2ν(x).

The associated closed-loop system is globally asymp-
totically stable, and exponentially stable over an ar-
bitrarily large bounded set containing the origin; the
associated forced system with external input v(·)

ẋ = Ax − BB⊤Px − 1
2

BB⊤
N

∑
ν=2

∇ϕ2ν(x) + Bv (11)

is bounded-input, bounded-state (BIBS) stable [10], i.e.
there exists KL-function β and K-function γ such that

∥x(t)∥ ≤ β(∥x0∥, t) + γ(∥v∥). (12)
Proof : To prove the theorem, we shall first show

that the Hamilton-Jacobi equation (4) is satisfied with
m(x) corresponding to the last three summands in the
index (7). Then the different stability claims will be
addressed.

Observe using the definition of ϕ(x) in the theorem
statement and the Hamilton-Jacobi equation that

[∇ϕ(x)]⊤Ax − 1
4
[∇ϕ(x)]⊤BB⊤[∇ϕ(x)]

=x⊤[PA + A⊤P − PBB⊤P]x

+
N

∑
ν=2

[∇ϕ2ν(x)]⊤[A − BB⊤P]x − 1
4
[B⊤

N

∑
ν=2

∇ϕ2ν(x)]2,

=− x⊤Qx −
N

∑
ν=2

ξ2ν(x)− 1
4
[B⊤

N

∑
ν=2

∇ϕ2ν(x)]2.

The last equality is obtained from the defining equation
(8) and the Riccati equation satisfied by P as given in
(3). Since the right-hand side is precisely −m(x), this
shows that the Hamilton-Jacobi equation is satisfied.

To establish global asymptotic stability, observe first
that the function ϕ(x) is positive definite, since x⊤Px
has this property and the definition of the ϕ2ν(x)
functions ensures they are nonnegative. Adopt ϕ(x) as
a trial Lyapunov function for the closed-loop system
obtained with the optimal law, which is

ẋ = Ax − 1
2

BB⊤∇ϕ(x) = Ax − BB⊤Px − 1
2

BB⊤
N

∑
ν=2

∇ϕ2ν(x)

(13)

It is readily established that along trajectories of the
closed loop system, there holds

d
dt

ϕ(x(t) = −m(x(t))− 1
4
[∇ϕ(x)]⊤BB⊤[∇ϕ(x)]

=− x⊤(t)Qx(t)−
N

∑
ν=2

ξ2ν(x(t))− 1
2
[

N

∑
ν=2

B⊤∇ϕ2ν(x(t))]2

This expression is clearly nonpositive, and from it, the
required global asymptotic stability follows (the Lasalle
theorem being used in case Q is not positive definite).

Exponential stability on an arbitrarily large bounded
set follows if the origin, which is the only equilibrium
point, is locally exponentially stable. This is equivalent
to the property that the closed-loop system linearized
around the origin is exponentially stable. From (13),
this closed-loop system is simply ẋ = (A − BB⊤P)x,
the stability of which follows from standard linear-
quadratic theory. For more details refer to Theorem 4.3
in [6].

The BIBS property comes as an immediate conse-
quence of the exponential stability claim. Consider rx >
0 and ru > 0 such that {∥x(0)∥ ≤ rx} ∈ Dx and
{∥v∥ ≤ rv} ∈ Dv. Given we have exponential stability
at the origin, there exists a Lyapunov function V(x)
such that c1∥x∥2 ≤ V(x) ≤ c2∥x∥2. Using the fact that
B is bounded and Bu is a Lipschitz map, we can directly
conclude from Theorem 5.1 in [11] that the system (11)
is BIBS stable and (12) holds. ■

Remark 2: We note that this approach imposes a
higher penalty than initially intended. While the ξ2ν

term penalizes states with a degree of 2ν, the additional
terms introduced (refer to (7)) penalize states with a
degree of (2ν − 1)2, and in a nontransparent manner.

We remark that [1] notes that the analytic solution
of (8) is possible. Since both ξ2ν(x) and ϕ2ν(x) are
homogeneous multinomials, (8) results in L equations
with L = n(n+1)...(n+2ν−1)

(2ν)! , which can be solved for L
unknowns by using the inversion of a square matrix.
However, it was pointed out that even for n = 6 and
2ν = 6, then L = 462. An alternative calculation in
[1] was also proposed that requires the knowledge
of the eigenvalues and left eigenvectors of A − BB⊤P
to construct the eigenfunctions of the operator ((A −
BB⊤P)x)⊤∇(·). This approach includes representing
or expanding ξ2ν(x) in terms of these eigenfunctions
and using obtained coefficients and eigenvalues of the
operator to construct ϕ2ν(x). This alternative approach
is appropriate for simple examples, but it is not scalable
and becomes challenging to solve when A − BB⊤P has
complex eigenvalues.

IV. Closed-loop NEOC

In this section, we revisit the principles of closed-
loop NEOC, which were originally introduced in [6],
[7]. The concept of neighboring extremal optimal con-
trol involves determining the adjustments needed in



an existing optimal control law due to changes in
parameters, such as initial conditions, dynamics, or
performance index. This concept was initially explored
in the 1960s and has since undergone substantial de-
velopment, particularly focusing on open-loop optimal
control laws. The framework of NEOC for closed-
loop laws was introduced in [7], where the authors
addressed the problem by utilizing the first variation of
the Hamilton-Jacobi equation and subsequently solving
the resulting linear partial differential equation.

Recall that our objective is to find the optimal control
law that minimizes (6). Since directly solving the new
non-quadratic optimal control problem is challenging,
we adopt an iterative approach by gradually transi-
tioning the solution from the LQR case (2) to the new
problem (6). We introduce a scalar parameter α that
serves as the means for this transition. To utilize the
iterative framework of NEOC and in preparation for
introducing a homotopy in the next section, we modify
the performance index (6) with the scalar parameter α
as

V
(

x0, u(·), α
)
= lim

T→∞

∫ T

0
[∥u∥2 + x⊤Qx + α

N

∑
ν=2

ξ2ν(x)]dt, (14)

where α ∈ [0, 1]. We note that α = 0 corresponds to the
originally designed LQR cost functional (2), whereas
α = 1 corresponds to the desired performance index
(6). For a specific value of α, the minimum performance
index ϕ(x, α) can be defined as the minimum value of
the cost function at the optimal u, expressed as:

ϕ(x, α) = min
u

V(x, u(·), α). (15)

Observe that one can rewrite (4) in parametrized form:
[∇ϕ(x, α)]⊤Ax+m(x, α)−1

4
[∇ϕ(x, α)]⊤BB⊤∇ϕ(x, α)=0, (16)

where m(x, α) = x⊤Qx + α ∑N
ν=2 ξ2ν(x), and the opti-

mal control law is given by u∗ = − 1
2 B⊤∇ϕ(x, α).

To study the consequence of small perturbation in
the parameter, we define a vector function ξ(x, α) by

ξ(x, α) =
∂ϕ(x, α)

∂α
, (17)

which also means that ∇ξ(x, α) = ∂∇ϕ(x,α)
∂α . Differen-

tiating the parameterized steady-state Hamilton-Jacobi
equation (16), we obtain:

∇ξ(x, α)⊤
[

Ax − 1
2

BB⊤∇ϕ(x, α)

]
= −∂m(x, α)

∂α
(18)

This means that formally there holds ξ(x, α) =∫ ∞
0

∂m(y,α)
∂α dt, with y(·) defined2 by ẏ = Ay −

1
2 BB⊤∇ϕ(y, α); y(0, α) = x.

The variation in optimal performance resulting from
a small adjustment δα away from the initial value α is
represented by ξ(x, α)⊤δα and the change in optimal
control law is given by

δu(x, α, δα) = −1
2

B⊤∇ξ(x, α)δα. (19)

2The stabilizing property of the control law is crucial here.

The NEOC law is derived by incorporating this adjust-
ment into the original feedback law, resulting in:

uNE(x, α̂) = −B⊤Px − 1
2

B⊤∇ξ(x, α)δα. (20)

Here α̂ = α + δα is the perturbed system parameter.

V. Numerical Algorithm

In this section, we first introduce a numerical algo-
rithm to obtain the NEOC solution for the modified
closed-loop optimal control problem (14) for a specific
value of α. This involves determining how the optimal
control law changes when the value of α is adjusted by
δα. Then, through the use of a homotopy, we gradually
vary α from 0 to 1, transitioning from LQR to solve the
original optimal control problem (6).

We model the minimum performance index of (14),
ϕ(x, α), as a sum of an infinite series. This series con-
sists of smoothly differentiable, linearly independent
weighted basis functions {ψi(x)}∞

i=1, each multiplied by
their respective coefficients {bi(α)}∞

i=1, which vary with
the parameter α. That means there exists some coeffi-
cients {bi(α)}∞

i=1 such that ϕ(x, α) = ∑∞
i=1 bi(α)ψi(x).

Note that these basis functions are chosen to ensure
that ϕ(x, α) belongs to the Hilbert space L2(Ω), ensur-
ing square integrability.

For any fixed α, we aim to find an appropriate
choice of the coefficient vector {wi(α)}r

i=1 that is a least
squares approximation over the whole set Ω for a given
choice of basis function of the following equation3

w(α)⊤∇Ψ(x)Ax + m(x, α)

− 1
4

w(α)⊤∇Ψ(x)BB⊤∇Ψ(x)⊤w(α) ≈ 0, (21)

where w(α) = [w1(α), ..., wr(α)]⊤ ∈ Rr, Ψ(x) =
[ψ1(x), ..., ψr(x)]⊤ ∈ Rr, and ∇Ψ(x) ∈ Rr×n. The
best least squares approximate solution is obtained by
choosing the coefficient vector w(α) to ensure that the
error between the left and right sides is orthogonal to
the basis functions [12]. Hence there holds〈

w(α)⊤∇Ψ(x)Ax, ψi(x)
〉

Ω
+ ⟨m(x, α), ψi(x)⟩Ω

− 1
4

〈∥∥∥B⊤∇Ψ(x)⊤w(α)
∥∥∥2

, ψi(x)
〉

Ω
= 0, (22)

for each i = 1, 2, . . . , r, where the inner product between
two continuous functions is defined as the integral of
the product of the two functions over the entire space
Ω. These equations constitute r linear equations in r
unknowns, which are the entries of w(α).4 The associ-
ated optimal control law approximation is obtained as
u(x, α) = − 1

2 B⊤∇Ψ(x)⊤w(α).
To determine the sensitivity of the optimal perfor-

mance index and its corresponding control law (17),

3To make the computation manageable, we truncate the infinite
series to a finite number of r terms.

4In [13], it is confirmed that the equation set is nonsingular,
ensuring that w(α) is well-defined.



we employ a calculation similar to (18). By differen-
tiating equation (22) with respect to α, we incorporate
derivatives of the weighting coefficients with respect to
the parameters, yielding r linear equations as follows:(

∂w(α)

∂α

)⊤

Ei = Fi, (23)

for i = 1, 2, . . . , r, where Ei and Fi are defined as

Ei =
〈
∇Ψ(x)Ax, ψi(x)

〉
Ω

− 1
2

〈
∇Ψ(x)BB⊤∇Ψ(x)⊤w(α), ψi(x)

〉
Ω

,

Fi =−
〈

N

∑
ν=2

ξ2ν(x), ψi(x)

〉
Ω

.

We have used here the definition of m(x, α) = x⊤Qx +
α ∑N

ν=2 ξ2ν(x). The variation in optimal control law can
be obtained using (19) under small perturbation δα:

δu(x, α, δα) = −1
2

B⊤∇Ψ(x)⊤
∂w(α)

∂α
δα.

Finally, we introduce the homotopy approach to
decompose the parameter change (α : 0 → 1) into
K distinct equal steps, each corresponding to a small
adjustment. To initialize the algorithm, we first deter-
mine the coefficient vector w0 that best approximates
the equation w⊤

0 Ψ(x) = x⊤Px. This approximation will
be accurate if the basis functions are multinomials. The
coefficient vector updates at each step as follows:

wk+1 = wk +

(
∂w(α)

∂α

)
1
K

.

After completing K iterations, the algorithm yields wK,
which provides an approximation of the minimum
performance index ϕ(x) of the original optimal control
problem (6). It is worth noting that the choice of K
depends on the complexity of the non-quadratic terms.

VI. Simulations

In this section, we provide two examples to illustrate
the design of nonlinear controllers using closed-loop
NEOC and homotopy. Specifically, we demonstrate
their application in reducing overshoot without signif-
icantly increasing the rise/decay time.

Example 1: We first consider the simple example
from [1], where the system is governed by dynamicsẋ1

ẋ2
ẋ3

 =

0 1 0
0 0 1
0 0 0


x1

x2
x3

+

0
0
1

 u,

where x1, x2, and x3 represent the position, velocity,
and acceleration, respectively. We consider a regulator
problem where the task is to drive the position to
zero (from some initial value x1(0)). Compared to an
LQR controller, the objective is to design a non-linear
feedback controller that reduces the overshoot of x2
while ensuring it does not significantly increase the
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Fig. 1: Example 1. Comparison of the overshoots in (a)
velocity, acceleration, and (b) position for linear and
non-linear feedback controllers with the initial state
[x1(0), x2(0), x3(0)] = [5, 0, 0].

decay time of x1. Overshoot of x3 is not explicitly
specified as a design objective, but the designs also
result in its improvement.

For the benchmark, we employ an LQR with Q = I3.
To mitigate the overshoots in x2, we introduce the
term x2

1x2
2 in the performance index (6). This term

penalizes high values of x2 (velocity) especially when
the position error x1 is large, while also balancing
the decay time of x1. For comparative analysis, we
examine trajectories from three controllers: the LQR,
the Bass and Webber controller, and the NEOC control
law (with basis functions of even-degree multinomials,
up to degree 4). Both non-linear controllers employ
the same additional non-quadratic term. Trajectories of
the states are illustrated in Fig. 1a and Fig. 1b. No-
tably, both non-linear feedback controllers yield similar
trajectories despite employing different methodologies.
They effectively reduce overshoots in both x2 and x3
while extending the decay time of x1. It is notewor-
thy that both non-linear controllers are cubic in the
state. Subsequently, we adjust the non-quadratic term
in the performance index to x2

1x4
2 for both the non-

linear controllers. For NEOC, we restrict the choice
of basis functions to degree 4. As illustrated in Fig.
1a, this adjustment further reduces the overshoot with-
out significantly affecting the decay time for NEOC,
while no substantial change is observed for the Bass
and Webber approach. Note that the NEOC controller
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Fig. 2: Example 2. Comparison of the overshoot in
pendulum angle and cart position for linear and
non-linear feedback controllers with the initial state
[x(0), ẋ(0), θ(0), θ̇(0)] = [0, 0, 0, 5].

retains a cubic degree in states. Conversely, employing
Bass and Webber’s method for this non-quadratic term
necessitates additional computations for a 6th-degree
multinomial, resulting in a feedback controller of poly-
nomial degree 5 in the state.

Example 2: Next, we consider [11, Chap. 1] the lin-
earized dynamics of an inverted pendulum mounted
on a motorized cart given by

ẋ
ẍ
θ̇
θ̈

 =


0 1 0 0

0 −(I+ml2)b
p

m2gl2

p 0
0 0 0 1
0 −mlb

p
mgl(M+m)

p 0




x
ẋ
θ
θ̇

+


0

I+ml2

p
0
ml
p

 u,

where x and θ denote the cart position and pendulum
angle from the vertically upward position, respectively.
The masses of the cart and the pendulum are M = 0.5
and m = 0.2, respectively. The coefficient of friction for
the cart is b = 0.1. The length of the pendulum is l =
0.3, and the mass moment of inertia of the pendulum is
I = 0.006. For the LQR design, the performance index
used is x2 + θ2. To reduce the overshoot in position
and pendulum angle, we introduce the non-quadratic
term of x4 + θ4 in the performance index. For NEOC,
the choice of basis functions consists of even-degree
multinomials, up to degree 4. The resulting trajectories
with all three controllers are depicted in Fig. 2a and
Fig. 2b, respectively. We note that regarding the cart
position (Fig. 2a), the non-linear controllers effectively

decrease the overshoot while also reducing the decay
time. Conversely, concerning the pendulum angle, they
lead to an increase in overshoot but a decrease in
decay time. Interestingly, in this particular example, the
NEOC method achieves the same decay time as Bass
and Webber’s approach, yet it yields a lower overshoot.

VII. Conclusions

In this work, we investigate the design of non-
linear control strategies by applying the principles of
closed-loop NEOC. This entails incorporating a non-
quadratic term into the performance index, tailored to
address the specific problem at hand. We propose a
numerical approach to tackle this challenge by itera-
tively solving an approximation of the Hamilton-Jacobi
equation, using a combination of homotopy and NEOC
methodologies. We introduce a parameter associated
with the non-quadratic term in the performance index,
which is adjusted from 0 to 1 in a series of steps. To
contextualize our work, we compare our methodology
with that of Bass and Webber, who utilized a Lyapunov-
based approach for specific types of non-quadratic
terms. Looking ahead, our research interests include
expanding the application of nonlinear controllers for
non-quadratic performance indices in set-point control
problems.
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