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Abstract— When deployed in the real world, safe control
methods must be robust to unstructured uncertainties such
as modeling error and external disturbances. Typical robust
safety methods achieve their guarantees by always assuming
that the worst-case disturbance will occur. In contrast, this
paper utilizes Freedman’s inequality in the context of discrete-
time control barrier functions (DTCBFs) and c-martingales
to provide stronger (less conservative) safety guarantees for
stochastic systems. Our approach accounts for the underlying
disturbance distribution instead of relying exclusively on its
worst-case bound and does not require the barrier function to
be upper-bounded, which makes the resulting safety probability
bounds more useful for intuitive safety constraints such as
signed distance. We compare our results with existing safety
guarantees, such as input-to-state safety (ISSf) and martingale
results that rely on Ville’s inequality. When the assumptions
for all methods hold, we provide a range of parameters for
which our guarantee is stronger. Finally, we present simulation
examples, including a bipedal walking robot, that demonstrate
the utility and tightness of our safety guarantee.

I. INTRODUCTION

Safety—typically characterized as the forward-invariance
of a safe set [1]—has become a popular area of study
within control theory, with broad applications to autonomous
vehicles, medical and assistive robotics, aerospace systems,
and beyond. Ensuring safety for these systems requires one
to account for unpredictable, real-world effects. Historically,
control theory has treated the problem of safety under
uncertainty using deterministic methods, often seeking safety
guarantees in the presence of bounded disturbances. This
problem has been studied using a variety of safe control
approaches including control barrier functions (CBFs) [2],
backwards Hamilton-Jacobi (HJ) reachability [3], and state-
constrained model-predictive control (MPC) [4]. However,
this worst-case analysis often leads to conservative perfor-
mance since it ensures robustness to adversarial disturbances
which are uncommon in practice.

Stochastic methods provide an alternative to the worst-case
bounding approach. Instead of a conservative uncertainty
bound, these methods consider a distribution of possible
disturbances. Although they do not provide absolute, risk-
free safety guarantees, they allow for smooth degradation
of safety via variable, risk-aware levels of conservatism. A
wide variety of stochastic safety methods exist including:
reachability-based optimal safety [6], [7], constrained coher-
ent risk measures [8], sampling-based general risk measures
[9], and martingale-based methods [10], [11] amongst many
others. In this work, we will focus on martingale-based
methods due to their ability to generate trajectory-long
guarantees and their relative simplicity as a method which
relies primarily on only a distribution’s first-moment.

Continuous-time martingale-based stochastic safety meth-
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Fig. 1. Safety results for a bipedal robot navigating around an obstacle
using our method. Details are provided in Section IV. (Top) Visualization
of the Hybrid Linear Inverted Pendulum (HLIP) model. Yellow indicates the
center-of-mass (COM), blue is the stance foot, and red is the swing foot.
The states xj, are the global COM position, the relative COM position,
and COM velocity, and the input is the relative position of the feet at
impact. (Bottom) A table with variable maximum disturbance value (dmax)
and controller parameter (o) shows our (dashed lines) theoretical bound
on safety failure from Thm. 3, (dotted lines) the shortest first-violation
time based on the worst-case disturbance approximation, and (solid lines)
approximated probabilities from 5000 trials (lower is safer). On the left,
the trajectories of the COM are shown walking from bottom left towards
the top right while avoiding the obstacle with each color corresponding to
a different dmax. The robot attempts to avoid the obstacle (black). Code to
reproduce this plot can be found at [5].

ods have successfully achieved strong probabilistic safety
guarantees [12], [13], [14], [15], but generally require con-
trollers with functionally infinite bandwidth, a strong as-
sumption for real-world systems with discrete-time sens-
ing and actuation. Alternatively, discrete-time methods have
shown success while also capturing the sampled-data com-
plexities of most real-world systems [16], [17], [10], [18].
In this work we focus on extending the theory of discrete-
time martingale-based stochastic safety involving discrete-
time control barrier functions (DTCBFs) and c-martingales.

The stochastic distrete-time martingale-based stochastic
safety literature has shown significant theoretical success
[11], [18], [16], [10], [14] in generating risk-based safety
guarantees and in deploying these guarantees to real-world
systems [19]. In this work we seek to extend these existing
martingale-based safety techniques by utilizing a different
(and often stronger) concentration inequality that can provide
sharper safety probability bounds. Where other works have
traditionally relied on Ville’s inequality [20], we instead
turn to Freedman’s inequality [21]. By additionally assuming
that the martingale differences and predictable quadratic



variation are bounded, this inequality relaxes the nonnega-
tivity assumption required by Ville’s inequality while also
providing generally tighter bounds that degrade smoothly
with increasing uncertainty.

This paper combines discrete-time martingale-based safety
techniques with Freedman’s inequality to obtain tighter
bounds on stochastic safety. We make three key contribu-
tions: (1) introducing Freedman-based safety probabilities for
DTCBFs and c-martingales, (2) providing a range of param-
eter values where our bound is tighter than existing discrete-
time martingale-based safety results, and (3) validating our
method in simulation. We apply our results to a bipedal
obstacle avoidance scenario (Fig. 1), using a reduced-order
model of the step-to-step dynamics. This case study shows
the utility of our probability bounds, which decay smoothly
with increasing uncertainty and enable non-conservative,
stochastic collision avoidance for bipedal locomotion.

II. BACKGROUND

Let (2,.%7,P) be a probability space and let %, C
F C--- C.F be a filtration of .#. Consider discrete-time
dynamical systems of the form:

Xk4+1 = F(Xk,uk,dk), Vk € Z (1)

where x;, € R" is the state, u; € R™ is the input, d is an
Z+1 measurable random disturbance which takes values

in R, and F : R™ x R™ x RY — R”™ is the dynamics.
Throughout this work we assume that all random variables
and functions of random variables are integrable.

To create a closed-loop system, we add a state-feedback
controller k : R — R™:

Xk+1 = F(Xka k(xk)7dk)?
The goal of this work is to provide probabilisic safety

guarantees for this closed_-loog system, )
. Safety and Discrete-Time Control Barrier Functions

Vk e Z 2)

To make guarantees regarding the safety of system (2), we
first formalize our notion of safety as the forward invariance
of a user-defined “safe set”, C C R"™, as is common in the
robotics and control literature [1], [3], [4], [22].

Definition 1 (Forward Invariance and Safety'). A setC C R"
is forward invariant for system (2) if xg € C = x3 € C
for all k € N. We define “safety” with respect to C as the
forward invariance of C.

One method for ensuring safety is through the use of
Discrete-Time Control Barrier Functions (DTCBFs). For
DTCBFs, we consider safe sets that are O-superlevel sets
[1] of a continuous function A : R" — R:

C={xeR" | h(x)>0}. 3)
In particular the DTCBF is defined as:

Definition 2 (Discrete-Time Control Barrier Function
(DT-CBF) [23]). Let C C R™ be the O-superlevel set of

!For this work we will focus on the safety of (2) exclusively at samples
times as in [4] and [23]. We refer to [24] for an analysis of intersample
safety.

some function h : R™ — R. The function h is a DTCBF
Jor xg1 = F(xg,u,0) if there exists an o € [0,1] such
that:

sup h(F(x,u,0)) > ah(x),
ueR™

vx eC (@)

DTCBFs differ from their continuous-time counterparts
in that they satisfy an inequality constraint on their finite
difference instead of their derivative?. On the other hand,
they are similar in their ability to create safety filters for
nominal controllers Kpom : R™ x Z — R™ of the form:

k(x) = argmin Hu - knom(Xa k)HQ (5)
ueR™
st. h(F(x,u,0)) > ah(x).

Assuming feasibility, k(x) guarantees safety for the undis-
turbed system by selecting inputs that satisfy (4)[23, Prop.
1].

For deterministic systems, infinite-horizon safety guar-
antees are common. However, for discrete-time stochastic
systems, when the disturbance is bounded, infinite horizon
guarantees fail to capture the nuances of variable risk levels
and, when the disturbance is unbounded, infinite-horizon
guarantees can be impossible to achieve® [25, Sec. IV].
In order to provide an achievable risk-based guarantee we
choose to analyze finite-time safety probabilities as in [14],
[10], [11], [15] instead of infinite-time safety guarantees.

Definition 3 (K -step Exit Probability). For any K € Ny and
initial condition xy € R", the K-step exit probability of the
set C for the closed-loop system (2) is:

P,(K,x¢) = P{xy, ¢ C for some k< K} (6)

This describes the probability that the system will leave the
safe set C within K time steps given that it started at xg.
B. Existing Martingale-based Safety Methods

In this work, we will generate bounds on K-step exit
probabilities using martingale-based concetration inequali-
ties. Martingales are a class of stochastic processes which
satisfy a relationship between their mean and previous value.
Definition 4 (Martingale [26], [10]). Let (9, #,P) be
a probability space with a filtration { %y, #1,...,-F}. A
stochastic process Wy, that is adapted to the filtration and is
integrable at each k is a martingale if

E[ Wk-i—l | ﬁk ] = Wy, Vk € Z (a.s.) @)
Additionally, if Wy, satisfies:
E[Wit1 | Tk | <Wip+e, VkeZ (as), ()

with ¢ = 0 then it is a supermartingale and if it satisfies (8)
with ¢ > 0 then it is a c—martingale.

Many concentration inequalities can be used to bound the
spread of a martingale over time. One particularly useful

2The standard continuous-time CBF condition h(x) < —7h(x) for 7 >
0 becomes h(xx41) — h(x) > —vh(xy) for v € [0,1] in discrete-time;
defining o = 1 — y recovers the condition h(xx41) > ah(xy).
3Consider the system: Xp+1 = U +dg, where x € R, u € R, d ~
N(0,1), and C = {x € R | |x| < 1}. At every time step, P{x;+1 € C}
is maximized with u; = 0, but then even over a single discrete step, there
is at least 30% chance of failure. As time continues, this constant risk of
failure at every step makes infinite horizon guarantees impossible to achieve.



bound is Ville’s [20] which bounds the probability that a
supermartingale W, rises above a threshold A > 0.

Lemma 1 (Ville’s Inequality [20]). If Wy is a nonnegative
supermartingale, then for all \ > 0,

P {supycz Wi > A} < EWol 9)

Critically, Ville’s inequality assumes nonnegativity which
manifests as a requirement that i be upper-bounded, e.g.
(10).

For safety applications of Ville’s inequality, we consider
the case where h(xj) is upper bounded by B > 0 and
satisfies one of the following expectation conditions

E[ h(F(xx, k(xx), dg)) | Fi | > ah(xs),
E[ h(F(xk, k(xk),dk)) | Pk | > hixk) — ¢,

(DTCBF)
(c-mart.)
for some a € (0, 1) or ¢ > 0. In this case, we can achieve the
following bound on the K-step exit probability, P, (K, xg):

Theorem 1 (Safety using Ville’s Inequality*, [16], [10], [14],
[11]). If, for some B > 0 and K € Ny, the function h :
R™ — R satisfies:

h(x) < B, forall x € R", (10)
A
then: P,(K,xp) <1-— B (11
a®h(xo), if (2) satisfies (DTCBF) Vk < K
where \ = . .
h(xg) — ¢K, if (2) satisfies (c-mart.) Vk < K.

This guarantees that the risk of the becoming unsafe is
upper bounded by a function which decays to 1 with time
and which depends on the system’s initial safety “fraction”,
h(x0)/B.

III. SAFETY GUARANTEES USING FREEDMAN’S
INEQUALITY

This section presents our main result: K-step exit prob-
ability bounds for DTCBFs and c-martingales generated
using Freedman’s inequality, a particularly strong martingale
concentration inequality. Here, we use the simpler, historical
version as presented by Freedman [21]; see [28] for historical
context and a new, tighter alternative which could also
be used. After presenting this result, this section explores
comparisons with existing Ville’s-based methods and input-
to-state safety.

Before presenting Freedman’s inequality, we must define
the predictable quadratic variation (PQV) of a process which
is a generalization of variance for stochastic processes.

Definition 5 (Predictable Quadratic Variation (PQV) [26]).
The PQV of a martingale Wy, at K € Ny is:

W)k 2 S5 E[(W = Wi)? | Fia] - (12)

Unlike Ville’s inequality, Freedman’s inequality does not

require nonnegativity of the martingale Wy, thus removing

4 See [27, Appx. C] for a discussion notational differences between
this presentation of Thm. 1 and that in [17] and [10]. Also, see [16,
Thm. 5] for probability bounds associated with the general condition
E[h(F(xg, k(xk),dr)) | Fr] > ah(xi) — c using Ville’s inequality.

the upper-bound requirement (10) on h. In place of nonneg-
ativity, we require two alternative assumptions:

Assumption 1 (Upper-Bounded Differences). We assume
that the martingale differences are upper-bounded by 1 (i.e.
Wit1—Wy < 1, similar to Azuma-Hoeffding methods [26]).

Assumption 2 (Bounded PQV). We assume that the PQV is
upper-bounded by €2 > 0.

Given the PQV of the process, Freedman’s inequalitypro-
vides the following bound:

Theorem 2 (Freedman’s Inequality [21, Thm. 4.1]). If, for
some K € Ny and £ > 0, Wy is a supermartingale with
Wo = 0 such that:

(We =Wi_1) <1
<W>K S 523
then, for any \ > 0,

for all K < K, (Assumption 1)

(Assumption 2)

2

A+&2
m) €>\. (13)

To prove this, we first bound the moment generating
function E[e?X] < el¢"~1=MVa(X) for 4 > 0 and 0-
mean random variables X bounded by 1. By choosing X
as the martingale differences, this is used to prove that
f{T<OO} W=7 =1=9) W)~ qP < 1 for W}, satisfying assp.
(1) where 7 any stopping time [21, Prop. 3.3]. Bounding with
Assp. (2) and optimizing ~y then yields the desired bound. A

restatement of this proof can be found in [27, Appx. D].
A. Main Result: Freedman’s Inequality for Safety

P {maxp<k Wi > A} < H(L€) 2 (55

Next we present the key contribution of this paper: the
application of Freedman’s inequality to systems which satisfy
the DTCBF or c-martingale conditions.

Theorem 3. If, for some K € Ny,0 > 0, and § > 0, the
following bounds® on the difference® between the true and
predictable update (14) and the conditional variance (15)
hold for all k < K:

E[ h(xk) | Fr-1] = h(xk) <6, (14)
Var( h(xpy1) | T ) < 02, (15)

then the K-step exit probability is bounded as:
Pu(K, x0) < H(g, 0?) (16)

O(I(h(Xo)7
h(Xo) - CK7

To apply Thm. 2 to achieve Thm. 3 we follow this proof
structure: (Step 1) normalize h and use it to construct a
candidate supermartingale Wy, (Step 2) verify that Wy, is
indeed a supermartingale with Wy = 0, (Step 3) use Doob’s
decomposition [26, Thm 12.1.10] to produce a martingale
M, from Wy in order to remove the negative effect of safe,
predictable jumps from the PQV, (Step 4) verify that M
satisfies Assp.s 1 and 2, (Step 5) choose A > 0 such that

if (2) satisfies (DTCBF) Vk < K,

where A = { if (2) satisfies (c-mart.) Vk < K.

50nly upper-bounds on § and o2 are required for (16) to hold and this
guarantee 1s robust to changes in distribution that still satisfy (14) and (15).
For real-world systems, distribution-learning can be employed, similar to

[19].
6 See [27, Appx. G] for a constructive method for determining § and o.



a safety failure implies {maxg<x Wy, > A} as in (13), and
(Step 6) specialize to specific values of a and ¢ for each
case.
Proof. (Step 1) Consider the case, for & € (0,1] and ¢ > 0,
where E[h(xy41)|-Fi] > ah(xg) — ¢ forall k < K.
a7
First, define the normalized safety function n(x) £ 22

to ensure that the martingale differences will be bounded ?)y
1. Next, use 7 to define the candidate supermartingale’

i 65

= 0 and is a supermartingale:

Wi & —aK=Fn(xp) + afn(xo) —
(Step 2) This satisfies® W

(18)

E[Wit1| ] (19)
= &K DR (x4 11)| F] + 3 n(x0) — S0 @K

< —aXFp(xp) + @ n(xe) — b, @K1 = W,

which can be seen by applying the bound from 7).
(Step 3) The martingale from Doob’s decomposition is:

M, =W, + Zle(W— E[W;|Zi-1]), (20)
= Wi + 25 N E(x)| Fioa] — @h(xi1) + &) > Wy
>0

where the bound comes from (17) and positivity of & and 6.
(Step 4) Furthermore, Mj, satisfies Assp. 1:

My, — My—y = Wi, — E[Wg|F_1],
= a" T (En(xk) | Fr-1] — n(xk)) <

since we assume in (14) that E[h(xy) | Fr_1] — h(
Next, & € (0,1] and (15) ensure that M, satsifes

1)
akke <1, (22

Xp) <
Asp2

(M)g =10, ]E[Nz K= (n(x) = Eln(xi) | Fi-1))? 1]

|
K 2(K K . o
= Ez 1 Var( (Xi)‘gi_l) < ziZl a2(K )(siz

(23)

< (24)

52 :
(Step 5) Now, to relate the unsafe event {miny<x h(xy) <
0} to our martingale M}, we consider the implications:

mink<Kh(xk) <0 = minkSK h(Xk) <0 (25)

— £n<a;{< —ak- kn(xk) >0, sincea>0,§>0 (26)
— £I1<aXWk > & 17( 0) — Zf 1dK Z% 27
= 1}f€n<aka > afn(xg) — Zle af—is (28)
= max M}, > & 17( 0) — Zf(laK %, (29)

k<K

where (26) is due to multiplication by a value strictly less
than zero, (27) is due to adding zero, (28) is due to M} > W
as in (20), and (29) is due to k£ < K and the nonnegativity of
«, 9, and ¢. Thus, the unsafe event satisfies the containment:

. K—1i
{1?%11% h(xg) < 0} - {I&aka > ak n(xo) Za }

04\02

7We use the “empty sum” convention that Z?:l p =0 forany p € R.
8o = 0 since xq is known and randomness first enters through do.

INlustration and Comparison of Bounds in Prop. 1 and Thm. 1
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Fig. 2. Comparison for Prop. 1 with B = 10, K = 100, = 1, and

varying o and \. The Freedman-based bounds are shown in green when the

conditions of Prop. 1 hold and blue when they do not. The Ville’s-based
bound is shown in red. Code to reproduce this plot can be found at [5]

Since Mj, satlsﬁes Moy=0 M, — M1 <1VkE< K,
and (M) < 2 62 , We I(ian il{pp{y Thm. 2 (Freedman’s Ineq. )
with A = & hGxo)= Zl 12 < to achieve the probability

~ K K ~K—1~
bound’: P, (K, xo) § H(Z h(x‘))_%:’:la = ”‘gﬁ .
(Step 6) If the system satisfies the DTCBF condition, then
(17) holds with (& = «a,¢é = 0) so the desired bound is
achieved with A = a®h(xg)/d and if the system satisfies

the c-mart. condition then (17) holds with (& = 1,¢=c¢) so
the desired bound is achieved with A = h(xg)/6 — Kc. O

B. Bound Tightness Comparison

We now relate the Freedman-based safety of Thm. 3 to
the Ville’s-based safety of Thm. 1. For systems that have
an upper-bound £ (10), a lower-bounded error (14), and a
bounded conditional variance (15), we provide a range of
values for 0,9, K, B, and A for which Thm. 3 is stronger.
This Prop. provides a direct theoretical comparison (after
changing notation) to the Ville’s-based bounds in [10], [11],
[14], [16].

Proposition 1. For some 0,6,B > 0, A > 0 and K € Ny,
consider the conditions

A > 0’ K A<B-2, (30)
where ¢ = 21n(2) — 1. If these conditions hold, then
H(g,ﬂf)g_%. G1)

Proof of this Proposition is is provided in the Appendix.

Intuitively, conditions (30) stipulate that the conditional
variance ¢ and number of steps K must be limited by
A0, which is a function of the initial condition times the
maximum single-step disturbance to h(xy). Additionally, the
initial condition must be less than the maximum safety bound
B by an amount proportional to d. The exact value of ¢ is
a result of the first assumption (AJ > 02K) and alternative
values can be found by changing this assumption; for clarity
of presentation, we leave exploration of these alternative
assumptions to future work. The safety bounds for various
A and o are shown in Fig. 2 where it is clear that these
conditions provide a conservative set of parameters over
which this proposition holds.

9The proof can end after Step 5 and can be applied to any system
satisfying (17). We specialize to DTCBFs and c-martingales for clarity.
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Fig. 3. Probability that the system is unsafe: our bound from Cor. 1 (blue), ISSf bound (red). The z-axis is the level set expansion —e and the y-axis
is the failure probability (lower is better). The plots from left to right indicate safety for K = 1,100,200, 300, and 400 steps. Simulations where
Elh(xk)|-Fr—1] = ah(xg) and approximate probabilities from 1000 samples are shown for simulations where h(xk) is sampled from 3 different
conditional distributions: uniform (pink), truncated Gaussian (green), and a categorical (yellow) all which satisfy Cor. 1. Code for these plots is can be

found at [5].
C. Extending Input-to-State Safety

Since Thm. 3 assumes that & has lower-bounded errors
(14), we can directly compare our method with Input-to-
State Safety (ISSf) [2], which provides almost-sure safety
guarantees.

In the context of our stochastic, discrete-time problem
setting, the ISSf property can be reformulated as:

Proposition 2 (Input-to-State Safety). If the closed-loop
system (2) satisfies the DTCBF condition and the bounded-
jump condition (14) (a.s) for some « € [0,1) and § > 0,
then h(xy) > a*h(xg) — Zi:ol a'd for all k > 0 and
Co = {xeR" | h(x) > 2}

~ 1 is safe (a.s.).

Proof. By combining the bounds (DTCBF) and (14):

h(xk+1) > E[h(xk+1) | 3‘}] -0 > Olh(Xk) -4 (a.s.)
(32)
Thus, for all k € Z, we have the lower-bound h(xy) >

afh(xg) — Zf 01 a'é (a.s). Furthermore, for all time,

h(xg) > =% = h(xp41) > so Cs is safe (a.s.). O

=

« 1-a’

To compare with ISSf’s worst-case safe set C5, we wish to
use Thm. 3 to bound the probability that our system leaves
some expanded safe set C. = {x € R"|h(x) > —e} with
€ > 0 in finite time.
Corollary 1. If the hypotheses of Theorem 3 are satisfied
and (2) satisfies the DTCBF for some « € (0,1), then for
any value € > 0 and any K € Ny,

P{ min h(xg) < —e}
k<K

1
o [(1-a2K\ 2
<1 (05 (55) ") 1 zommin-maton

where A\ = %(h(xo) +e€).
Proof. The DTCBF condition ensures that, for any ¢ > 0:

E[ h(xg+1) + €| Fr ] > a(h(xg) +€) +e(l—a) (34)
> a(h(xy) + ¢€) (35)

We apply the same proof as Thm. 3 starting at (18) with

(xx) = % & =a,c=0). Choosing A = afn(xo)
and bounding'® (M

Q2K i _ o2(1=a?%)
)k < S % = Ty
as in (23) yields the desired bound without the indicator
function by applying Thm. 2. The indicator function is a

result of applying the lower bound on the safety value from
Prop. 1, i.e. h(xy) > aFh(xq) — Zf;ol a's (as.) for k €
Z. O

(33)

10This bound on (M) uses the finite geometric series identity and can
also be applied for a tighter Thm. 3 and Prop. 1.

A comparison of Prop. 1 and Cor. 2 and Monte Carlo
approximations for various e and distributions (truncated
normal, categorical)!! is shown in Fig. 3 where we can
see that our method successfully upper-bounds the sampled
safety probabilities with risk-sensitive guarantees that are
much less conservative than the worst-case bounds provided
by ISSf.

IV. CASE STUDY: BIPEDAL OBSTACLE AVOIDANCE

In this section we apply our method to a simplified
model of a bipedal walking robot. In particular, the Hybrid
Linear Inverted Pendulum (HLIP) model [29] approximates
a bipedal robot as an inverted pendulum with a fixed center
of mass (COM) height zyp € R(. Its states are the planar
position, relative COM-to-stance foot position, and COM
velocity p,c,v € R2. The step-to-step dynamics are linear
and the input is the relative foot placement, u; € R?. The
matrices A € R5%6 and B € R%*? are determined by z
and gait parameters including the stance and swing phase
periods. The HLIP model with an added disturbance matrix
D € R%** and disturbance d € R* affecting position and
velocity is:

Xk+1 = Ax; + Bug + Ddg, di~D.
where x; = [p) ¢, va]T. We augment the standard

HLIP model and assume that d enters linearly and D is a
4-dimensional, 0-mean uniform distribution!? with ||d|| <
dmax-

We define safety for this system as avoiding a circular
obstacle of radius r > 0 located at (z,y) = p € R, so safety
can be defined using the signed-distance function h(x) =
|lp — pl|2 — r. Notably, this function has no upper bound and
therefore the Ville’s-based Thm. 1 does not apply.

Since h(x) is not convex, we use a conservative halfspace
convexification instead:

h(xpi1) > @(pk) " (Prs1 — p) — 7 2 h(xp11),  (36)
where €(p) = ﬁg:“; fl and we apply the controller:
u* = min |Ju— Kpom(xz)|| (37)
ueR?

st. E [ E(Xk_,_l) | Zr } > OéfL(Xk)

with o € (0,1] and where kpon tracks a desired velocity.
We ran 5000 trials with 3 steps per second and compared

against the theoretical bound from Thm. 3. Those values and

planar pose trajectories can be seen in Fig. 1. Exact values

and code for this and all other plots can be found in [5].
11 Code for these simulations can be found at [5]
12 See [27, Appx. H] for bounds for § and o given this problem structure.



V. CONCLUSION

Despite the relative tightness guarantee of Prop. 1, the
probability guarantees of our method are not necessarily
tight, as can be seen in Fig. 3. Optimization of h without
changing C as in [10] is a promising direction further
tightening. Additionally, the case study shown in Section IV
presents an immediate direction for future work which may
involving a hardware demonstration of this method.

APPENDIX

Proof of Proposition 1:
Proof. Define A (X, B,o,K,0) 21— 2 — H (A oK

PR
If A(A\,B,0,K,d§) > 0, then (31) must hold. We first

show A is monotonically decreasing in o2. Consider'3
%‘%) =a(\ 0,K,8)b(\, 0,K,5) where
\ , (A(H»ZQK)
a(\, 0, K,6) £ =25 (%) T 20, (38)
BN K, 0) 2 (02K n (5557 ) +28) . (39)

The function a(A, o, K, J) is negative since ¢, o, K > 0. For
b(-), the logarithm bound In(r) > 1 — 1/r ensures that:

b\, 0, K, 8) > 02K (1 - M) F A= 0.

=y (40)

Since a < 0 and b > 0, ASA,B,J, K, ¢) is monotonically
decreasing with respect to o“, so we can use the assumption
02K < A6 to lower bound A as:

2
5

AN B0, K,6) >1— 2 — ()% e (1)

=12 0223 &7 A =93 £ A((),B,0)
where ¢ £ 21In(2) — 1 > 0.
Next, we show that A;(\, B,d) > 0 for'* X ¢

[O, B - %}. We prove this by showing that Ay (A, B,d) > 0

for A = {O, B — %} and that A, is concave with respect to
A

(1) Nonnegativity at A = 0: Aq1(0, B, 6) =
0. (2) Nonnegativity at A = B — %:
_(B=34)¢ _ By
A (B—g,B,(s) = (BBt o o (%)
> 25— 5=0 (42)

where the inequality in line (42) is due to the previously
1

used log inequality: In(r) > 1 -1 <« r > 6(1_7), which

holds for r = B%a > 0 since B, d, ¢ > 0.

(3) Concavity for A € [0, B — %]: Since £ > 0, the second

derivative of A; with respect to A is negative:

T =— ()73 <o, 43)
Thus, A is concave with respect to A. Since, A1 (0, B, ) >

0, Ay (B - %, B, 5) >0, and A (A, B, ) is concave for all

oA
9(o2)
“This interval is non-empty since A\ > 0 and B > \ + % implies

B> 4.
=

13The derivation of

is provided in our extended manuscript [27].

6>0and B > g, it follows from the definition of concavity
that A; (X, B,8) > 0 for all \ € [O,B - g} .

Using this lower bound for A;(\ B), we have
A(N, B,o,K,§) > Ay(\, B) > 0 which implies the desired
inequality (31). O
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