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Rate-Distortion Achievability via Event Threshold
Quantizers for Planar Wiener Processes

Ronald Ogden

Abstract— We analyze the rate-distortion performance of two
quantized event-based encoding paradigms estimating a two-
dimensional Wiener process. Each encoder remains silent until
the estimation error reaches a threshold and then transmits
a packet from a finite codebook over a noiseless, zero-delay
channel to a decoder that updates the estimate. Both encoding
methods are parameterized by the radius of the event threshold
and the size of the codebook. The first encoding scheme
simply quantizes the error of the source process on the event
threshold. The second scheme employs a dithered quantizer,
which simplifies the derivation of an analytical rate-distortion
upper bound. Each method is simulated in discrete time to
inform the choice of the bitrate-optimal codebook size and event
radius for a given distortion constraint. The rate-distortion
performance of these encoding schemes are compared to a
known lower bound and a conservative upper bound that we
derive herein.

I. INTRODUCTION

Currently, periodic sampling paradigms dominate the
fields of sensing, estimation and control theory. However,
event-based sampling schemes have shown the potential
to reduce the sampling rate required to achieve a fixed
estimation quality [1], among other benefits. Unlike peri-
odic methodologies which generate samples at regular time
intervals, event-based schemes produce samples as needed
according to some application-specific rule. For example,
unlike frame-based cameras which encode information for
each pixel at each time step, event cameras encode infor-
mation from pixels asynchronously, each pixel firing only
when it detects a significant change in intensity. Event-
based sampling methodologies like this enable information
to be encoded in both the samples and their timing which
can reduce the data rate required to stabilize a system [2].
In practice, this reduction allows sensors, estimators and
encoding policies that utilize event-based architectures to
achieve a desired performance objective while reducing the
consumption of physical resources such as power, computa-
tional capacity and bandwidth.

In this work, we explore the performance of event-based
sampling when estimating a process over a channel with
communication constraints. In such a scenario, one often
desires to minimize the communication resources (data rate)
required to achieve a given estimation quality (distortion)
or vice versa. Demonstrating optimality of an event-based
sampler observing a general process has proven to be a

R. Ogden and T. Tanaka are with the Department of Aerospace
Engineering and Engineering Mechanics at the University of Texas at
Austin, Austin, TX 78712 USA ronnieogden95@utexas.edu,
ttanaka@utexas.edu. This work is supported by NSF Award
1944318.

Copyright ©2024 IEEE

Takashi Tanaka

challenging problem, but some success has been found
for particular processes. For example, optimal sampling of
continuous-time 1-dimensional stochastic processes has been
studied extensively. Guo and Kostina considered Markov
processes in [3], Rabi et al. considered Ornstein-Uhlenbeck
processes in [4], Sun et al. considered a Wiener process in
[5], and Ornee and Sun considered a Ornstein-Uhlenbeck
processes in [6], the latter two considering channel delay.
All find that the resulting optimal sampling policy is a
threshold-based policy similar to that studied by Astrom
and Bernhardsson in [1]. The optimality of threshold-based
sampling policies for the estimation of discrete time pro-
cesses has also been extensively studied, as in [7] and [8].
Building on the results of Nayyar et al. in [9], which derive
a jointly optimal communication schedule and estimation
strategy for remote estimation of a discrete time process,
Nar and Basar demonstrate in [10] that for an n-dimensional
Wiener process, the real-valued sampling rule that minimizes
the time-averaged mean square estimation error given a
constraint on average sampling frequency is an analogous
event-triggered threshold policy.

In practice, one is often limited to the use of a finite
codebook to encode the estimation error of a process, pre-
cluding the use of real-valued sampling. Despite this, the
problem of finding an optimal sampling policy for the system
described in [10] under a finite codebook constraint remains
unexplored. For such a problem, it is natural to inquire
whether a quantized threshold sampling policy analogous
to the optimal policy presented in [10] remains optimal.
In this work, we explore the performance of the following
analogous sampling policy for a multidimensional Wiener
process: N points are distributed around a sphere of radius r
and whenever the magnitude of the estimation error reaches
the threshold, r, a quantized sample of the state is taken
according to which of the N points the estimation error is
closest to. Unlike real-valued sampling, a quantized sampling
policy like this will result in a non-zero posterior estimation
error after each sample almost surely.

Deriving the analytical rate-distortion performance for this
sampling scheme poses the challenge that it is not generally
possible to symmetrically distribute N points on a sphere in
n-dimensional space. However, for a sphere in 2-dimensional
space, this is possible for all N. Furthermore, the resulting
threshold is a 1-dimensional manifold, allowing an easy
application of the dithering scheme utilized in [11], [12], and
[13], which simplifies rate-distortion analysis. We restrict this
work to a 2-dimensional Wiener process to leverage these
advantages.



Introducing dither enables us to derive an expression for
the average sampling rate of this scheme, which we use to
develop an upper bound on its rate-distortion performance.
In contrast, Cuvelier et al. derive a rate-distortion lower
bound in [14] for event-based encoding of Gauss-Markov
processes, a very general class of processes compared to
the 2-dimensional Brownian motion considered herein. Since
Brownian motion is a Gauss-Markov process, the perfor-
mance of the optimal sampling scheme for a 2-dimensional
Wiener process with a finite codebook constraint must lie in
between the lower bound from [14] and the upper bound we
introduce. Finally, we use simulation to determine what N
and r yield the optimal rate-distortion performance for the
quantized sampling policies we introduce, providing insight
for future investigation into the optimal sampling policy for
this problem.

II. PROBLEM FORMULATION

Consider a continuous-time source process x; € R? that
consists of pure 2-dimensional Brownian motion which we
seek to estimate with a given distortion over a noiseless,
zero-delay communication channel using minimal data rate.
An encoder noiselessly observes the source process and can
transmit a codeword from a finite codebook over the channel
to a decoder as shown in Fig. 1. The decoder then decodes the
message sent from the encoder to update its estimate of the
source process Z;. Note that because the channel is noiseless
and zero-delay, the encoder knows all of the information
that is received by the decoder and thus has access to Z; at
the same instant the decoder does. The encoder compares
the output of the source process z; to its estimate Z; in
continuous time, yielding the estimation error e; = xy — T4
(we assume eg = 0), and sends a non-empty, variable-length
packet from a codebook Cy to the decoder exactly when the
magnitude of the error reaches a threshold, r. Otherwise, the
encoder remains silent. In this model, we assume the decoder
decodes each codeword individually, precluding the need for
an instantaneous code; a nonsingular code is sufficient. The
codebook Cx consists of the N shortest length, non-empty
binary strings, that is, the first N elements of the sequence
{0,1,00,01,10,11,000,...}. Upon each transmission, the
decoder updates the estimate Z; based on the a priori estimate
and the most recent message received. Note that with this
formulation, any encoder/decoder pair can be parameterized
by the tuple (N,r).
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Fig. 1. Block diagram of source process estimation over a channel.

Under these dynamics, one can easily construct an en-
coder/decoder policy that precludes Zeno behavior; a policy

that ensures the posterior error is less than r almost surely
is sufficient. In this class of policies, one can represent the
transmitted codewords as a sequence, {ap}, where k €
N, and one can represent the corresponding sequence of
transmission times as {¢; }. Given an encoder/decoder policy
m(N,r), we quantify the associated communication cost as
the expected bits transmitted per unit of time.

R(m(N,r)) = limsup% Z E[i(ar)], (1)

T—oo & Lo <T

where [ : Cy — N maps a codeword to its length. We
quantify the corresponding distortion as the time averaged
mean squared error.

1 /7
D(m(N,r)) = limsup T/ E [[les]|3] dt. 2
0

T—o0

For a fixed policy m, we wish to find the parameterizing tuple
(N, r) that minimizes the expected bitrate while achieving a
distortion less than Dg. That is, we want to compute

(N7.7%) =arg inf R(r(N.r)) )

st. D((N,r)) < Dq.

ITII. ACHIEVABILITY RESULT

In this section, we describe two policies that fall under
the class described in Section II. For this 2-dimensional
source process, whenever the magnitude of the estimator
error reaches the event threshold of the encoder , the state of
the process can be encoded solely with the angular argument
6 € © := [0,27) of its polar representation, a fact that is
leveraged under both policies described below. Analysis of
the dithered quantizer defined in Section III-B shall be used
to derive a rate-distortion upper bound in Section III-C.

A. Escape Argument Quantizer

Let QA be a uniform scalar quantizer defined as fol-
lows: Qa(0) := A(|0/A] +1/2), where A € R is the
quantizer step size. Then the image of the set © under the
function Q 2z, denoted Q 2z (©), has N elements. Thus, if
the argument of the source process at an event is 6;, and
0, = Q%’(etk)’ then 6, can be losslessly encoded with a
codebook of size N. Without loss of generality, we choose
any bijection from Q2= (©) to Cn to be the encoding policy
for an event. The decoder then applies the inverse mapping to
the received codeword and updates the estimate in Cartesian
coordinates as follows:

By =B (COS q’“) - )

sin 0,

The behavior of this policy is depicted in Fig. 2.

Under this policy, the maximum magnitude of the posterior
error is given by maxg, ||et2r I = rv/2(1 — cos(m/N)),
for given an arc with angle 27/N, the Euclidean distance
between the center of the arc and either edge is this quantity.
As mentioned in Section II, we desire this quantity to be less
than r almost surely, which holds if we restrict N > 3. As
N approaches infinity, the behavior of this policy approaches



Fig. 2. Illustration of an escape argument quantizer policy. The blue path
depicts the evolution of the error e; between two events with the center
of the circle corresponding to an error of 0. When the magnitude of the
error reaches the event threshold r, depicted by the black dasl}ed circle, the
argument 6y, of the a priori error is quantized to produce 6. The small
black circles on the event threshold represent the possible values of 6y, and
in this example, since the escape argument is closest to a = 00, this is the
codeword that is used to encode the error. The parallel green lines illustrate
the direction of the corresponding estimate update.

that of the real-valued sampling scheme that was shown
to be optimal in [10]. The policy presented in this section
acts as a quantized analog of the optimal policy proposed
in [10], making it a natural policy to examine given a
finite codebook constraint. However, the derivation of an
analytical rate-distortion performance can be simplified with
the introduction of dither.

B. Dithered Argument Quantizer

This policy, in short, is a dithered version of the policy
described in Section ITI-A. At the k™ event, the encoder and
decoder are given access to the value of the same uniform
random variable & ~ U[—F;, %], known as the dither (in
practice, this could be achieved by using synchronized pseu-
dorandom number generators at each end of the communi-
cation channel). Suppose the argument of the source process
at an event is 0y, . Then let 0y := (6, + &) mod 27 € ©
be the dithered escape argument. As before, Qzﬁw (6x) can be
losslessly encoded using any bijection from Q?WW (©) to Cy.
The decoder then recovers this quantity using the inverse of
this mapping and proceeds to compute 6 = Q2 (0k) — &k
and updates the estimate of the process according to (4). The
behavior of this policy is depicted in Fig. 3

Let nx == Q 2z (ék) — 0, be the quantization error of the
dithered argument. Note that 7, ~ U[—%7, 7] and is inde-
pendent of 6, . This fact has been demonstrated in several
previous works including [12], [13] and [15]. Furthermore,
0 = (nk+0:, ) mod 2, so under this policy, Oy is equivalent
to the escape argument plus uniform noise. This means
that at every event, the distribution of the magnitude of the

posterior estimation error is known, which we shall leverage

Fig. 3. TIllustration of a dithered argument quantizer policy. When the
magnitude of the error reaches the event threshold, some dither & is
added to the argument 6y, of the a priori error to produce the dithered
escape argument 0. This is then quantized to produce Qg ~(0k). The
small black circles on the event threshold represent the possible values of
Q2ry ~(0k), and in this example, since the dithered escape argument is
closest to a = 0, this is the codeword that is used to encode the error. The
decoder decodes this transmission and subtracts the same dither £ from the
result to produce 6y, which is used in the estimation update. The parallel
green lines illustrate the direction of the corresponding estimate update.

to facilitate the analysis of this policy. As with the undithered
encoder, we restrict N > 3 to ensure the posterior error is
almost surely within the event threshold.

C. Rate-distortion Upper Bound

We combine a precise computation of the rate achievable
by the dithered quantizer with a conservative upper bound
on its distortion that applies to all policies described in
Section II. The result is the following upper bound on the
performance achievable by a dithered quantizer.

Theorem 1: Let mp denote the dithered policy described
in Section III-B. Suppose D(wp(N,r)) = Dg. Then the
following holds:

1 N .
<D g [logy (i 4+ 1
R(mp(NV,)) < T2 108l L]
Do (% sin (§) — 1)
Proof: Let 7y := t1 and 7y := t — tp—1 for k > 1.
The communication cost as defined in (1) of this policy is
given by

K -1 K
R(WD(N,T)):liIr(nsup Zrk ZE[l(ak)]
7 \k=1 k=1
x -1
= limsup # E [I(ax)]
_ Eli(ar)]
N ]E[Tk] ’ (5)

where the first equality comes from the fact that T' — tx is
small compared to tx as T" — oo, the second equality is due
to the radial symmetry of both the policy and the dynamics



(no codeword is used preferentially), and the final equality
is the result of the law of large numbers.

To compute E [I(ay)], we begin by considering the first
K codewords sent by the encoder {aj}5_,. Let f : Cn —
Cn be an arbitrary bijection of Cx to itself. The initial
estimation error is 0 and independent of any information,
the distribution of x; has polar symmetry. Therefore any
sequence {aj}X | is as likely to occur as {f(ax)},.
The bijection f is arbitrary, so the expected frequency of
any codeword is uniform. Thus, the expected length of
the codewords used is the average length of the available
codewords in Cp. The length of the i element of the
sequence {0,1,00,01,10,11,000,...} is |logs(i +1)], so
we have

1
E[l =% 2_; [log, (i + 1) (6)
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Fig. 4. Geometric illustration of a dithered quantizer estimation update. The
solid arc depicts a section of the event threshold, the parallel dashed lines
indicate the direction of the estimation update and the dotted arc represents
the possible values the posterior error can take given the escape argument
is ¢, . The distribution of the posterior error given the escape argument is
uniform along this arc.

To compute E [r;], we begin by noting that by Theorem
9.1.2 in [16], the expected escape time of a Wiener process
from a d-dimensional ball of radius r starting from a point
e inside the ball is given by

r? — |lel®
d

Given the quantization error for the kM event, Nk, the
magnitude of the posterior estimation error is given by
Het+ )| = r4/2(1 — cosny). See Fig. 4 for a geometric
illustration. Addltlonally, for any event, n, ~ U[—%, 7).
Combining these facts with (7) and utilizing the law of
iterated expectations, we have

E[r] = (7

E (7] = E [E [rk|ne]] = /E [Tk = nl p(n)dn
B /N r? —2r2(1 —cosn) [ N
[ 2 (52)

_ 2 (]:sin (5)- ;) . (®)

As expected, as N approaches infinity, (8) shows that the
sampling frequency of the dithered quantizer approaches the
behavior of the real-valued sampling analog studied in [10].

Substituting (6) and (8) into (5) yields an expression for the
bitrate of 7p.

We provide a conservative upper bound for the distortion
of mp. Let p represent the magnitude of the posterior error.

Then as before we have p = r4/2(1 — cosn). Given that

~ U[—%, 77|, the probability that the posterior error is less
than p is the fraction of values of 7 in the interval [ %7, 7]
that correspond to a posterior error of less than p. (In Fig.
4, it is the fraction of the dotted arc that is within a distance
p of the origin). Thus, letting pmax := 71/2(1 — cos(n/N))

be the magnitude of the maximum posterior error,

N 1( _1(p 2)

cos 1 , < Pmax,

P(|€t:§p):{lﬂ' 2(7‘) p>P a.
i ) p_pmax~

Differentiating this expression with respect to p and divid-
ing by 2mp yields an expression for the polar coordinate
representation of the 2-dimensional PDF of the posterior
distribution:

N
plp.0) = {2”2” g P P )
0, P 2 Pmax-
For a fixed 6, the PDF in (9) for the posterior error dis-
tribution strictly decreases as p increases over the interval
(0, pmax)- The process e; is composed of Brownian diffusion
and a jump process from the event boundary to the posterior
distribution in (9). Thus, for a fixed 6, the stationary (i.e.
steady state) distribution for the estimation error strictly
decreases as p increases over the interval (0,r), resulting
in a stationary distribution that has a variance smaller than
that of a uniform distribution on a disk of radius 7. The
variance of this uniform distribution is given by r2/2, so we
have that D(7p(N,r)) < r2/2. [ |
As shown in [10], the distortion of this policy as N — oo
is given by r2/4, so this bound is conservative. A precise
rate-distortion curve could be derived given an explicit
expression for the stationary distribution e;. As our sim-
ulations will show, the optimal dithered and non-dithered
rate-distortion curves are very close, so such an expression
could also be used to accurately gauge the performance of the
optimal escape argument quantizer. For the dithered policy,
ék is equivalent to 0, plus uniform noise, so this policy can
perform no better than the undithered policy. Thus, Theorem
1 bounds the performance of the escape argument quantizer
as well.

IV. DISCRETE-TIME SIMULATION

We simulated both of the policies described in Section III
to determine the optimal tuple (N*,r*) for each policy and
how the rate-distortion performance of the policies compare
to each other, Theorem 1 and a lower bound from [14].

A. Simulation Description

In order to conduct numerical experiments, the continuous
time process e; is simulated with a sufficiently small step
size At at each time step ¢ using the following dynamics:
e[i+1] = e[i]+w[i]vV/At— Ai[i], where each w[i] ~ N(0, T)



is i.i.d. and AZ[é] is the estimation update which takes the
value O for all ¢ such that |e[i]|| < r and is assigned the
following otherwise: A#[i] = r(cosf[i],sin4[i])T.

The value of 6 [i] depends on the encoder being used. For
the escape argument quantizer described in Section III-A, the
simulated estimation update is given by [i] = Q2 (argeld]).
For the dithered argument quantizer described in Section III-
B, the simulated estimation update is given by

0li] = Qzz ((arg efi] + £[i]) mod 2r) — €[],

where each {[i| ~ U[— %7, 7] is i.i.d.

To compute the bitrate for the simulation, an arbitrary
map from Q%(G) to Cy was selected as in Fig. 2 so
that the k" event would generate a codeword a;, from the
input to Q%() Then, assuming the simulation was run
over K events, the bitrate was computed as the ratio of
the total bits sent between the encoder and the decoder
over the simulation divided by the total simulation time:
Rym = [X4y Haw)]/ (i Ab).

The corresponding distortion was computed as the average
estimation error squared, ||e[4]||?, over all timesteps:

Dsim = (Zzil ||€[Z]||2)/ZK
B. Simulation Results

In order to determine N* and r* for both of the policies
described in this paper, the simulation described in Section
IV-A was run for each policy with e[0] = 0 over values of
N €{3,4,....8} and r € {2,2.5, ...,6}. The time step of the
simulation At was scaled with the square of the threshold
radius r. In particular, these simulations used At = r2/200.
Each simulation was run until 10,000 events occurred. The
results are shown in Fig. 5 and Fig. 6.
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Fig. 5. Simulation results for the escape argument quantizer.

Observe that if one fixes r, the resulting bitrate is not
a monotonic function of N. This is because on one hand,
the definition of our variable length codebook Cx makes the
expected codeword length a strictly increasing function of
N, so increasing N causes the numerator of (5) to increase.
However, increasing N reduces the posterior error at each
event, resulting in an increase in the expected sampling
period, the denominator of (5).

Both Fig. 5 and Fig. 6 show that the rate-distortion curve
corresponding to N = 6 lies below that of any other
codebook size. Therefore, these simulations suggest that for
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Fig. 6. Simulation results for the dithered argument quantizer.

either of the policies described in this paper, the optimal
codebook size for a given distortion constraint is N* = 6.
Fixing this parameter, the corresponding optimal threshold
r* is a one-to-one function of the distortion constraint. For
example, Fig. 6 shows that for a dithered argument quantizer,
given a distortion constraint D(7(N,r)) < 6.1, the optimal
codebook size is N* = 6 and the corresponding optimal
threshold is approximately r* = 4.5, achieving a bit rate of
approximately R(w(N*,r*)) = 0.17 bits/sec.

It is worth noting that N* depends on the type of codebook
used. For example, if we use a fixed-length codebook,
simulations show N* = 4, which can be explained in part by
the relatively large jump in expected codeword length from 2
for N € {3,4} to 3 for N € {5,6, 7,8} for such a codebook,
as shown in Fig. 7.
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Fig. 7. Comparison of expected codeword length.

While the upper bound derived in Theorem 1 holds for
any N > 3, we seek to compare the optimal version of the
encoders presented in this work (i.e. those with N = 6) to
known lower bounds. The simulation results of both policies
for N = 6 are shown in Fig. 8 and compared to the
upper bound derived in Section III-C and to the continuous
time information-distortion (CTID) lower bound given in
Theorem 1 of [14]. We state the implication of that result as
it pertains to this example for convenience.

Corollary 1: Suppose a sampling policy 7(N,r) observ-
ing a 2-dimensional Weiner process is restricted to observing
the process at discrete instances of time: {At, 2A¢, 3At, ...}
Suppose additionally that D (7 (N, 7)) = Dg. Then

1

R(m(N,r)) > s

0~ (AtZ°(Dy)),



where 0(z) := 2 4 (1 4+ x)logy(1 + z) — zlogy(x) and

Yy I
S, <I X)zo’

’I‘I‘(X) S DO7

7¢(Dy) = inf D)
X>0,Yy>0 2In2

where I is the 2-dimensional identity matrix.

Note that this lower bound depends on At, so the smallest
and thus most conservative At used across all simulations
was selected to plot the lower bound. These results demon-
strate that for N = 6, the performance of these policies is
nearly the same. Although the upper bound from Section III-
C appears to be fairly loose, the similarity in performance be-
tween both policies suggests that if an analytical expression
for distortion of the dithered argument quantizer could be
derived, one would have an accurate expression for the rate-
distortion curve of that policy and thus an accurate estimate
of the rate-distortion performance of the escape argument
quantizer.
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Fig. 8.  Rate-distortion comparison of escape argument quantizer and

dithered argument quantizer against the upper bound derived in Theorem 1
and the CTID lower bound presented in Corollary 1.

V. CONCLUSION AND FUTURE WORK

In this work, we analyzed quantized threshold sampling
policies to estimate a Wiener process in two dimensions
and found an upper bound on their performance. While
this work is limited to an achievability result for a Wiener
process in two dimensions, the analysis herein serves as
a bridge to analyzing similar sampling policies for richer
source processes in higher dimensions.

This work was restricted to two dimensions in part due
to the loss of symmetry for N points uniformly distributed
around a sphere in higher dimensions. However, in n-
dimensional space for n > 2 there always exists a uniform,
symmetric arrangement of N points about a sphere for
N € {n+ 1,2n,2"}, as there exist regular polytopes with
those vertex counts in those dimensions [17]. We can utilize
the symmetry of these special cases to extend the quantized
sampling policy presented in this paper to monitor higher
dimensional Brownian motion while still maintaining analyt-
ical tractability. Furthermore, simulating the performance of
a quantized threshold sampling policy in higher dimensions
can allow us to compare the performance of this policy to
existing rate-distortion lower bounds like those presented
in [14]. Spherical codes are well-studied, and databases of

optimized spherical codes are readily available, such as [18]
which can facilitate the development of simulations in higher
dimensions.

Finally, we wish to explore the optimal quantization of a
sampling policy with a fixed event threshold when a linear
drift term is introduced in the source process. Such an inves-
tigation would provide insight into the design of sampling
schemes to optimize rate-distortion performance for more
complex processes such as the event camera discussed in
the introduction.
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