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Abstract— Stackelberg Evolutionary Game (SEG) theory mod-
els the interacting dynamics between a rational leader and
a population of evolving followers, merging classical and
evolutionary game theory. Although both methods are well-
developed individually, the potential of SEG itself has not been
appropriately recognized. Thus, in this paper we propose a
novel eco-evolutionary model with resource mutualism and
competition and we introduce a control framework based on
SEGs, to steer the eco-evolutionary dynamics of followers at
will. As a case study, we consider the treatment of cancer,
where tumour cells are the followers that evolve in response
to changes in the tumour micro-environment (and thus on
available resources) and to the medical therapy, where the
physician is the leader. An interesting aspect of this approach is
that the objective function can be tailored according to the goal,
e.g. jointly balancing tumour size, developed resistance, and
toxicity of therapy, to ensure maximum quality of life for the
patient. Simulations confirm the effectiveness and the potential
of the proposed approach.

Index Terms— Game theory; Stackelberg Evolutionary
Games; Mathematical modeling; Cancer treatment

I. INTRODUCTION

While classical control theory aims at steering the dynam-
ics of a plant towards a desired objective, in presence of
two or more entities each with its own goal, the resulting
interaction can be formalized and solved as a game [1].
However, traditional game theory often assumes static play-
ers with fixed strategies. This does not apply to complex
systems, such as biological systems, where strategies can
evolve over time through adaptation and natural selection.
In this type of games, called evolutionary games, players are
evolving individuals, while inherited behavioral phenotypes
(traits) act as strategies [2]. These players, if evolutionarily
identical, can be grouped into species, and this allows to
define a fitness generating function, or G-function [3]. The
success of a species corresponds to a high reproduction rate
or fitness. In these complex games, some strategies are more
resilient than others, in the sense that once adopted by most
individuals, cannot be easily replaced by any other strategy,

∗ Corresponding author.
This work has been partially supported by the Center of Excellence

for Research DEWS, University of L’Aquila, Italy, and by the project
“Digital Driven Diagnostics, prognostics and therapeutics for sustainable
Health care” (D34-HEALTH), funded by the Italian National Recovery and
Resilience Plan (NRRP) complementary fund.

C. Romano and M. D. Di Benedetto are with the Depart-
ment of Information Engineering, Computer Science, and Mathemat-
ics, Center of Excellence for Research DEWS, University of L’Aquila,
Italy. E-mail addresses: chiara.romano1@graduate.univaq.it,
mariadomenica.dibenedetto@univaq.it.

A. Borri is with the CNR-IASI Biomathematics Laboratory,
National Research Council of Italy, Rome, Italy. E-mail address:
alessandro.borri@iasi.cnr.it.

leading to the definition of an evolutionarily stable strategy.
The stability comes from the strategy effectiveness in the
current environment, which ensures its success and spread
[4]. Challenges arise when a rational agent disrupts this
environment to manipulate the eco-evolutionary dynamics of
the species, for its own purpose. It is precisely in this scenario
that the Stackelberg evolutionary game (SEG) theory is of
fundamental help. This theory comes from the application
to evolutionary game theory (EGT) of the dynamic duopoly
model introduced by Stackelberg in 1934 [5], in which a
leader company moves first and a subordinate or follower
company moves second, after observing the leader’s action.
SEGs provide a powerful tool for modeling the dynamics
between a strategic leader aiming at influencing the adaptive
responses of the followers toward a desired outcome, and
the followers themselves evolving through the principles of
natural selection [6].

In this paper, we extend the recent work [7] that reviews
SEG theory and shows some of its possible applications,
including cancer treatment, which looks highly innovative
and is therefore the subject of our current investigation.
In particular, with respect to the existing literature and
[7], our contribution is three-fold: i) we introduce a novel,
general, eco-evolutionary model with resource mutualism
and competition; ii) we restate the SEG problem in a rigorous
control-theoretical formalism, both in the transient and at the
steady state; iii) we introduce a realistic model of tumour
growth that takes into account the heterogeneity of cells,
their interactions, and the influence of external factors, such
as resources and treatment, on the evolution of their traits.

A game-theoretic approach to the problem of cancer
treatment may lead to interesting practical results, as it
considers the fact that cells are subject to natural laws, in
which evolution is their strongest advantage. Instead, in most
of the existing papers, the tumour is simply considered as a
process to be governed, not much different from a vehicle
or chemical plant. Examples in this regard include [8], [9],
providing optimal control strategies to minimize the dosage
of drugs used during treatment; the issue of robustness of the
control efforts with respect to parametric variations of the
model is addressed in [10]; linear optimal control based on
extremal variation, H∞ control and nonlinear optimal control
are investigated e.g. in [11]; in [12], Lyapunov Redesign,
Synergetic and Sliding Mode controllers are designed to
reduce tumour below a certain threshold. More recently,
deterministic and stochastic approaches to tumour modeling
and treatment have been investigated in [13], exploiting the
formalism of chemical reaction networks (CRNs).

The manuscript is organized as follows. Section II in-
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troduces a general eco-evolutionary model with resources
mutualism and competition and formalize the SEG control-
theoretical framework, later applied to the problem of tumour
growth control in Section III. Numerical results are discussed
in Section IV. Section V offers some concluding remarks.

II. MODEL AND PROBLEM FORMULATION

A. A general eco-evolutionary model with resources mutu-
alism and competition

In this subsection, we propose a novel, general eco-
evolutionary model with resources mutualism and competi-
tion, defined by the following system of ordinary differential
equations (we omit time dependencies):

ẋi = Hi(x, Ui, z,m)xi i = 1, ..., n (1)

U̇ij = σij
∂Hi(x, Ui, z,m)

∂Uij
i = 1, ..., n, j = 1, ..., p (2)

ż = fz(x, z,m) (3)

where

• xi ∈ R≥0 is the population size of species Yi, with
i = 1, . . . , n, defining a population vector x =
[x1 · · ·xn]

T ∈ Rn;
• z ∈ Rr is a vector of resource availabilities;
• m ∈ M ⊆ Rq is an external input, representing the

leader’s strategy, where M is the set of admissible
inputs;

• Ui ∈ Rp is the vector of genetic trait levels, representing
the evolutionary strategies of population i, where Uij

is the value of trait Ej , with j = 1, . . . , p, evolving
with evolutionary speed σij ≥ 0; population trait vector
levels Ui are stacked in a trait level vector U =
[UT

1 · · ·UT
n ]T ∈ Rnp;

• the function Hi : (Rn × Rp × Rr) × Rq → R (growth
rate) is called fitness function of population Yi, assumed
to be affected by its own trait vector Ui and by all the
other variables;

• fz : (Rn × Rr) × Rq → Rr is a nonlinear function
modeling the resource dynamics.

From the results in [14], [26], assuming the usual locally
Lipschitz property of the functions in system (1)–(3), for
any initial condition (x(0), U(0), z(0)) and for any Lebesgue
measurable and locally essentially bounded control input
function m, the evolution of the model is unique, thus
there exists a unique locally absolutely continuous solution
(x(t), U(t), z(t)), in a maximal interval [0, b), with 0 < b ≤
+∞.
Eq. (1) is a general ecological model where the dynamics of
population i are influenced, through its fitness, by the size of
other populations, resource availability, trait evolution, and
external factors. Eq. (2) models Darwinian evolution which
in absence of changes in the other variables, would imply
that traits evolve so that the fitness of each population is

non-decreasing in time:

Ḣi(x, Ui, z,m)|x=constant
z=constant
m=constant

=
∂Hi

∂Ui

∂Ui

∂t
=

p∑
j=1

∂Hi

∂Uij
U̇ij

=

p∑
j=1

σij

(
∂Hi

∂Uij

)2

≥ 0. (4)

The model differs from the one in [7] since it considers
different fitness functions Hi for every population, and also
the additional vector equation (3) that takes into account the
resource consumption with respect to the eco-evolutionary
model (1)–(2).

The equilibrium solution of the system of n+r differential
equations (1), (3), can be written as

x̄(U,m) (5)
z̄(U,m) (6)

and are called ecological equilibrium and resource equilib-
rium, respectively. Instead, the equilibrium solution of the
whole system of n+ p+ r differential equations (1)–(3), if
it exists, is the joint ecological, evolutionary and resource
equilibrium

x̄(Ū∗(m),m) (7)
Ū∗(m) (8)
z̄(Ū∗(m),m) (9)

expressed as a function solely of the leader’s strategy.
Notice that, as a consequence of Eqs. (2) and (4), both

evaluated at the steady state, each component Ū∗
i (m) of

the evolutionary equilibrium (8) is a local maximizer of the
individual fitness Hi with respect to the trait vector Ui. The
vector Ū∗(m), aggregating the fitness maximizers for all
populations, is usually called Evolutionarily Stable Strategy
(ESS), highlighting the fact that, for living organisms, the
utility of a strategy depends on the reproductive success
associated with it. The interested reader is referred to [2], [4]
for a general mathematical definition and deeper biological
insights on the topic. The ESS is also referred to as the
followers’ best response to the leader’s action.

B. Problem Formulation as a Stackelberg evolutionary game
(SEG) and equilibrium solutions

In order to define a meaningful control problem on the
system (1)–(3), we can formalize a Stackelberg evolutionary
game (SEG) [7], [15] between a leader, which can decide
the control input m to optimize an objective function

Q(x, U,m) (10)

taking into account the dynamics of the n followers, (the
populations in (1)), each of them evolving by trying to
optimize the fitness function Hi of its own species. The
combination of the strategies of the players leads to the
equilibrium of the game.

It is possible to define the game in (at least) two different
situations, which are explored in the following: (i) at the
steady state, when the ecological, evolutionary and resource
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equilibria are achieved, by means of constant strategies; (ii)
during the transient, when neither ecological nor evolutionary
equilibria are reached (yet) by the followers, by means of
time-varying strategies.

SEG at the steady state: we analyze the best strategy
when the steady state of the system is reached. This case can
be solved exactly by means of algebraic equations, and it is
possible to easily compare Stackelberg and Nash equilibrium
strategies. In more detail, the Nash equilibrium [16] can be
obtained by optimizing the leader’s objective as a function
of the followers’ traits U :

m̄∗(U) = arg max
m∈M

Q(x̄(U,m), U,m), (11)

so that the Nash equilibrium (Ū∗
N , m̄∗

N ) =
(Ū∗(m̄∗

N ), m̄∗(Ū∗
N )) is the solution of the algebraic

system (8), (11).
In the Stackelberg game, the leader (acting first) is aware

that the followers know and react (to their best) to its own
action; so the leader will optimize its objective by taking into
account the (known) followers’ best response (8). This leads
to changing the leader’s optimization (11) into:

m̄∗
S = arg max

m∈M
Q(x̄(Ū∗(m),m), Ū∗(m),m). (12)

The Stackelberg equilibrium strategy (Ū∗
S , m̄

∗
S) =

(Ū∗(m̄∗
S), m̄

∗
S), when applied to a leader-follower game (as

the system evolving according to Eqs. (1)–(3)), leads to
better results for the leader than those obtained with the
Nash equilibrium strategy, which is more conservative since
it ignores the followers’ best response:

Q(x∗(Ū∗
N , m̄∗

N )), Ū∗
N , m̄∗

N ) ≤ Q(x∗(Ū∗
S , m̄

∗
S), Ū

∗
S , m̄

∗
S).
(13)

SEG in the transient: let T ∈ R+
>0 be a finite time

horizon of interest. Let M be the set of all admissible
(for example, piecewise-continuous) functions in the form
m : [0, T ] −→ M . The leader can find the best strategy
as a time-varying function in the interval [0, T ], starting
from the initial condition (x(0), U(0), z(0)), by maximizing
a weighted average of the quality of life (10) along the whole
time horizon:

m∗
S(·) = arg max

m(·)∈M
subject to (1),(2),(3)

Q̃(x(·), u(·),m(·)), (14)

where the functional Q̃ is defined as

Q̃(x(·), u(·),m(·)) = wT Q(x(T ), U(T ),m(T )) (15)

+ (1− wT )
1

T

∫ T

0

Q(x(τ), U(τ),m(τ))dτ

and wT ∈ [0, 1] is a design parameter, chosen to relatively
weigh terminal and running costs as desired.

Notice that, with respect to what defined for the steady-
state equilibrium, in the transient we more generally aim at
optimizing a convex combination of the quality of life at
the end of the interval [0, T ] (weighted by the coefficient
wT ) and of the average quality of life in the same interval
(weighted by 1 − wT ). This results in a more complex

dynamic game that is hard to solve exactly, but that can
guarantee, even in an approximate solution (later shown in
the case study), better quality of life than the one achieved by
the exact steady-state optimization over the set of constant
strategies, described in the previous paragraph.

The Stackelberg equilibrium strategy can be expressed, at
each time t ≥ 0, as the pair (U∗(t),m∗

S(U
∗(t))), where the

followers’ transient response U∗(t) is the evolutionary part of
the solution of the system (1)–(3) with the particular choice
m(t) = m∗

S(U
∗(t)), defined in (14), representing a feedback

law operated by the leader from the traits evolution.
In the transient case, the computation of the Nash equi-

librium still leads to a worse (more conservative) outcome
for the leader with respect to Stackelberg strategy (14),
and it is much harder to compute, since it would require
the solution of the Hamilton-Jacobi-Bellman-Isaacs partial
integro-differential equations [17]. This is left out of the
present work for lack of space.

III. TUMOUR TREATMENT AS A STACKELBERG GAME

A. A novel tumour model with mutualism, competition and
Niche construction

In this section, we propose a model in the form (1)–(3)
addressed in Section II for cancer treatment. The suggested
model, compared with others in the literature, provides a
unified view on the evolution and growth of cancer cells,
addressing four main issues: heterogeneity [18], development
of resistance to treatment [7], cellular cooperation [19], [20],
and the Niche construction, that is the biunivocal relationship
between cancer cells and the tumour environment [3]. The
latter is crucial because the environment, particularly the
resources within it, plays a key role in cellular evolution
[21]. In detail, we identified oxygen as a key resource
influencing cells. Indeed, low oxygen levels, a condition
known as hypoxia, is often associated with tumour growth
[22]. This led us to introduce a new trait: the ability to
survive hypoxia, in addition to resistance to treatment. A
deeper analysis of the evolutionary dynamics also led us to
discover a relationship between the two traits, which has been
integrated into an improved version of this eco-evolutionary
model in [23]. Since hypoxia selects glycolysis as the pre-
dominant energy pathway and also promotes angiogenesis
[21], we considered three types of cellular subpopulations:
glycolytic cells (denoted as GLY), vascular overproducers
(VOP) and defector cells (DEF). The latter species benefits
from the goods (acidic environment and oxygen) provided by
the former ones (GLY and VOP) [19]. Thus, the proposed
model takes into account both aspects of mutualism (between
the first two species) and competition (intra-species and
between DEF and the others). We also distinguished between
defector cells capable of developing resistance to treatment
and sensitive ones, resulting in a total of 4 populations.

Therefore, our model in the form (1)–(3) considers n = 4
cell species, a single (r = 1) resource, a single therapy
(q = 1), and p = 2 traits. The four species Y1 = G, Y2 = V ,
Y3 = Dr and Y4 = Ds stand for GLY, VOP, resistant
DEF and sensitive DEF cells, respectively, the two traits
E1 = Hr and E2 = Tr, with levels U1 and U2, represent
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the resistance to hypoxia and the resistance to treatment,
respectively, and the resource Z = Ox is the percentage of
oxygen present in the environment. Consequently, the state
variables are adimensional [#]. The therapy administration
(in the unit of time) is assumed to be normalized over its
maximum value, so m ∈ M = [0, 1], where m = 0 and
m = 1 correspond to no therapy and Maximum Tolerated
Dose (MTD), respectively.

Denoting by Ui ∈ R2
≥0 the vector of trait levels of

population i, with i = 1, . . . , 4, we model the general fitness
function for species i = 1, . . . , n in (1) as

Hi(x, U, z,m) = r̄i(z + cTi Ui)e
−gT

i Ui

(
1 +

αT
i x

Kmax

)
− d− m

k + bTi Ui
, (16)

where
• r̄i > 0 (in units of [1/day]) is the nominal growth rate

of population i;
• ci ∈ R2

≥0 is a constant vector whose general entry ci
[#] is defined as

ci =

{
[1 0]T i = 1, 2,

[0 0]T i = 3, 4,

allowing the first two populations to have an increased
growth rate for increasing values of the first trait;

• gi = [gi,H gi,T ]
T , where gi,H , gi,T ≥ 0 [#] represent

population-dependent costs of resistance to low oxygen
levels and treatment, respectively;

• αi ∈ R4
≥0 is a vector whose general entry αij [#]

defines the cooperative (αij > 0), competitive (αij < 0)
or null (αij = 0) effect of a population j on population
i, assuming αii = −1 ∀i. Each αij = bij − cij is the
difference between the benefit bij that species i gets
from interacting with species j, and the associated cost
cij . These interactions can be categorized as

Mutualism if (αij > 0 ∧ αji > 0)

Competition if (αij < 0 ∧ αji < 0)

Exploitation of species j if (αij > 0 ∧ αji < 0)

and are inferred from a 4-species extension of the 2-
species Lotka-Volterra model proposed in [24];

• Kmax > 0 [#] is the carrying capacity, namely the
maximum population size reachable in absence of in-
teractions (αij = 0 for i ̸= j);

• d > 0 [1/day] is the cell natural death rate;
• m [#] is the therapy administration rate, i.e. the external

input;
• k > 0 [#] represents the cell innate resistance in

absence of drug exposure;
• bi = [bi,H bi,T ]

T , where bi,H , bi,T ≥ 0 [#] rep-
resent the population-dependent advantages that cells
gain from their ability to resist hypoxia and treatment,
respectively.

Considering that Hi, for any i, is a locally Lipschitz function,
by virtue of Rademacher’s theorem [27], it is differen-
tiable almost everywhere in Rn × Rp × Rr. This concept
of differentiability asserts the existence of the coordinate-
wise partial derivatives, thus (16) uniquely determines the
following particular form of the dynamics (2), for all i and
j:

U̇ij = σij r̄ie
−gT

i Ui
(
cij − gij(z + cTi Ui)

)(
1 +

αT
i x

Kmax

)
+ σij

mbij
(k + bTi Ui)2

.

(17)
The resource equation in (3) is modeled as:

ż = fz(x, z,m) =
(
PT
Ox

x
)
(1− z)−

(
RT

Ox
x
)
z, (18)

representing a logistic growth with linear clearance, where
POx

, ROx
∈ R4

≥0 include the population-dependent per
capita oxygen production and removal rates, respectively. In
particular, we choose POx

= [0 PV 0 0]T , since only
VOP are able to stimulate angiogenesis and thus increase
oxygen availability, and ROx = [RG RA RA RA]

T

where RG and RA represent the removal rates of glycolytic
and aerobic cells (VOP and DEF), respectively, considering
for the latter a higher rate (RA > RG), since these cells
cannot rely on glycolysis.

B. Therapy optimization

For the optimization problem of the leader, namely the
physician, it is necessary to define an objective function, as
in (10). Our choice here is to generalize the objective of [7]
by balancing tumour size, developed resistance, and toxicity
of therapy to ensure maximum quality of life for the patient.
We therefore set

Q(x, U,m) = Q̄− cx

(
1Tx

nKmax

)2

− cu∥UTr
∥2 − cmm2,

(19)
where

• Q̄ is the maximum patient quality of life;
• 1 denotes the n-dimensional column vector of 1’s (with

n = 4 being the number of species), so that the term
1Tx is the total tumour population; differently from [7],
we divide 1Tx by nKmax because mutualism among
species results in increasing the maximum population
by a factor of n with respect to the carrying capacity;

• the vector UTr = [U12 U22 U32 U42]
T collects the

treatment resistance trait levels for the 4 populations;
• the weights cx, cu, cm represent the impact of tumour

burden, resistance rate, and drug toxicity, respectively,
on the quality of life.

As formalized in Section II, we can solve the Stackelberg
game both at the steady state (i) and in the transient dynamics
(ii), by obtaining a constant and a time-varying therapeutic
strategy, respectively.
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1) Constant tumour treatment (SEG at the steady-state):
first, we computed some partial analytical expressions for
the non-trivial (non-zero) ecological (7), evolutionary (8)
and resource (9) equilibria as a function of the administered
therapy. By imposing the fitness function Hi in (16) equal to
zero for all i, and grouping the effects of cellular interactions,
we obtain the algebraic linear system Ax̄ = b̄, where A ∈
Rn×n is the matrix that captures all interaction effects. The
vector b̄ = [b̄1 b̄2 b̄3 b̄4]

T has its general entries defined
as (i = 1, 2, 3, 4):

b̄i =
Kmaxe

gT
i Ui

r̄i(z + cTi Ui)

(
d+

m

k + bTi Ui
− r̄i(z + cTi Ui)e

−gT
i Ui

)
.

(20)

Considering that A is invertible for the parameters in Table
I, an explicit form for the ecological equilibrium x̄ can be
readily obtained as a function of the other variables:

x̄ = A−1b̄. (21)

For the resource equilibrium, setting Eq. (18) to zero, we
obtain:

z̄(x) =
PT
Ox

x

PT
Ox

x−RT
Ox

x
. (22)

Unfortunately, the remaining Eq. (17) at the steady state
cannot be easily solved analytically with respect to the trait
level Uij , to find the evolutionary stable strategy (ESS)
Ū∗(m) in (8) in closed form, but the ESS can be readily
obtained numerically, jointly with the analytical solutions
(21), (22), so that a numerical evaluation of the equilibria
(7)–(9), as a function of the therapy m, is finally available.

2) Time-varying tumour treatment (SEG during transient):
since the optimal solution (14) in the transient would require
the solution of an optimal control problem over a system
of dimension n + np + r = 13, we propose here a sub-
optimal piecewise-constant solution, computed by solving an
approximate version of (14), in the spirit of Model Predictive
Control (MPC) [25]. Let the interval [0, T ] be partitioned
into N equal subintervals of length ∆, we aim at finding a
suboptimal Stackelberg strategy m̃∗

S(·) defined as

m̃∗
S(t) = m̃∗

S,k t ∈ [k∆, (k + 1)∆), k = 0, 1, . . . , N−1,
(23)

where the therapy value at each interval solves the following
approximate version of the control problem in (14):

m̃∗
S,k = arg max

mk∈M
subject to (1),(2),(3)

Q̃k(x(·), u(·),mk), (24)

with

Q̃k(x(·), u(·),mk) = wT Q(x(T ), U(T ),m(T )) (25)

+ (1− wT )
1

(N − k)∆

∫ T

k∆

Q(x(τ), U(τ),mk)dτ,

where T = N∆, starting from the initial condition
(x(k∆), U(k∆), z(k∆)) of interval k. Notice that the value
of m̃∗

S,0 can be close to the Stackelberg steady-state strategy
m̄∗

S if T is large and ωT = 1, but the time-varying strategy

is free to vary in the following intervals k = 1, . . . , N−1, to
possibly obtain a higher quality of life with respect to the one
obtained by the constant Stackelberg steady-state strategy.

IV. SIMULATIONS

Several simulations were carried out in MATLAB® on
the proposed tumour growth model (1)–(3), (16)–(18), for
the choice of parameter values in Table I, which have been
recalibrated with respect to the values in [7] in order to obtain
more meaningful results in terms of tumour dimension and
response/treatment time.

TABLE I
NUMERICAL VALUES OF THE MODEL PARAMETERS

Parameter Value

Kmax 1011

r̄i,i=1,...,4 0.45 [1/day]
ḡiH,i=1,...,4 1
ḡiT,i=1,...,4 1
σij 0.1 [1/day]
b̄i1,i ̸=1 0.5
b̄i2,i ̸=2 0.25
b̄i3,i ̸=3 0
b̄i4,i ̸=4 0
b̄ii,i=1,...,4 0
PV 0.1
RG 0.01
RA 0.03

Parameter Value

c̄ii,i=1,...,4 1
c̄1i,i̸=1 1/6
c̄2i,i̸=2 1/6
c̄3i,i̸=3 0
c̄4i,i̸=4 0
biH,i,i=1,...,4 0
biT,i,i=1,...,4 10
k 1
d 0.01 [1/day]
cx 0.6
cu 0.32
cm 0.08
Q̄ 1

First, we numerically verified the uniqueness and the
stability of the equilibrium (7)–(9), for non-zero initial
populations, as a function of the therapy level m. In order
to evaluate the effectiveness of the proposed strategy, both
in steady state and during the transient, we considered as
initial state of the simulation the equilibrium reached in
absence of treatment: x(0) = x̄(Ū∗(0), 0), U(0) = Ū∗(0),
and z(0) = z̄(Ū∗(0), 0), corresponding to an initial tumour
size in the order of 1011 cells.

Regarding the behavior of the SEG at the steady state by
means of constant treatments, in Fig. 1 we plot Q̄(m) :=
Q(x̄(Ū∗(m),m), Ū∗(m),m), which confirms (as expected
from Eq. (13)) that the Stackelberg equilibrium strategy (cor-
responding to the therapy m = m̄∗

S ≃ 0.5208) guarantees the
maximum steady-state quality of life, compared with other
constant strategies, including the Nash equilibrium strategy
(m = m̄∗

N ≃ 0.5498) and the extreme cases of no therapy
(m = 0) and MTD (m = 1).

The situation changes when considering the SEG during
transient and time-varying therapies, which, in general, lead
to an overall better quality of life, over the entire observation
period of 700 days (≃ 2 years), with respect to constant
therapies. In Fig. 2 we plot Q̃(x(t), u(t),m(t)) in (15) for
different choices of the input function m(·), providing a
comprehensive comparison of some investigated possibili-
ties, including (i) the Stackelberg MPC-like solution (23)–
(24) with ωT = 0.5 (equally weighing average and final
quality of life), achieving the best outcome, (ii) a static
proportional state-feedback controller m(t) = 1T

1T x(0)
x(t),

reducing the therapy proportionally to the tumor shrinking
in time, and (iii) the extreme cases of constant strategies.
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Fig. 1. Quality of life achieved at the steady state by means of constant
strategies: comparison between Stackelberg equilibrium, Nash equilibrium,
MTD (m = 1) and null therapy (m = 0).
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Fig. 2. Quality of life over a time span of 700 days: comparison among
the Stackelberg MPC-like strategy (with ωT = 0.5), a proportional static
state-feedback controller, and the cases of MTD and null therapy.

V. CONCLUSIONS

In this paper, we formalized a control-theoretical set-
ting for Stackelberg evolutionary games (SEGs) together
with a novel general eco-evolutionary modeling framework
accounting for resource, mutualism and competition. The
approach was applied to the case study of cancer treatment,
which presents the interest of taking into account how
cancer cells evolve in response to treatment, considering the
now well-known fact that cancer is a Darwinian process.
Compared with other models of tumour growth already in
the literature, our model provides a more realistic view of
tumour evolution, addressing four main issues: heterogeneity,
development of treatment resistance, cellular cooperation,
and the Niche construction. The potential of the approach
is validated by means of numerical simulations. Future work
will address a deeper comparison between the SEG approach
and the optimal control methods available in the context of
cancer treatment, further model refinements and an extensive
in silico simulation campaign, as a first step in view of a
future translation of the approach to the clinical practice.
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