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Abstract— Implementation of Model Predictive Control
(MPC) on hardware with limited computational resources
remains a challenge. Especially for long-distance maneuvers
that require small sampling times, the necessary horizon lengths
prevent its application on onboard computers. In this paper,
we propose a computationally efficient tube-based shrinking
horizon MPC that is scalable to long prediction horizons. Using
move blocking, we ensure that a given number of decision inputs
is efficiently used throughout the maneuver. Next, a method to
substantially reduce the number of constraints is introduced.
The approach is demonstrated with a helicopter landing on
an inclined platform using a prediction horizon of 300 steps.
The constraint reduction decreases the computation time by an
order of magnitude with a slight increase in trajectory cost.

I. INTRODUCTION

Model Predictive Control (MPC) is a popular control
method for handling systems subject to state and input
constraints [1], [2]. In regular MPC, a trajectory optimization
problem is solved over a fixed receding horizon at every time
step. In order to ensure closed-loop stability, the terminal
state is usually constrained to lie within an invariant terminal
set [3]. However, invariance of the terminal set may be
restrictive in certain applications [4]. For example, reaching
a certain position with a non-zero target velocity can not be
encoded as an invariant set. It is well known that finite-time
arrival to arbitrary terminal sets can be achieved by varying
the prediction horizon length [4]–[9]. Usually, the resulting
optimization is a mixed-integer program (MIP) where the
horizon length acts as the integer decision variable. Finite-
time completion and recursive feasibility require that the
target is reachable from the current state. As a result, large
horizons are often needed to achieve practically relevant
regions of attraction (ROA). In [7], the required horizon
length is reduced by introducing intermediate waysets. By
placing these sets in a way that ensures the reachability
from one wayset to another, an unmanned aircraft is shown
to maneuver to the target region while avoiding obstacles.
However, the resulting MIPs need to be solved online which
is usually prohibitively expensive on onboard computers. An-
other strategy [8], [9], often referred to as shrinking horizon
MPC (SHMPC), treats the horizon length as a parameter so
the problem reduces to a continuous program. Consequently,
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optimality with respect to horizon length is sacrificed for
computational tractability. In the aforementioned approaches,
the number of decision variables and thus the computational
load vary drastically with horizon length. Since an onboard
computer needs to be able to handle the worst-case scenario,
the maximal horizon is limited by hardware capabilities.
The approach by [6] allows to set a maximal number of
decision inputs, regardless of horizon length, using move
blocking [10], a scheme where inputs are held constant over
some number of steps to reduce the amount of decision
variables. The trajectory is then optimized over feasible
blocking strategies in a MIP.

A. Main Contribution and Structure of the Paper
In this paper, we present a computationally efficient and

robust SHMPC that is scalable to long prediction horizons.
In contrast to [6], we simplify the problem to a shrinking
horizon formulation in which the horizon length at a given
time step is known a priori. On this basis, we present a
constructive method to generate time-varying blocking strate-
gies while efficiently utilizing a given maximum number
of decision inputs and ensuring recursive feasibility. For
long prediction horizons, the number of constraints becomes
another significant source of complexity. We therefore refor-
mulate the standard move blocking optimization problem to
enable the reduction of constraints. An optimization-based
approach is developed that enables the approximation of the
constraint set with substantially fewer halfspaces. The effi-
cacy of our approach is demonstrated on a helicopter landing
example. The constraint reduction is shown to decrease the
computation time by an order of magnitude.

The rest of this paper is structured as follows. Section II
introduces the control problem and reviews some preliminar-
ies. In Section III, the proposed SHMPC with move blocking
is presented. The constraint reduction is developed in Section
IV. Section V demonstrates the approach on a numerical
example. Section VI provides a conclusion and outlook.

B. Notation
Given two sets S1, S2, set addition and difference are

defined as S1 ⊕ S2 = {a + b | a ∈ S1, b ∈ S2} and S1 ⊖
S2 = {a | a ⊕ S2 ⊆ S1}, respectively. Given matrices or
vectors A, we interpret AS as {As | s ∈ S}. We further
denote a block diagonal stacking by diag(A1, . . . , An), a
vertical concatenation by (A1, . . . , An) and the Kronecker
product by A1 ⊗ A2. The n-dimensional identity matrix is
denoted by In. We interpret 0n×m and 1n×m as n × m-
dimensional matrix of zeros and ones, respectively. The set
of natural numbers ranging from l to u is written as Nu

l .

IEEE Control Systems Letters paper presented at
2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy 

Copyright ©2024 IEEE



II. PROBLEM STATEMENT AND PRELIMINARIES

Let xk ∈ Rn denote the state at time kτ with k ∈ N and
sample time τ . Consider the linear discrete-time system

xk+1 = Axk +Buk + wk, (1)

subject to state-input and terminal constraints

∀k ∈ NN0−1
0 : (uk, xk) ∈ F , xN0

∈ XT , (2)

where u ∈ Rm is the input, wk ∈ W ⊆ Rl is an unknown
but bounded disturbance and N0 ∈ N+ is the number of time
steps within the maneuver. We assume a maximum number
of decision inputs N̄max (e.g. based on hardware capabilities).
We aim to compute finite-time trajectories with a number
of decision inputs N̄ ≤ N̄max, irrespective of N0. The cost
function to be minimized is of the form

J =

N−1∑
i=0

[xi, ui]
TH[xi, ui] + xT

NPxN , (3)

where H , P are positive definite matrices. We assume that
(i) the pair (A,B) is stabilizable and (ii) the sets F , XT , and
W are polytopes containing the origin. In the following, the
fundamentals of tube MPC and move blocking are discussed.

a) Tube MPC: In order to deal with uncertainties,
tube-based approaches [11], [12] provide a way to achieve
stability guarantees while keeping the resulting optimization
computationally tractable. The concept is based on an an-
cillary controller K that keeps the states of the uncertain
system within a tube centered around the states of a nominal
system

zk+1 = Azk +Bvk. (4)

In [11], the tube size is constant and given by a Robust
Positively Invariant (RPI) set Z .

Definition 1 (Robust positively invariant (RPI) set): Let
AK = A−BK be such that xk+1 = AKxk is stable. A set
Z is robust positively invariant if AKZ ⊕W ⊆ Z .
The following proposition establishes that states starting in
this tube will in fact remain inside of it for all time under
an appropriate control law.

Proposition 1 (Proposition 1 in [11]): Let Z be a RPI set
for system (1). If x0 ∈ z0 ⊕ Z and we choose uk = vk −
K(xk − zk), then xk ∈ zk ⊕Z for all wk ∈ W and k ∈ N.
Based on Proposition 1, it is therefore possible to ensure (2)
despite the influence of w by performing the trajectory op-
timization on the nominal system with tightened constraints

F̄ = F ⊖ (Z ×KZ), X̄T = XT ⊖Z. (5)

The nominal system then acts as a reference for the ancillary
controller K. By adding a constraint to assure that the
measured state xk lies within the tube z0 ⊕Z at the start of
the trajectory, we obtain the optimization problem P0(xk):

min
V,z0

N−1∑
i=0

(zi, vi)
TH(zi, vi) + zTNPzN

s.t. xk ∈ z0 ⊕Z, zN ∈ X̄T

zi+1 = Azi +Bvi, (zi, vi) ∈ F̄ , i ∈ NN−1
0 ,

(6)

where i denotes the prediction time step. With the optimal
solution at time k given as V ∗(k) = (v∗0(k), . . . , v

∗
N−1(k)),

z∗0(k), the control law is

uk = v∗0(k)−K(xk − z∗0(k)). (7)

b) Move blocking: The computational complexity of
the optimization problem is heavily influenced by the number
of decision variables. In regular MPC, this corresponds to the
number of decision inputs within the horizon. One strategy
to reduce complexity is to hold the inputs constant over a
certain number of steps using a blocking matrix.

Definition 2 (Blocking matrix): A blocking matrix M ∈
RN×N̄ is defined as

M = diag(1s1×1, . . . ,1sN̄×1) =: M(s),

where the blocking vector s = (s1, . . . , sN̄ ) stores the
individual blocking lengths si ∈ N+.
The matrix M relates the blocked decision input vector Ū :=
(ū0, . . . , ūN̄−1) to the original one by U = (M⊗Im)Ū . The
number of inputs within the optimization is therefore reduced
from Nm to N̄m. For example, a system with m = 1 and
N = 4 can be reduced to N̄ = 2 decision inputs via

u1

u2

u3

u4

 = M

[
ū1

ū2

]
with M =


1 0
1 0
1 0
0 1

 , s = (3, 1).

III. EFFICIENT MOVE BLOCKING FOR SHMPC

In this section, we present a time-varying move blocking
scheme for SHMPC that efficiently utilizes a given maxi-
mum number of decision inputs, regardless of the horizon
length. We then prove finite-time completion and recursive
feasibility.

A. Optimization Problem Formulation

With move blocking, we can ensure that the number of
decision inputs will not exceed a given bound N̄max by
choosing an appropriate blocking matrix at each time step. In
order to achieve robustness against disturbances, we combine
move blocking with the tube-based MPC formulation (6) to
arrive at P(xk,Mk):

min
V̄ ,z0

Nk−1∑
i=0

(zi, vi)
TH(zi, vi) + zTNk

PzNk
,

s.t. xk ∈ z0 ⊕Z, zNk
∈ X̄T ,

V = (v0, . . . , vNk−1) = (Mk ⊗ Im)V̄ ,

zi+1 = Azi +Bvi,

(zi, vi) ∈ F̄ , i ∈ NNk−1
0 ,

(8)

where V̄ = (v̄0, . . . , v̄N̄ ) is the reduced input vector,
Nk := N0 − k and the control is given by (7). Since the
horizon Nk shrinks at every time step, the blocking matrix
Mk ∈ RNk×N̄ and the corresponding blocking vectors
sk = (s1,k, . . . , sN̄,k) are now time-varying. Optimal values
are denoted by a star as their superscript, e.g. V̄ ∗(k), z∗0(k).
Note that while the RPI set Z ensures invariance with respect



to the trajectory tracking error xk − z∗0(k), invariance of
the nominal trajectory zi is not required due to the use
of shrinking horizons [4]. In the following, we outline a
procedure to obtain blocking matrices that ensure recursive
feasibility and efficiently utilize the available number of
decision inputs.

B. Recursive Feasibility via Truncation

The move blocking scheme is built on the fact that, when
using shrinking horizons, a feasible solution at the next time
step is easily obtained by truncating the previous solution.

Proposition 2: Consider (1) controlled by (7). Let
V ∗(k) = (Mk ⊗ Im)V̄ ∗(k) denote the optimal input
trajectory of P(xk,Mk) for k ∈ NN0−1

0 . Let R =
[0(Nk−1)×1, INk−1] ∈ R(Nk−1)×Nk denote a truncation ma-
trix. If there exists an input trajectory W such that

(Mk+1 ⊗ Im)W = (R⊗ Im)V ∗(k) = (v∗1 , . . . , v
∗
N−1), (9)

then V̄ (k + 1) = W and z0(k + 1) = z∗1(k) are a feasible
solution to P(xk+1,Mk+1).

Proof: We first show that the truncated input trajectory
(R ⊗ Im)V ∗(k) is feasible at k + 1. Based on Proposition
1, xk+1 ∈ z∗1(k)⊕Z . Thus, z0(k + 1) = z∗1(k) satisfies the
initial state constraint at k+1. Since there is no disturbance
acting on the nominal system (4), truncating the previous
input trajectory V ∗(k) via (R⊗ Im)V ∗(k) yields a feasible
solution. Therefore, if (9) holds, then P(xk+1,Mk+1) is
feasible for V̄ (k + 1) = W and z0(k + 1) = z∗1(k).
If such a W exists for a particular blocking matrix Mk+1, we
refer to Mk+1 as a feasible blocking matrix. A simple way to
construct a feasible blocking matrix is to choose W = V̄ ∗(k)
and then truncate the first row of Mk as follows:

(R⊗ Im)V ∗(k) = (R⊗ Im)(Mk ⊗ Im)V̄ ∗(k)

= (RMk ⊗ Im)V̄ ∗(k),
(10)

where we used (A⊗B)(C ⊗D) = AC ⊗BD for matrices
A,B,C,D of appropriate size. Thus, choosing Mk+1 =
RMk results in a feasible blocking matrix. However, re-
peatedly truncating M eventually leads to zero columns,
effectively nullifying the corresponding reduced input. Con-
sequently, the available number of decision inputs is not fully
utilized.

C. Recursively Feasible Interval Splits

In this section, we expand the previous strategy to enable
the efficient usage of the available decision inputs. Our goal
is to design a function Γ(Mk) that only behaves like RMk

when s1,k > 1, i.e. when RMk does not lead to a reduction
of effective decision inputs. However, when s1,k = 1 and
the horizon length is larger than the maximum number of
available decision inputs N̄max, we split an existing blocking
interval instead of truncating it. The number of effective
decision inputs thus remains N̄max instead of reducing to
N̄max − 1. Specifically, let

Γ(Mk) =

{
Ψ(Mk) if s1,k = 1, Nk > N̄max

RMk otherwise
, (11)

 

    

 

 

 

   
 

 

Fig. 1. An example of (12) with s = (1, 3, 1). The blocking vector s′

corresponds to the blocking matrix RMG. Since j = 1, σ1 is empty.

where

Ψ(Mk) = split(RMkG), G = [0(N̄−1)×1, IN̄−1]
T . (12)

An example of (12) is shown in Fig. 1. The function Ψ(Mk)
first truncates Mk using R. Since s1,k = 1, removing the first
row results in a matrix with only zeros in the first column.
This column is removed using G, leading to a blocking
matrix with N̄−1 columns. The result is then split using the
function split, which we define in the following. Recalling
Definition 2, M can be represented using its blocking vector
s via M = M(s). Our proposed splitting procedure can be
written as:

split(M) = M(σ), σ = (σ1, σ2, σ3) (13)

where σ1 = (s1, . . . , sj−1), σ2 = (sj − i, i), and σ3 =

(sj+1, . . . , sN̄ ) with i ∈ Nsj−1
1 and j ∈ NN̄

1 s.t. sj > 1. The
index j is restricted to columns with sj > 1 since a column
with sj = 1 can not be split further. Note that for j = 1 and
j = N̄ , the vectors σ1 and σ3 are empty, respectively. The
following Proposition establishes that split(M) results in a
feasible blocking matrix.

Proposition 3: For a feasible blocking matrix M ∈
RN×N̄ , the blocking matrix split(M) ∈ RN×N̄+1 defined
in (13) is feasible.

Proof: By conjoining columns j and j+1 of split(M),
the original blocking matrix M can be recovered. Therefore,
M = split(M)Dj with Dj = diag(Ij−1, (1, 1), IN̄−j).
Since M is feasible, Proposition 2 states that there exists
a feasible input trajectory (M ⊗ Im)V̄ so that

(M ⊗ Im)V̄ = (split(M)Dj ⊗ Im)V̄

= (split(M)⊗ Im)(Dj ⊗ Im)V̄ .
(14)

It follows that (Dj⊗Im)V̄ can be chosen as a feasible input
trajectory for split(M), thus it is a feasible blocking matrix.

Proving recursive feasibility and finite time completion is
now straightforward.

Theorem 1: Consider (1) controlled by (7), wherein
v∗0(k) and z∗0(k) are part of the optimal solution to
P(xk,Γ(Mk−1)). Suppose that a solution to P(x0,M0) exists
for some M0 with an initial horizon length N0. Then

1) P(xk,Γ(Mk−1)) is feasible for all k ∈ NN0−1
1 ;

2) xN0 ∈ XT .



Proof: Suppose that Mk−1 is feasible for some k ∈
NN0−1

1 . If Mk = Γ(Mk−1) is feasible, item 1) holds by
induction since the base case is true by assumption. For the
case Nk−1 > N̄ and s1,k−1 = 1 of (11), we first need
to show that M ′

k := RMkG in (13) is feasible in order
for Proposition 3 to be applicable. Since the first column of
RMk−1 consists of zeros, we can add a zero column to M ′

k−1

to obtain RMk−1 = [0(Nk−1−1)×1,M
′
k−1] = M ′

k−1G
T . As

(10) shows that is RMk−1 feasible, we obtain

(RMk−1 ⊗ Im)V̄ ∗(k − 1)

= (M ′
k−1G

T ⊗ Im)V̄ ∗(k − 1)

= (M ′
k−1 ⊗ Im)(GT ⊗ Im)V̄ ∗(k − 1),

(15)

i.e. M ′
k is feasible with W = (GT ⊗Im)V̄ ∗(k−1) according

to Proposition 2. By Proposition 3, split(M ′
k−1) is then also

feasible. For all other cases, we have Mk = RMk−1 which is
again shown to be feasible in (10). Γ(Mk−1) is thus feasible
any k ∈ NN0−1

1 . Item 2) follows directly: At time step k =
N0, since P(xk,Γ(Mk−1)) is feasible for all k ∈ NN0−1

1 ,
Proposition 1 guarantees that xN0

∈ z∗1(N0 − 1)⊕Z ∈ XT .

IV. CONSTRAINT REDUCTION

For move blocking, the feasibility of the state trajectory
between two blocked inputs is ensured by encoding that
every state within the interval satisfies the constraints. A key
observation is that this kind of formulation leads to highly
redundant constraints and thus increases the complexity of
the problem unnecessarily. In this section, we reformulate
P to allow for constraint reduction and then present an
approach to efficiently approximate the constraint sets. This
facilitates the scalability of our SHMPC with respect to
horizon length.

A. Transition Matrix Formulation
Let ξ0(i) = (zi, v̄i) ∈ F̄ denote the state-input pair at the

start of a blocking interval si,k (k is dropped in the following
for brevity). The following auxiliary system describes the
trajectories evolving within this interval:

ξj+1(i) = Aξj(i), A =

[
A B

0m×n Im

]
. (16)

With Ã(si) = Asi and B̃(si) =
∑si−1

j=0 AjB, we then have
zi+si = Ã(si)zi+B̃(si)vi. Therefore, (8) can be equivalently
stated as P̃(xk, sk):

min
z̃0,V̄

N̄−1∑
i=0

(z̃i, v̄i)
T H̃(si)(z̃i, v̄i) + z̃TN̄P z̃N̄

s.t. z̃0 ∈ xk ⊕Z, z̃N̄ ∈ XT

z̃i+1 = Ã(si)z̃i + B̃(si)v̄i,

(z̃i, v̄i) ∈ F̃(si), i ∈ NN̄−1
0 .

(17)

where H̃(si) =
∑si−1

j=0 (Aj)THAj and

F̃(si) =

si−1⋂
j=0

A−jF̄ , (18)

7F !
~A!1 7F !

A ~A!2 7F

~F (si)

-1

-0.5

0

0.5

-1

1

-1
0 0

1 1

Fig. 2. Left: An example of (18) with si = 3. Red circles denote initial
states. Right: F̃ (blue) and F̃t (dashed) of a randomly generated set from
Example 1 for si = 30.

which describes the state-input pairs that remain in F̄ for si−
1 steps. Note that at time step si, the state is constrained by
F̃(si+1). An example of (18) is shown on the left side of Fig.
2. Note that trajectories starting in F̃ do not leave F̄ within
si−1 steps. For polytopic sets, (18) is computed by stacking
the matrices defining the halfspaces of A−jF̄ , in which case
we arrive at the same constraint matrices as in (8). However,
this representation allows us to remove redundant halfspaces
and thus lower the complexity of P̃. Still, for large interval
lengths si, even a non-redundant halfspace representation of
F̃(si) is often still complex. In the next section, we introduce
an approach to drastically reduce the constraints with only
marginal loss of constraint set volume.

B. Constraint Set Approximation
To further reduce F̃(si) = {x |Fx ≤ f}, we construct

a polytopic approximation F̃t(si) = {x |Ftx ≤ ft} with
fewer halfspaces. In order to ensure that all state-input pairs
within F̃t(si) also do not leave the original constraint set
F̄(si) within si − 1 steps, the approximation needs to be a
subset of F̃(si). In other words, F̃t(si) must be an inner-
approximation of F̃(si), which of course may shrink the
ROA. We therefore try to maximize the volume of F̃t(si)
while enforcing F̃t(si) ⊆ F̃(si) via optimization. To encode
set containment within a linear program (LP), we use a
generalized version of Farkas lemma:

Lemma 1 (Theorem 1 of [13]): Let X = x̄ +XHx, Y =
ȳ + YHy , where Hx = {x ∈ Rnx |Hxx ≤ hx} and Hy =
{y ∈ Rny |Hyy ≤ hy}, where qx, qy are the number of rows
of Hx and Hy , respectively. Then X ⊆ Y if ∃Γ ∈ Rny×nx ,
∃β ∈ Rny and ∃Λ ∈ Rqy×qx

+ such that

X = Y Γ, ȳ − x̄ = Y β,ΛHx = HyΓ, Λhx ≤ hy +Hyβ.
Proof: See Theorem 1 of [13] for a proof.

The following LP uses a special case of Lemma 1 with Y =
I and ȳ = 0 to find an optimal scaling vector σ ∈ Rn+m

+

with X = diag(σ) and translation x̄ ∈ Rn+m for F̃t(si):

min
x̄,Λ,σ

||σ||1

s.t. ΛFt = Fdiag(σ), Λft ≤ f − Fx̄,

Λ ≥ 0, σ > 0.

(19)
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Fig. 3. Ratios of volumes V and number of halfspaces q between F̃ and
F̃∗

t . Subscripts r, min and 0 correspond to the approximation, the minimal
and the non-reduced representation of F̃ , respectively.

Since X is invertible by design, we can recover our inner-
approximation as [13]

F̃∗
t (si) = {x |Ftdiag(σ

∗)−1x ≤ ft + Ftdiag(σ
∗)−1x̄∗},

(20)
where the star denotes optimal values. The template F̃t(si)
can be any non-degenerate polytope of appropriate dimen-
sion. However, the choice of F̃t(si) substantially influences
the tightness and constraint reduction of the resulting ap-
proximation. In the following, we propose a useful heuristic
to construct a F̃t(si) that approximates the shape of F̃(si)
efficiently. In particular, we use the structure of (18), but
only consider a subset of the steps from 0 to si − 1:

F̃t(si) :=
⋂
j∈π

A−jF̄ , π ⊆ Nsi−1
0 . (21)

Remark 1: With the selection of π, a trade-off between
volume and constraint reduction can be achieved. The more
steps there are in π, the more halfspaces F̃t(si) contains
and the closer it gets to the shape of F̃(si). We found that
π = {0, ⌊ si−1

2 ⌋, si − 1}, where ⌊·⌋ rounds a decimal to the
nearest integer towards zero, often yields good results, even
for large si.

Example 1: To assess the quality of the approximation in
Remark 1, we generate random 100 second-order systems of
the form (1) with W = {0}, discretized with a sampling time
of 0.05 seconds and constraint sets F = X × U . The state
constraint set X is the convex hull of 62 random points while
the input set U = {u | ||u||∞ < 1} remains unchanged. All
randomly generated coefficients are sampled from a uniform
distribution and lie in the interval [−1, 1]. The results are
shown in Fig. 3. The volume ratio between F̃(si) and F̃t(si)
shrinks with larger si, which is expected since the number of
intersection operations in (21) is the same, regardless of si.
As a result, the number of halfspaces of F̃(si) increases
with si, while the complexity of F̃t(si) stays relatively
constant. Consequently, as shown in the right plot of Fig.
3, the relative constraint reduction grows as si increases.
Note that even for large si, the constraint reduction retains
over 96% of the volume of F̃(si) on average. Meanwhile,
constraints are reduced by 80% with respect to the minimal
representation and by over 94% with respect to the non-
reduced representation.

A particular set from this study for si = 30 is shown
on the right side of Fig. 2. It can be seen that a lot of
halfspaces stem from the coupled state-input constraints on
the edges of F̃(si). Our constraint reduction approach is able
to approximate this shape efficiently.

V. NUMERICAL EXAMPLE

In this section, we showcase our approach with a 2-
dimensional unmanned helicopter landing on an inclined sur-
face. Though helicopter dynamics are highly nonlinear, it can
be shown that with some approximations, position becomes
a differentially flat output [14]. We assume that there exists
a sufficiently fast attitude controller so that we may consider
the jerk (i.e. the 3rd derivative of position) as our input. The
planning model can then be described as two independent
integrator chains with x = (px, vx, ax, pz, vz, az) where p, v
and a denote position, velocity and acceleration, respectively.
Discretizing the dynamics with a sampling time of τ = 0.02
seconds yields A = diag(Ax, Az), B = diag(Bx, Bz) and
w = (wx, wz), where

Ai =

1 τ τ2/2
0 1 τ
0 0 1

Bi =

τ3/6τ2/2
τ

 , wi =

τ2/2τ
0

 w̄i

for i = {x, z}. Attitude tracking errors, model uncertainties
as well as other disturbances appear as unknown accelera-
tions ||w̄i||∞ ≤ 0.2. The constraints F are given by

pz ≥ 0, (−4,−10) ≤ (vx, vz) ≤ (15, 5), −0.3vx − vz ≤ 2

||[ax, az, ux, uz]||∞ ≤ (4, 5, 3, 10), tan(a)px − pz ≤ −1

where a = 25◦ denotes the incline angle of the platform.
The target set is given by

XT = R(a){x | bl + g ≤ x ≤ bu + g},
bl = −(0.8,−1, 1, 0.9, 0.4, 4), bu = (0.8, 2.2, 1, 0, 0.4, 4)

where R(a) = R(a)⊗I3, R(a) denotes the two-dimensional
rotation matrix for an angle a and g = (05×1, 9.81)(I6 −
RT (a)). We design the ancillary controller K via LQR with
cost matrices Q = diag(5I4, 10I2), R = (0.1, 1). The RPI
set Z is computed with the method of [15] with α = 10−6.
Similar to [16], we compute the RPI set using zonotopes,
which provide some computational advantages but do not
alter the theoretical properties of the RPI set. We simulate
three different versions of P̃ with varying constraint sets
F̃(si). MPC-0 denotes P̃ with the full representation of
F̃(si), which is equivalent to solving P. Similarly, MPC-min
and MPC-a represent P̃ with the minimal representation of
the constraint set and with its low-complexity approximation
F̃t(si), respectively. To penalize deviation from a setpoint
xr = (−0.7, 1.4, 0.2,−0.4,−4.1,−0.9), we consider

N̄−1∑
i=0

(zi−xr, vi)
T H̃(si)(zi−xr, vi)+(zN̄−xr)

TP (zN̄−xr)

as our cost function with H = diag(Q,R) and P as the
corresponding solution to the discrete-time Riccati equation.
The initial horizon length is set to N0 = 300 with a
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Fig. 4. Closed-loop simulation results of a helicopter landing. For MPC-
a, the attitude and center of mass are plotted every second with the initial
condition marked in red. The blue region denotes the projection of the target
set. MPC-0 and MPC-min lie on top of each other.

TABLE I
TRAJECTORY COSTS AND COMPUTATION TIMES

open-loop closed-loop
J/Jfull tc (s) J/Jfull tc (s)

MPC-0 1.027 0.105 1.002 0.102
MPC-min 1.027 0.041 1.002 0.037
MPC-a 1.027 0.004 1.004 0.005
MPC-full 1 1.541 1 2.389

maximum number of decision inputs N̄max = 10 and initial
blocking matrix M0 = 130×1 ⊗ IN̄ . When applying Ψ(Mk)
using Proposition 3, we choose j∗ = argmaxj sj and
i = sj∗/2, i.e. we split the largest blocking interval through
the middle. When sj∗ is odd, we round i to the nearest integer
towards infinity. If there exist multiple possible j∗, we choose
the largest one.

Since the number of blocked inputs is highest at the
initial condition, we first compute the trajectory costs J
and computation times tc for nominal open-loop trajectories
planned at k = 0. We benchmark MPC-0, MPC-min and
MPC-a with a non-blocked SHMPC denoted by MPC-full.
The averaged results of 50 randomly generated feasible
initial conditions are shown in the open-loop column of
Tab. I. Afterwards, the MPC algorithms are simulated in
closed-loop. Their trajectories are shown in Fig. 4 and their
costs and computation times are reported in the closed-loop
column of Tab. I. Overall, the costs of blocked trajectories
are only slightly larger than non-blocked costs. As expected,
costs for MPC-min and MPC-0 are equal since in MPC-min,
only redundant halfspaces are removed. Though MPC-a uses
approximative constraint sets, its cost differs marginally from
MPC-min and MPC-0 while reducing computation times
by orders of magnitude. Note also that the cost ratio in
closed-loop is smaller than in open-loop. This showcases the
efficacy of utilizing free inputs to split blocking intervals and
recovering some optimality when getting closer to the target.
All computations are run in MATLAB on a laptop with an
Intel Core i7-11850H using the solver osqp [17].

VI. CONCLUSION AND OUTLOOK

In this paper, we proposed a shrinking horizon Model
Predictive Control approach with move blocking that is
scalable to large prediction horizons. A function is designed
that generates blocking matrices which ensure recursive
feasibility while efficiently utilizing the available number of
decision inputs. Furthermore, the optimal control problem is
reformulated in a way that enables the reduction of the con-
straint set complexity. A low-complexity inner approximation
is then obtained thorugh optimization. The computational
efficiency of the approach is demonstrated with a helicopter
landing. In the future, we plan to confirm the computational
efficiency in hardware experiments and extend the approach
to continuous systems.
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