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Biological Cell Tracking via Multi-Agent Identification and Filtering
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Abstract— Understanding cellular dynamics is a fundamental
topic in different biomedical applications. Nowadays, optical
microscopy is one of the most used techniques to visualize cell
movements. In this paper, we consider a novel cell-tracking
algorithm to track multiple cells in optical microscopy videos.
The proposed methodology combines two steps. First, we model
cell movements and their neighboring interactions according
to tailored nonlinear multi-agent systems. Then, we identify
model parameters from real cellular trajectories and predict
cell movements across different frames of a video. In particular,
we use an Extended Kalman Filter that exploits the distributed
nature of cell dynamics. Numerical experiments on videos from
the Cell Tracking Challenge dataset are performed to validate
the proposed method and performance metrics are shown.

I. INTRODUCTION

Biological cell tracking within microscopy videos is a
fundamental task with broad applications across diverse do-
mains, from medical research to drug development. Among
different techniques, optical microscopy is widely used to
retrieve cellular images across different time instants [1]. To
understand cell behaviors with their interactions, a prelim-
inary task is to automatically extract cell trajectories over
time. In this paper, we develop a multi-cell dynamical model
which will be the core of a tailored cell-tracking algorithm
for microscopy videos from in-vitro cultures.

We divide the literature review into two parts. First,
we discuss works addressing multi-cell tracking algorithms.
Then, we review system-theory approaches to cell modeling
and control. Multi-Object Tracking (MOT) is a well-known
problem in the literature, see, e.g., the survey [2] and
reference therein. Indeed, MOT arises in several applica-
tion fields, e.g., automotive and robotics. MOT algorithms
have been also applied to cell videos. As an example, the
Cell Tracking Challenge is a well-known benchmark for
MOT algorithms on different cell settings [3]. As for MOT
algorithms specifically tailored for cell tracking, the work
in [4] combines convolutional neural networks (CNN) with
recurrent neural networks for segmentation and tracking in
microscopy images. Authors in [5] instead combine deep
learning for cell segmentation and the so-called Viterbi algo-
rithm for tracking. The work in [6] proposes an algorithm to
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segment and track clustered cells in time-lapse fluorescent
microscopy. The study [7] proposes a multi-feature fusion
re-tracking method using a “Faster R-CNN” for detection.
In [8] instead, authors use a graph neural network approach
to model the entire time sequence of cells as a direct graph.
The work in [9] proposes a single CNN for simultaneous
cell segmentation and tracking to predict cell embeddings. A
different approach is presented in [10] in which cell tracking
is performed based on global spatiotemporal data association.
In [11], authors perform cell segmentation and tracking by
extending to the so-called coupled-active-surfaces algorithm.
In [12] authors propose a variational joint local-global optical
flow technique. However, these works do not exploit dynamic
modeling features of the cell behaviors. In our approach,
we combine classical filtering methodologies with tailored
multi-agent models to take advantage of the dynamic inter-
actions among the cells in the tracking. As for theoretical
approaches to cell and biological modeling, several works
often leverage concepts from system identification [13] and
control theory [14]. For instance, in the work in [15], tumor
cell behaviors are represented as distributions via ordinary,
partial or stochastic differential equations. However, these
works do not focus on the dynamics of the single cell. The
work in [16] proposes control schemes for gene regulation
in cellular populations. The study in [17] considers the
control of a cell population endowed with a bistable toggle
switch. Authors in [18] propose a control system for cell-
population control. In these works however the focus is on
control schemes, while in our work we are interested in
identification and tracking. A multi-scale modeling approach
for cell mechanics is in [19]. However, here authors do not
perform system identification. Differently from the above
works, our paper proposes an identification and tracking
scheme, exploiting real cell data, based on nonlinear multi-
agent models that can capture generic cell behaviors and can
be adapted to different cell types.

The contributions of this paper are as follows. We propose
a parametric multi-agent model to predict biological cell
dynamical behaviors. Leveraging modeling tools from multi-
agent systems and robotics, we capture cell-to-cell interac-
tions, e.g., cohesion, alignment, or repulsion, via suitable
vector fields involving states of neighboring cells. Moreover,
we include terms regarding the reciprocal sensing capabil-
ities of the cells, like the perception range of other cells.
In the biology area, these behaviors are representative of
chemotaxis effects [20]. The considered model is not only
able to capture the neighboring interactions among cells but
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cation procedure to fit the parametric model on real cell
trajectories. Leveraging this modeling method, we develop
a novel cell-tracking algorithm based on a tailored Extended
Kalman Filter (EKF) involving a multi-agent system. Central
to our approach is the recognition of cells as interacting
agents, rather than independent entities. Consequently, we
redefine the state representation within the EKF framework
to reflect the collective state of the entire cell population.
This allows for more precise tracking of cellular ensembles,
accounting for cell-to-cell interactions. Also, this approach
applies to different in-vitro cell experiments.

The paper unfolds as follows. Section II introduces the
considered cell-tracking problem and the elements that char-
acterize multi-object tracking algorithms. Section III details
the multi-agent model design and the parameter identification
strategy. In Section IV, we present our novel cell-tracking al-
gorithm. Section V provides details on the dataset used in our
study and numerical experiments to show the effectiveness
of the proposed algorithm through standard tracking metrics.

II. PROBLEM FORMULATION

In this work, we consider a cell-tracking problem in a
biological scenario in which the goal is to track multiple
cells in a 2D video sequence. Throughout the paper, we
consider video sequences in which the number of cells [V
is constant. Although simplifying, this assumption allows
us to model the cell population as a multi-agent system in
which the focus is on modeling cell-to-cell interactions. As
we detail in the next sections, these classes of models are
the key components of the proposed cell-tracking strategy.
The remainder of this section introduces the fundamental
concepts behind cell-tracking algorithms.

The common elements that characterize cell-tracking al-
gorithms, except for some additional components, typically
include ¢) object detection, i) motion prediction steps,
and ¢ii) data association. A schematic of this procedure is
depicted in Figure 1.

Motion Prediction Object Detection

Fig. 1.

Scheme of a generic multi-cell tracking algorithm

Object detection is the process of identifying and local-
izing cells within an image or video frame. State-of-the-art
object detection algorithms typically leverage suitably trained
neural networks for this task [21].

Motion prediction involves forecasting the future positions
of tracked cells based on their past trajectories and motion
patterns. This helps in maintaining the continuity of cell
tracks and compensating for any gaps or occlusions in the
detection process. Typical approaches deal with Kalman
filters, particle filters, or deep learning-based predictors.

Data association is the task of linking detected cells across
consecutive frames to maintain their identities over time.
This involves matching detections from different frames and
associating them with the same cell track. One common
approach for data association is to use motion models and
similarity metrics to estimate the likelihood of association
between detections.

ITI. CELL MODEL DESIGN AND IDENTIFICATION

In this section, we introduce a multi-agent model to
describe cell dynamics. The latter will be then employed
in the proposed cell-tracking algorithm. The design of our
model draws inspiration from a well-established line of re-
search on bio-inspired multi-agent systems [20]. In particular,
we propose a distributed model motivated by swarm-like
approaches as in [22], [23]. In the following, we present
a dynamical model non-linear in state and linear in learning
parameters. The first property is adopted to capture complex
state dynamics. The linearity in the parameters, instead,
ensures a closed-form solution in the fitting problem.

A. Multi-Agent Parametric Model

The model proposed in our study is a multi-agent system
with linear dependence in the parameters. In this model, the
generic agent i represents a cell. Let p; € R? and v; € R?
denote its position and velocity, respectively. Each agent is
modeled according to discrete-time dynamics in the form

pi" =pi+vio
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where 0 is a discretization step. The set N! =
{i#i:|p!— pEH < R} contains the neighbors of cell 1.
Here, R is a sensing radius that defines the region of space in
which other cells are perceived. The vector 8 = [c;, co, c3] T
contains constant parameters to be learned. We provide more
details on their meaning in the remainder of this section. The
function f; in (1) instead is
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where the three constants c;, ce and c3 represent the strengths
of cohesive, alignment, and separation forces, respectively.
Considering R fixed (not learnable) we end up with a multi-
agent dynamical model linear in 6.
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B. Learning of Parameters

In this section will be described the procedure regarding
the identification of parameters on the model presented in
Sections III-A. The fitting problem admits a closed-form
solution 8*. The purpose here is to find a solution that
best fits a training set of real cell trajectories from in-vitro
cultures. An example of trajectories used for training is in
Figure 2.
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Fig. 2. Cell trajectories for identification extracted from a dataset video

Based on that, suppose having a dataset containing cell
population trajectory samples. More precisely, we are sup-
posed to know p! Vi,t and to compute v! with some
differentiation method. Taking into consideration the dynam-
ics in equation (1) and imposing sensing radius R to be
fixed (not learnable), we end up having a system with a
linear dependence in 6. Therefore, by properly redefining
the system we can construct and solve a typical linear least
squares (LLS) problem that admits a closed-form solution.
The solution to our LLS problem is

6* = argmin ||Y — D6)|? 3)
]

in which
D; Y,
c R(?TN)X;)’ Y =
Yy

D= € RN

Dy
represent the design and observation matrices, respectively.
Then, for all the cells ¢ € {1,...,N}, we define their
observations as
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Thus, the closed-form solution of (3) that best fits a single
sample (video) of trajectories is

0*=(D'D) 'D'Y. 4)

For the multi-sample (video) case, the LLS matrices can be
expanded with additional data.

IV. MULTI-CELL TRACKING ALGORITHM

In this section, we detail our solution to the cell-tracking
problem outlined in Section II. Our methodology combines a
deep learning-based detection algorithm with a tailored Ex-
tended Kalman Filter based on interaction dynamics designed
for the motion of biological cells.

The main steps of the algorithm are summarized in Algo-
rithm 1. In particular, it starts by initializing the state guess
with detections at the first frame and setting up the EKF
matrices. Then, throughout each frame, the algorithm iterates
through three main steps. First, it detects cells using a deep
neural network. Second, it predicts the next state via the
EKF prediction step personalized with interaction dynamics.
Third, it associates detections to predictions and updates the
state estimate through the EKF update step.

Algorithm 1 Cell Tracking with Interaction Dynamics
Initialization
get initial detections from Faster-RCNN: YA
initialize EKF: X010 = 70, P00, Q, R.
for each frame ¢ do
Objects Detection:
get detections from Faster-RCNN: Z!

EKF Prediction Step:

Xtlt=1 = xt-1le-1 f (Xt—1|t—1’9*) 5 )

0
Ft—l = a%}j@-l\t—l (6)
Pt|t71 _ Ft—IPtil‘tilFtT_l 4 Q (7)

Associate Detections to Predictions:
compute S? and then A?
reorder detections IDs in Z! based on A!

EKF Update Step:
Kt — Pt|t—lHT (HPt|t—1HT + R)—l (8)
Xt|t — Xﬂt—l 4 Kt(zt _ Htht_l) (9)
Pt = (I- K'H)PI"! (10)

end for

We now detail all the steps in the algorithm.
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A. Object Detection

The object detection phase serves as the initial step in our
algorithm. In particular, its objective is to identify and local-
ize cells within consecutive frames of the input video. For
this step, we employ Faster R-CNN [24], one of the state-of-
the-art deep learning-based detection algorithms. The latter
returns a list of rectangular bounding boxes containing cells
in a certain frame. Note that the entire process of object
detection is performed independently for each frame in the
input video. Therefore, the cell observations are specific
to individual frames, meaning that Faster R-CNN output
measurements possess random identity labels. Furthermore,
we want to highlight that all subsequent quantities and
computations within our algorithm are directly connected to
the pixel coordinates of detected cells in the image. This
ensures that the tracking and estimation processes maintain
consistency with the spatial information provided by the
object detection step. Formally, the object detection step
returns, at each frame, a list of vectors in the form z; =
[pi,si i) T where p; represents the position of the cell in
the frame, while s, € R are the areas and the aspect ratio
of each bounding box. Associated with each bounding box,
the detection step also returns a set of labels ¢; associated
with the ™ cell.

B. Motion Prediction

At each time t, the object detection phase yields a col-
lection of measurement vectors z! € R™ (cf. Section IV-A).
Based on that, we can now detail the motion prediction step.
Let x§ € R™ denote the real, unknown state of the i™ cell at
time ¢. Formally

X = [piTaViTaSi,Ti,vs,i] an

7= [pl,simi]
where v, ; is the area rate of change of the bounding box.
Recalling that s,7 € R and p;,v; € R?, we have n = 7
and m = 4. Let also introduce fcf‘t*l € R™ as the predicted
state of 7 cell at time ¢, obtained after a prediction step in
which the measurement z'~! is known. Instead, &th e R"
represents the updated estimate through the measurement
z! obtained after an estimation update step. To retrieve
the aforementioned predictions, our tracking methodology
adopts an Extended Kalman Filter [25]. Using an EKF has
the benefit of incorporating nonlinear dynamics in the model,
and it is thus suited for capturing the complex interactions
among cells. We now detail its implementation.

Our tracker operates, unlike conventional trackers that
handle each object independently, on a unified state repre-
sentation for the entire population of cells, but includes the
distributed (sparse) structure of the dynamics. Indeed, the
state function of each cell ¢ depends only on the states of
neighboring cells. We define the new “swarm” state X' and
its relative measurement Z* as

Xt = [xﬁT,..., vaT]T € RN,
Z' = [z’iT, . zﬁvT]T e RV™,

Similarly, we denote by X'*=1 and X'I* the stacks of
predicted and updated estimates states, respectively.

According to (11), the measurement model is a standard
linear algebraic relation of the type

zt = Hix! +w,, i=1,...,N (12)

in which H; € R™*™ represents the observation matrix
(supposed constant and equal for all the measurements) and
w,. € R™ the Gaussian measurement noise with zero mean
and covariance R. Compactly Z! = HX! + W, where
H € RV™*” and W, € RN™ are the stacks of observation
matrices and measurement noise vectors, respectively.

The nonlinear multi-agent dynamics used to predict the ™
cell state are the ones introduced in Section III together with
the cell shape information, i.e.

Ltt—1 _ at-1lt—1 | t—1]t—1

p; =P; + v, § + Wp

Atlt—1 _ at—1ft—1 -

v, =v; + fi (Xi,{Xj}jeA/:,o)(s—FWv

Atlt—1 At—1|t—1 ~t—1|t—1

sil =5 =1 4 Vg, =15 4 W, (13)

Atlt—1 _ at—1]t—1

ril =7, | + wp

Atlt—1  at—1[t—1
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. . Ltlt—1

Here, we explicit the dynamics of each entry of xi‘ . We

also define
L t—1[t—1

<. — K3
Xi = | st=1t—1] >
Vi

in which we omitted the time dependence for the sake of
conciseness. The noise w := [w;—, W, We, Wy, Wys] T € R™
is a Gaussian random variable with zero mean and covariance
Q. The second equation in (13) is implemented by applying
the multi-agent parametric model discussed in Section III.
More compactly, the dynamics in (13) can be rewritten as
in (5), where f : R™ i R™V suitably stacks the dynamics
in (13), and W, € R™¥ stacks the noise vector w for all the
cells. The step in (7) is the update of the so-called estimation
error covariance matrix P € R*V*"N The equations in (8)—
(10) instead perform the update steps of the EKF (cf. [25]).
Here, K € R™V*™N g the Kalman gain matrix.

C. Data Association

The data association step bridges the gap between detected
objects across consecutive frames, preserving their identities
over time. Indeed, given two consecutive time frames ¢ — 1
and t, the iM cell may be detected and associated to different
labels £~* and ¢!. At the generic time ¢, the EKF predictions
in (5) provide the estimate of a novel bounding box B, for the
i cell. This predicted box is centered in f)f‘t_l and has area
and aspect ratio §§|t_1 and ff‘t_l, respectively. Similarly, at
time ¢, let B; denote the j™ bounding box found by the
detection step. Based on that, let us introduce the similarity
matrix S; € RV*V at image frame ¢, where the single entry

[S'] G =0 (Bi, Bj)

represents a generic similarity function ¢ computed between
the predicted bounding box of i cell and the detected one

(14)
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of j‘h cell at time ¢. In this work, we use the so-called
Intersection Over Unit (IOU) metric [26], so that

[St]ij

Given S?, the data association problem regards finding an
optimal assignment matrix A’ at each frame of the video that
maximizes the total similarity across all associations. Each
entry in A’ indicates whether the i estimate is associated
with the j® detection. The matrix A’ is constructed by
solving a linear-assignment problem. We recall that the
linear-assignment problem can be solved in polynomial time
leveraging, e.g., the Hungarian algorithm [27]. To reject
associations with a poor similarity index, it is also possible
to enforce a threshold in (14).

_ |Bin B

== : (15)
|B; U B;|

V. NUMERICAL EXPERIMENTS

In this section, we first introduce the dataset employed in
our experiments. Then, we present the results obtained by
applying our proposed cell-tracking algorithm.

A. Dataset

The dataset considered in this study originates from Cell
Tracking Challenge, a publicly available repository housing
annotated videos of moving cells. These videos feature
different mono-culture scenarios, capturing the dynamics of
specific cell types. The recordings encompass 2D time-lapse
sequences capturing cell movement on or within a substrate,
employing various microscopy techniques such as bright
field, phase contrast, and differential interference contrast.

For each mono-culture scenario, the dataset typically con-
sists of two videos supplemented with reference annotations
about cell tracks and segmentations (serving as gold stan-
dards for evaluation). These videos provide the necessary
reference annotations that are essential for assessing the
performance of tracking algorithms. Indeed, given the seg-
mentations, it is possible to obtain the ground-truth bounding
boxes. Within the dataset, other videos are also present,
but they are given as raw image sequences without accom-
panying annotations. Thus, we preferred not to use them.
For our experiments, we selected sequences depicting the
movement of HL60 tumor cell nuclei (stained with Hoechst
dye). HL60 is a commonly used cell line in biomedical
research, particularly in studies related to leukemia. A sample
frame is shown in Figure 3.

Fig. 3. Example of frame with with HL60 cells. Purple rectangles represent
the bounding boxes computed leveraging ground truth segmentations

B. Experimental Results

In order to run experiments on the dataset described in
Section V-A, we implemented the proposed methodology
leveraging the Python3 programming language. In particular,
we picked one of the two videos of the HL60 dataset to train
the model in Section III. To find the optimal parameter vector
as in (3) we made use of the standard linear algebra tools
from NumPy library. As for the implementation of Faster
R-CNN, we leveraged the TensorFlow toolbox. As for the
initialization of Algorithm 1, we proceeded as follows. We
set PY° = Q =100- I, and R = I,,,y, where I, denotes
the identity matrix of size ¢. In our paper, we are interested
in investigating the performance of our tracker, rather than
our detector. Thus, we ran experiments using the bounding-
box annotations from the Cell Tracking Challenge dataset,
in which each box is represented by its two extreme corners.
The conversion with the measurement in (11) is univocal. To
simulate errors in the measurement system, we added to each
annotation a random noise with zero mean and covariance
2 - I,. In Figure 4, we report a set of snapshots, taken
at consecutive frames, from our numerical experiments on
a different video of HL60 cells with 15 frames. For each
frame t, we depict both the bounding boxes predicted by
our algorithm and the real ones.

Fig. 4. Algorithm 1 simulation: predicted (orange) and ground-truth (blue)
bounding boxes at consecutive time frames

We also compared our scheme against a baseline frame-
work in multi-object tracking, namely the Simple Online
Real Time Tracking (SORT) algorithm [28]. SORT employs
Faster-RCNN for detection, Intersection over Union (IoU)
for similarity computation, the Hungarian algorithm for data
association, and a linear Kalman filter with single-integrator
dynamics for motion prediction. We initialized SORT with
the same matrices of Algorithm 1. The metrics that we chose
to benchmark the schemes are the Multiple Object Tracking
Accuracy (MOTA) and Multiple Object Tracking Precision
(MOTP) [29]. MOTA depends on the number of misses,
false positives, and mismatches. MOTP instead compares
the predicted bounding boxes against the real ones. Table I
summarizes the results, showcasing the effectiveness of our
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approach. Indeed, a perfect MOTA is achieved, indicating the
algorithm’s capability to accurately track cells over time. As
indicated by the MOTP metric, the proposed tracking model
is able to provide better predictions with respect to SORT.

TABLE I
PERFORMANCE COMPARISON

Algorithm | Motion prediction | MOTA | MOTP

SORT linear KF 88.30% | 89.65%
Alg. 1 EKF with model III-A 100% 92.56%

VI. CONCLUSIONS

In this paper, we developed a novel algorithm to track
cells in optical microscopy videos. To this end, we modeled
the cell population as a multi-agent system. Leveraging
real videos from in-vitro experiments, we applied system
identification techniques to learn a set of parameters weight-
ing cell-to-cell interactions. The considered model is the
building block of a cell tracking algorithm, that implements
an EKF based on such a multi-agent model. To validate the
design, we provided results on the Cell Tracking Challenge
benchmark. Future developments include conducting addi-
tional experiments, employing co-culture systems to enhance
model complexity, and making a more in-depth comparison
with existing methodologies to better mimic physiological
interactions, such as those between bone cancer cells and
stromal cells in the tumor microenvironment.
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