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Abstract— This paper explores an approach for task-relevant
multi-task representation learning when the amount of data
is limited for both source tasks and target tasks. Specifically,
we consider a low-dimensional setting where the goal is to
sample source task data based on their relevance so as to
utilize task-relevant information effectively. We present a novel
learning algorithm based on an alternating projected gradient
descent (GD) and minimization estimator. We present the
convergence guarantee of our algorithm, excess risk, and
the sample complexity of our approach. We evaluated the
effectiveness of our algorithm via numerical experiments and
compared it empirically against three benchmark approaches.

Index Terms— Representation learning, Multi-task learning,
Meta learning, Alternating gradient descent

I. INTRODUCTION

Representation learning is an emerging problem for learn-
ing in a data-scarce environment, where one first learns a
feature extractor or representation, e.g., the last layer of a
convolutional neural network, from different but related source
tasks, and then uses a predictor on top of this representation
in the target task [1]. This process involves uncovering
features that capture essential characteristics and patterns
within the data, allowing for more effective and efficient
learning across various tasks. Representation learning plays
a key role in enhancing the capabilities of machine learning
models, particularly in scenarios with limited data, facilitating
improved generalization and adaptability across diverse tasks.

Multi-task representation learning is one method that
assumes all tasks are supported by a common representation.
The fundamental approach to this learning strategy involves
using the source samples to identify the optimal representation,
which is subsequently used to train the linear predictor
for a target task. Most of the existing work on multi-task
representation learning often assumes an unlimited number of
samples for source tasks and a limited number of samples for
the target task [1], [2]. Nonetheless, source tasks frequently
have a limited number of samples as well. Often, in real-
world applications like medical image analysis, it is difficult
to have a substantial dataset, and the samples are limited.
Moreover, not all source tasks contribute equally to learning
representation in many applications. Therefore, it is crucial
to prioritize relevant tasks during the training rather than
assigning them uniform weight in multi-task learning.

This paper develops a framework for task-relevant multi-
task representation learning to determine an optimal rep-
resentation using limited samples from source tasks. Our

This work was supported in part by the U.S. National Science Foundation
Grant 2213069.

J. Lin and S. Moothedath are with the Department of Elec-
trical Engineering, Iowa State University, Ames, IA 50011, USA
jiabin@iastate.edu, mshana@iastate.edu

goal is to prioritize the relevance of the source task while
sampling the training (source) data rather than a uniform
sampling approach. This situation happens in many practical
applications, including data-driven control for robotics and
autonomous driving [3]. For instance, in robotic systems [4],
[5], where the model simultaneously learns representations
for various control tasks, such as navigation, manipulation,
and object recognition. This approach enables the system to
leverage shared knowledge across tasks, improving efficiency
and adaptability in diverse and complex environments.

Related Work: Multi-task representation learning has been
extensively explored, starting with seminal works such as [4],
[6], [7]. There have been many recent works on provable
uniform multi-task representation learning under various
assumptions. [1], [8]–[11] focus on learning a representation
function for any potential target task under the assumption
of the existence of a shared low-dimensional linear repre-
sentation across all tasks. Recently, [2], [12] developed an
adaptive representation learning for a specific target task,
under a similar setting as in [1]. [12] improves the sample
complexity on [2] under a high dimension input assumption.
The primary distinctions between our approach and existing
works, [1], [2], [8], [12], is in our consideration of a data-
scarce regime, where the availability of source data is also
limited, and that we propose an estimation algorithm with
guarantees for solving the problem.

Contributions: In this letter, we propose a task-relevant
representation learning algorithm based on an alternating
gradient descent and minimization approach. With respect to
the existing works [1], [8], [12] and the closely related work
[2], our work differs in two key aspects. (i) We consider a data-
scarce regime where the number of source data samples is
limited, unlike in [2], which assumes unlimited availability of
source data. Data scarcity is a prevalent challenge in learning,
rendering our approach well-suited for practical settings such
as medical imaging applications, where data samples are
limited. (ii) [1], [2], [8], [12] assumed the availability of the
optimal solution to the estimation problem. This is not feasible
since the rank-constrained estimation problem (Eq.(2)) is
a non-convex problem. We propose a novel estimator and
establish the convergence of the proposed algorithm and
sample complexity. We empirically validated our approach
outperforms the state-of-the-art techniques consistently.

II. PROBLEM FORMULATION AND NOTATIONS

Problem Formulation: Consider M source tasks and
a single target task, referred to as the (M + 1)-th task.
Every task m ∈ [M + 1] is associated with a distinct joint
distribution µm over X × Y , where X ∈ Rd represents
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the input space and Y ∈ R represents the output space.
For each source task m ∈ [M ], we are given nm data
samples (xm,1, ym,1), · · · , (xm,nm , ym,nm), which are i.i.d.
and come from the distribution µm. The goal of multitask
learning is to simultaneously produce predictive models
for all M source tasks, with the aim of finding common
property among these tasks. We consider the existence of
an underlying representation function φ? := X → Z , which
transforms inputs into a feature space Z ∈ Rk with k � d,
within a specified set of functions Φ such as linear functions.
Furthermore, we consider a linear transformation from the
feature space to the output space, represented by the vector
w?m ∈ Rk. Specifically, we assume that a sample (x, y)
from µm for any task m ∈ [M + 1] can be represented
as y = φ?(x)

>
w?m + zm, where zm is a noise.

In this letter, we deal with a data-scarce regime, both
for the source and the target task, i.e., nm < d. We
consider limited data for both source and target task, denoted
as {(xm,1, ym,1), · · · , (xm,nm , ym,nm)}m∈[M+1] which is
drawn i.i.d. from the task distributions µm for m ∈ [M + 1].
The number of data samples for the target task is even fewer
than that of the source task, i.e., nM+1 � {n1, . . . , nM}.
This setting aligns with our main objective of representation
learning under scarce data, in which we have a limited amount
of data available for the source task but have even less access
to the target task data. The main objective is to use as few
total samples from the source task as possible to learn a
representation and linear predictor φ, wM+1 that effectively
minimizes the excess risk on the target task, defined as

ERM+1(φ,w) = LM+1(φ,w)− LM+1(φ?, w?M+1) (1)

where LM+1(φ,w) = E(x,y)∼µM+1
[(〈φ(x), w〉 − y)2].

We focus on the linear representation function class, which
is studied in [1], [2], [8], [13]. We have the assumption below.

Assumption II.1 (Low-dimension linear representation). Φ =
{x → B>x|B ∈ Rd×k}. We denote the true underlying
representation function as B?.

Inspired by [2], in our model, task relevance is a crucial
factor. That is, we consider a setting where the goal is
to learn a representation of a specific target task rather
than a generic target task as in [1], [8]. Notice that, by
Assumption II.1, Θ? := [θ?1 , . . . , θ

?
M ] = B?W ? is a rank-k

matrix, where W ? ∈ Rk×M and k � min{d,M}. Given that
σmin(W ?) > 0, the coefficient w?M+1 can be considered a
linear combination of the coefficients {w?m}m∈[M ]. Therefore,
we make the assumption that ν? ∈ RM , such that W ?ν? =
w?M+1, where a larger value of |ν?(m)| indicates a stronger
connection between the source task m and the target task.
Based on the information provided by ν?, we give priority
to samples from source tasks that have the highest relevance.

Notations: We denote the set containing the first n positive
integers as [n], which is defined as {1, 2, . . . , n}. The `2
norm of a vector x is represented by ‖x‖, while the spectral
norm and the Frobenius norm of a matrix A are denoted by
‖A‖ and ‖A‖F , respectively. The max-norm is expressed
as ‖A‖max = maxi,j |Ai,j |. The transpose operation for
matrices and vectors is indicated by >, and |x| refers to

the element-wise absolute value of the vector x. The identity
matrix of size n× n is symbolized by In, often abbreviated
as I , and ek denotes the k-th canonical basis vector, i.e., the
k-th column of In. We define the nm i.i.d. samples from
the m-th source task as an input matrix Xm ∈ Rnm×d, with
the corresponding output vector Ym ∈ Rnm and a noise
vector Zm ∈ Rnm . Furthermore, the collection of vectors
{wm}m∈[M ], where wm is associated with the m-th source
task, is assembled into the matrix W ∈ Rk×M . The notation
a & b means that approximately a > Cb, C > 1.

Let Θ? := B?W ? SVD
= B?ΣV ? denote its reduced (rank

k) SVD, i.e., B? and V ?> are matrices with orthonormal
columns (basis matrices), B? is d×k, V ? is k×M , and Σ is
an k × k diagonal matrix with non-negative entries (singular
values). We let W ? := ΣV ?. We use σ?max and σ?min to
denote the maximum and minimum singular values of Σ, and
we define its condition number as κ := σ?max/σ

?
min. We have

the following standard assumptions.

Assumption II.2. (Gaussian design and noise) We assume
xm,n follows an i.i.d. standard Gaussian distribution. More-
over, the additive noise variables zm follow i.i.d. Gaussian
distribution with a zero mean and variance σ2.

Assumption II.3 (Incoherence of right singular vectors). We
assume that ‖w?m‖2 6 µ2 k

M σ?max
2 for a constant µ > 1.

III. PROPOSED ALGORITHM AND ANALYSIS: TASK
RELEVANT REPRESENTATION LEARNING VIA ALTGDMIN

Our objective is to learn a low-dimensional linear repre-
sentation from the training samples (source tasks) through
an task-relevance based sampling approach, allowing the
utilization of more data from source tasks that are more
relevant to the target task, rather than a uniform sampling
approach as in [1], [8]. The rationale is that by incorporating
more samples from pertinent tasks, we can accelerate the
learning process. To this end, our algorithm starts by drawing
∝ (ν?(nm))2 i.i.d. samples from the corresponding offline
data for each source task m ∈ [M ]. Following that, we use
these samples in all source tasks to minimize the cost function

f(B̂, Ŵ ) =

M∑
m=1

nm∑
n=1

‖ym,n − x>m,nB̂ŵm‖2. (2)

Subsequently, we use the estimated parameter B̂ and the
sample of the target task to further optimize the cost function

ŵM+1 = arg min
w

‖X>M+1B̂Tw − YM+1‖2. (3)

Using least-squares, Eq. 3 estimates the parameter ŵM+1

for the target task. We will elaborate on our approach for
solving Eq. (2). Our approach utilizes the recently introduced
alternating gradient descent and minimization (AltGDmin)
algorithm [14], [15] for matrix learning. The main distinctions
lie in our consideration of a noisy setting, where the observed
signal contains noise, which is the common observation
model studied in multi-task learning [1], [2], [8]. Further,
we consider a task-relevant sampling technique as in [2]
rather than uniform sampling, which is highly beneficial
for generalizing to a target task as also demonstrated in



Algorithm 1: Active Representation Learning Algorithm

1: Input: Confidence δ, representation function class Φ,
relevance parameter ν?, source-task sampling budget
N � M( k√

M3
((d − k) + log( 1

δ )), multiplier for α in
init step, C̃, GD step size η, number of GD iterations T

2: Initialize the lower bound N = k√
M3

((d − k) +

log( 1
δ )) and number of samples nm = max{(N −

MN) (ν?(m))2

‖ν?‖22
, N}

3: For each task m, draw nm i.i.d samples from the
corresponding offline dataset denoted as {Xm, Ym}Mm=1

4: Set α = C̃
NM

∑M,nm
m=1,n=1 y

2
m,n

5: ym,trunc(α) := Ym ◦ 1{|Ym|6√α}
6: Θ̂0 :=

∑M
m=1

1
nm
X>mym,trunc(α)e>m

7: Set B̂0 ← top-k-singular-vectors of Θ̂0

8: GDmin iterations:
9: for t = 1 to T do

10: Let B̂ ← B̂t−1
11: Update ŵm, θ̂m: For each m ∈ [M ], set (ŵm)t ←

(XmB̂)†Ym and set (θ̂m)t ← B̂(ŵm)t
12: Gradient w.r.t B̂: Compute ∇B̂f(B̂, Ŵt) =∑M

m=1X
>
m(XmB̂(ŵm)t − Ym)(ŵm)>t

13: GD step: Set B̂+ ← B̂ − η
N/M∇B̂f(B̂, Ŵt)

14: Projection step: Compute B̂+ QR
= B+R+

15: Set B̂t ← B+

16: end for
17: Compute ŵM+1 = arg minw ‖X>M+1B̂Tw − YM+1‖2
18: Return B̂T , ŵM+1

the simulations (Fig. 1). Additionally, the goal of matrix
learning works [14], [15] is to estimate an unknown low-rank
matrix (under non-noisy settings) and there is no focus on
generalizing to a target task and quantifying the excess risk.

Recall that nm < d and rank k � d. Due to the non-
convex cost function f(B̂, Ŵ ) with respect to the unknowns
{B̂, Ŵ} the AltGDmin algorithm [14] starts with a careful
initialization, referred to as spectral initialization. We extract
the top k singular vector from

Θ̂0,full =
[
(

1

n1
X>1 Y1), · · · , ( 1

nM
X>MYM )

]
=

M∑
m=1

1

nm

nm∑
n=1

xm,nym,ne
>
m

where Xm represents the feature matrix obtained by con-
catenating the feature vectors associated with task m. The
expected value of the m−th task represents B?w?m with
E[Θ̂0,full] = B?W ?. However, the large magnitude of
the sum of independent sub-exponential random variables
presents a significant challenge that restricts the ability to
determine a bound for the ‖Θ̂0,full − B?W ?‖ within the
desired sample complexity. Consequently, a strategic approach
is necessary to effectively handle this challenge. In order to
tackle this issue, we use the truncation method introduced in
[16], carefully starting with the top k singular vectors of

Θ̂0 =

M∑
m=1

nm∑
n=1

xm,nym,ne
>
m1{y2m,n6α},

where α = C̃
NM

∑M,nm
m=1,n=1 y

2
m,n, C̃ = 9κ2µ2, and

ym,trunc(α) := Ym ◦ 1{|Ym|6√α}. Using Singular Value
Decomposition (SVD), we derive the top k singular vectors
from Θ̂0 to obtain initial estimate B̂0. This method filters
out large values while maintaining the remaining values
and serves as a reliable initial step in accurately estimating
parameters.

After the initialization phase, we perform an alternating
GD and minimization step to minimize the cost function (2).
In each iteration, we independently optimize ŵm for each task
via a least square minimization step, followed by a GD step
to update B̂, utilizing the QR decomposition to obtain the
updated matrix B+, represented as B̂+ QR

= B+R+. Using the
estimated parameter matrix B̂ obtained from the source tasks,
we compute the estimated parameter ŵM+1 by minimizing
the cost function (3) using the least squares estimator.

Below, we present the excess risk bound for Algorithm 1.

Theorem III.1. Consider Assumptions II.2 and II.3 hold.
For any ε > 0, success probabilities δ, δ′ ∈ [0, 1], C >

1, let σ2 6 min
{
c‖θ?m‖

2

k3κ6 ,
ε2‖θ?m‖

2

c2κ2

}
, η = 0.4

σ?max
2 , and T =

Cκ2 log 1
ε . If nm > C max(log d, logM,k) log 1

ε , then with

probability O(1− δ − d−10 − de
−

δ′2nM+1

3‖xM+1,n‖2 , the output of
Algorithm 1 guarantees that ER(B̂T , ŵM+1) 6 ε whenever
the total sampling budget from all sources N is at least

O

(
min

{
(1 + δ′)

(1− δ′)2
k‖ν?‖22s?ε log

1

δ
, (d+M)k(k2 + log

1

ε
)

})
and the number of target samples nM+1 is at least

O

(
σ2(k + log 1

δ )

(1− δ′)
ε−1
)

where s? = (1 − γ)‖ν‖0,γ + γM , ‖ν‖0,γ :=∣∣∣∣{m : |νm| >
√
γ
‖ν?‖22
N

}∣∣∣∣ for γ ∈ [0, 1].

Proof. Proof is provided in Appendix II.
Remark III.2. The probability of the guarantee increases as
the number of target samples nM+1 increases and the number
of target samples scales only with k � d. Theorem III.1
shows that the number of source samples required depends

on the task relevance denoted by s?. Since
√
‖ν?‖22
N is of the

order of ε, for γ ≈ 1/M , we have ER(B̂T , ŵM+1) 6 ε by
using only those source tasks with relevance |ν?(m)| & ε.
Let us consider two boundary cases: (i) ν? is a 1-sparse
vector, i.e., the target task only depends on one source task,
and (ii) ν? is a scaled vector 1 where 1 is a vector of
all ones, i.e., all source tasks are equally relevant (uniform
sampling). For γ = 0, (i) gives s? = 1 and (ii) gives s? = M .
Thus, uniform sampling requires M times more source data
samples than (i), validating the effectiveness of the task-
relevance-based sampling. The result in [2] requires that
the total sampling budget from all sources N is at least
O
(
(kd+ kM + log( 1

δ ))σ2s?‖ν‖22ε−2
)

and the number of
target samples nM+1 is at least O

(
σ2(k + log( 1

δ ))ε−2
)
.

Further, the guarantees in [2] are under the assumption
that an optimal solution to the non-convex cost function is
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Fig. 1: proposed algorithm (relevance sampling), proposed algorithm (uniform sampling), MoM (relevance), Chen et al. (relevance).
We considered 200 data samples for each source task and 100 data samples for the target task. We varied the number of tasks as
M = 50, 75, 100, varied the rank of the Θ? as k = 2, 4, 8, and varied the dimension as d = 200, 300, 400. Based on the plots (Figures 1a,
1b, and 1c), our proposed approach with adaptive sampling (also even if we use uniform sampling) outperforms the existing approaches.
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Fig. 2: Estimation error vs. GD iterations. We set d = 300, M =
100, C̃ = 3, k = 2, noise variance = 10−6.

available. Theorem III.1 presents the guarantees on the excess
risk for the target task using an AltGDmin estimator.

Remark III.3. The proposed approach can be extended
to multiple target task settings, say K tasks, each with a
relevance parameter ν?i where i ∈ {M + 1, . . . ,M + K}.
The number of data samples for each source task will be
determined by the target task with the highest relevance for
it.

IV. SIMULATIONS

We evaluated the effectiveness of our proposed algo-
rithm compared to three benchmarks (i) our estimator with
uniform sampling (to validate the effectiveness of task-
relevant sampling), (ii) Method-of-Moments (MoM) estimator
in [8], and (iii) Chen et al. in [2]. The MoM estimator
computes the top k singular value decomposition on Θ̂ =
1

NM

∑M
m=1

∑nm
n=1 y

2
m,nxm,nx

>
m,n to obtain the estimated

matrix B̂. In our algorithm, we set GD step-size η =
0.4/‖Θ̂0‖2 and GD iterations T = 1000. The entries of matrix
B? were randomly generated by orthonormalizing an i.i.d.
standard Gaussian matrix, and the entries of matrix W ? for
the source tasks were randomly generated according to an i.i.d.
Gaussian distribution. The task relevance parameter ν? was
generated randomly and then used to calculate the parameter
w?M+1 for the target task. The matrices Xm were randomly
generated using an i.i.d. standard Gaussian distribution. We

used a noise model with a mean of zero and variance of
10−6. All results are averaged over 100 independent trials.

Excess Risk Plots. The plots in Figure 1a, 1b, and 1c
show the plots of the excess risk for the two algorithms
by varying the number of tasks (M ), the rank of Θ?, k,
and the dimension d. The results of our study show that
as the number of tasks increases, the excess risk decreases
for both algorithms, as expected. However, our algorithm
consistently provides a significantly lower excess risk than
the MoM-based algorithm and Chen et al.. We varied the
rank k and the dimension d of the data and compared the
performances of the algorithms. As shown in Figures 1b
and 1c, our algorithm outperformed the other by a significant
margin. Our algorithm consistently outperforms the MoM-
based algorithm regarding accuracy, as demonstrated by its
low excess risk for all experiments.

Estimation Error. In Figure 2, we present the plot for
estimation error vs. GD iterations. The MoM estimator and
Chen et al. [2] are noniterative methods; hence, the estimation
error is a single line. We notice that, the estimation error for
the parameter matrix for the M tasks Θ? is considerably less
in our proposed estimator. We also notice that the estimation
error with uniform sampling is lower than that of the adaptive
sampling. However, the excess risk is lower for the adaptive
sampling, as shown in Figure 1. This validates the benefit of
adaptive sampling for generalizing to a target task.

V. CONCLUSION AND FUTURE WORK

In this letter, we introduced a novel active-representation
learning algorithm based on an alternating GD and mini-
mization approach. The algorithm is specifically designed
for active multi-task representation learning by considering
the task relevance to enable adaptive sampling. We have
demonstrated the algorithm’s convergence and analyzed the
sample complexity. Additionally, we have evaluated the
effectiveness of our approach in comparison with three
benchmark algorithms. As part of future work, we plan to
study the unknown relevance setting and online learning
approaches, including bandit learning and reinforcement
learning.



APPENDIX I
INITIAL RESULTS

We present initial lemmas and then prove our main theorem.

Lemma I.1. For any m ∈ [M + 1], with probability at least

1 − 2de
− δ′2nm

3‖xm,n‖2 , it holds that (1 − δ′)nmI � X>mXm �
(1 + δ′)nmI, where nm denotes the number of rows in Xm.

Proof. Given that X>mXm =
∑nm
n=1 xm,nx

>
m,n, where

xm,nx
>
m,n � 0 and λmax(xm,nx

>
m,n) 6 ‖xm,n‖2. Since

λmin(

nm∑
n=1

E
[
xm,nx

>
m,n

]
) = λmax(

nm∑
n=1

E
[
xm,nx

>
m,n

]
) = nm,

by applying the Matrix Chernoff inequality, we

have with probability at least 1 − de
− δ′2nm

2‖xm,n‖2 ,
λmin(

∑nm
n=1 xm,nx

>
m,n) > (1−δ′)nm and with probability at

least 1−de−
δ′2nm

3‖xm,n‖2 , λmax(
∑nm
n=1 xm,nx

>
m,n) 6 (1+δ′)nm.

Applying union bound completes the proof.

Define PA := A(A>A)†A> and P⊥A = I − IA.

Lemma I.2. Assume that Assumptions II.2 and II.3 hold
and σ2 6 min

{
c‖θ?m‖

2

k3κ6 ,
ε2‖θ?m‖

2

c2κ2

}
. Set η = 0.4

σ?max
2 and T =

Cκ2 log 1
ε . If N > Cκ6µ2(d+M)k(κ2k2+log 1

ε ) and nm >
C max(log d, logM,k) log 1

ε , then with probability at least

O(1− δ − d−10 − de
−

δ′2nM+1

3‖xM+1,n‖2 ),
1

nM+1
‖P⊥

XM+1B̂T
XM+1B

?W̃ ?‖2F

6
(1 + δ′)

(1− δ′)
ε2µ2kσ?max

2

(
2N(d− k) + 3 log

1

δ

)
where W̃ ? = W ?

√
diag([n1, n2, · · · , nM ]).

Proof. Given two matrices A1 and A2 with the same number
of columns that satisfy A>1 A1 � A>2 A2, for any two matrices
B and B′ with compatible dimensions, from Lemma A.7 from
[1], we have the following inequality

‖P⊥A1BA1B
′‖2F > ‖P⊥A2BA2B

′‖2F .
Using the above result and Lemma I.1, with probability at

least 1− 2de
−

δ′2nM+1

3‖xM+1,n‖2 , the following inequalities hold.
1

nM+1
‖P⊥

XM+1B̂T
XM+1B

?W̃ ?‖2F 6 (1 + δ′)‖P⊥
IB̂T

IB?W̃ ?‖2F

6
(1 + δ′)

(1− δ′)

M∑
m=1

‖P⊥
XmB̂T

XmB
?w?m‖22. (4)

Using the definition of P⊥
XmB̂T

XmB
?w?m, where B̂T is the

estimate in the T -th GD iteration, we have
M∑
m=1

‖P⊥
XmB̂T

XmB
?w?m‖22

=

M∑
m=1

‖Xm(B?w?m − B̂T (ŵm)T )− (XmB̂T )((XmB̂T )>

(XmB̂T ))−1(XmB̂T )>Xm(B?w?m − B̂T (ŵm)T )‖22 (5)

=

M∑
m=1

‖P⊥
XmB̂T

Xm(B?w?m − B̂T (ŵm)T )‖22

6

(
M∑
m=1

‖P⊥
XmB̂T

Xm‖2F

)
·

(
M∑
m=1

‖B?w?m − B̂T (ŵm)T ‖22

)
(6)

= ‖B?W ? − B̂T ŴT ‖2F
M∑
m=1

‖P⊥
XmB̂T

Xm‖2F . (7)

Eq. (5) is derived from adding and sub-
tracting and by using XmB̂T (ŵm)T −
(XmB̂T )((XmB̂T )>(XmB̂T ))−1(XmB̂T )>XmB̂T (ŵm)T
= XmB̂T (ŵm)T − XmB̂T (ŵm)T = 0. Eq. (6) is derived
from Cauchy-Schwarz inequality. Given that Xm follows
i.i.d. standard Gaussian distribution, it follows that∑M
m=1 ‖P⊥XmB̂TXm‖2F ∼ χ2(

∑M
m=1 nm(d− k)). Applying

the Chernoff bound for chi-square distribution, we have

M∑
m=1

‖P⊥
XmB̂T

Xm‖2F

6
M∑
m=1

nm(d− k) + 2

√√√√ M∑
m=1

nm(d− k) log
1

δ
+ 2 log

1

δ
,

with probability at least 1− δ. Using the inequality
√
ab 6

a+b
2 , we can determine 2

√∑M
m=1 nm(d− k) log 1

δ 6∑M
m=1 nm(d − k) + log 1

δ . Therefore, we conclude that
with probability at least 1 − δ,

∑M
m=1 ‖P⊥XmB̂TXm‖2F 6

2
∑M
m=1 nm(d − k) + 3 log 1

δ . From Theorem 5.3 in [17],
under the given assumptions and conditions, with probability
at least O(1−d−10), ‖θ̂m,T −θ?m‖ 6 ε‖θ?m‖ for all m ∈ [M ].
Then we have with probability at least O(1− d−10),

‖B̂T ŴT −B?W ?‖2F 6
M∑
m=1

ε2‖θ?m‖2 6 ε2µ2kσ?max
2.

The above inequality uses the fact that B? is a unitary matrix
and Assumption II.3. Hence, by combining these results and
using the union bound, we conclude that with probability at

least O(1− δ − d−10 − de
−

δ′2nM+1

3‖xM+1,n‖2 ), we have

M∑
m=1

‖P⊥
XmB̂T

XmB
?w?m‖22

6 ε2µ2kσ?max
2

(
2

M∑
m=1

nm(d− k) + 3 log
1

δ

)
.

Substituting in Eq. (4) completes the proof.

APPENDIX II
PROOF OF THEOREM III.1

From the definition of ER(B̂T , ŵM+1), we have
ER(B̂T , ŵM+1)

=
1

2
ExM+1,n∼pM+1

[(
x>M+1,n(B̂T ŵM+1 −B?w?M+1)

)2]



= (1/2)(B̂T ŵM+1 −B?w?M+1)>(B̂T ŵM+1 −B?w?M+1)

(8)

6
1

2(1− δ′)nM+1
‖XM+1(B̂T ŵM+1 −B?w?M+1)‖2 (9)

=
1

2(1− δ′)nM+1
‖XM+1B̂T ((XM+1B̂T )>(XM+1B̂T ))†

(XM+1B̂T )>YM+1 −XM+1B
?w?M+1‖2 (10)

=
1

2(1− δ′)nM+1
‖PXM+1B̂T

(XM+1B
?w?M+1 + ZM+1)

−XM+1B
?w?M+1‖2

=
1

2(1− δ′)nM+1
‖PXM+1B̂T

ZM+1‖2

+
1

2(1− δ′)nM+1
‖P⊥

XM+1B̂T
XM+1B

?w?M+1‖2 (11)

=
1

2(1− δ′)nM+1
‖PXM+1B̂T

ZM+1‖2

+
1

2(1− δ′)nM+1
‖P⊥

XM+1B̂T
XM+1B

?W̃ ?ν̃?‖2 (12)

6
1

2(1− δ′)nM+1
‖PXM+1B̂T

ZM+1‖2

+
1

2(1− δ′)nM+1
‖P⊥

XM+1B̂T
XM+1B

?W̃ ?‖2F ‖ν̃?‖22

where W̃ ? = W ?
√

diag([n1, n2, · · · , nM ]) and ν̃?(m) =
ν?(m)√
nm

. Eq. (8) is derived from E
[
xM+1,nx

>
M+1,n

]
= I .

Eq. (9) is derived from Lemma I.1. Eq. (10) is derived
from the least square estimator solution of the optimality of
ŵM+1. Eq. (11) is derived from P⊥

XM+1B̂T

>
PXM+1B̂T

= 0.

Eq. (12) is derived from w?M+1 = W̃ ?ν̃?. Given that ZM+1

follows i.i.d. Gaussian distribution with a zero mean and
variance σ2, it follows that 1

σ2 ‖PXM+1B̂T
ZM+1‖2 ∼ χ2(k).

Applying the Chernoff bound for chi-square distribution, we
have with probability at least 1− δ, ‖PXM+1B̂T

ZM+1‖2 6
σ2(2k + 3 log 1

δ ). Following that, by combining the result
obtained from Lemma I.2 along with applying the union
bound, we derive that with probability at least O(1 − δ −

d−10 − de
−

δ′2nM+1

3‖xM+1,n‖2 ,

ER(B̂T , ŵM+1) 6
σ2(2k + 3 log 1

δ )

2(1− δ′)nM+1
+

(1 + δ′)

2(1− δ′)2
µ2kσ?max

2

ε2
(

2N(d− k) + 3 log
1

δ

)
‖ν̃?‖22.

Our objective in the remaining analysis is to determine
the upper bound of ‖ν̃?‖22. Define ε−2 = N

‖ν?‖22
. Using a

technique similar to Theorem 3.2 in [2], for any γ ∈ [0, 1],

‖ν̃?‖22 6
2‖ν?‖22
N

((1− γ)‖ν?‖0,γ + γM).

By combining these results, we obtain the upper bound as

ER(B̂T , ŵM+1) 6
σ2(2k + 3 log 1

δ )

2(1− δ′)nM+1
+

(1 + δ′)

(1− δ′)2
µ2kσ?max

2

ε2
(

2(d− k) +
3

N
log

1

δ

)
‖ν?‖22s?.

For 0 < c < 1, setting target sample size nM+1 >
σ2(2k+3 log 1

δ )

2(1−c)(1−δ′) ε
−1 ensures that

σ2(2k + 3 log 1
δ )

2(1− δ′)nM+1
6 (1− c)ε.

Define t := (1+δ′)
(1−δ′)2µ

2kσ?max
2‖ν?‖22s?. For C > 1, setting

source sample size N > 3C
c tε log 1

δ results in

N >
3C

c
tε log

1

δ
=

3 log 1
δ

2(d− k)
C(

2

c
(d− k)tε)

>
3 log 1

δ

2(d− k)

2
c (d− k)tε

1− 2
c (d− k)tε

=
3t log 1

δ

cε−1 − 2(d− k)t
(13)

where Eq. (13) is derived from the fact that there exists a
constant C > 1 satisfying the inequality x

1−x 6 Cx for
0 < x < 1. Consequently, (2(d − k) + 3

N log 1
δ )tε2 6 cε.

Thus, ER(B̂T , ŵM+1) 6 ε and completes the proof.
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