
Dissipativity-Based Decentralized Control and Topology Co-Design for
Vehicular Platoons With Disturbance String Stability

Zihao Song, Shirantha Welikala, Panos J. Antsaklis and Hai Lin

Abstract— Merging and splitting of vehicles in a platoon is a
basic maneuvering that makes the platoons more scalable and
flexible. The main challenges lie in simultaneously ensuring the
compositionality of the distributed controllers and the string
stability of the platoon. To handle this problem, we propose a
control and topology co-design method for vehicular platoons,
which enables seamless merging and splitting of vehicular
platoons. In particular, we first present a centralized linear
matrix inequality (LMI)-based control and topology co-design
optimization for vehicular platoons with formal (centralized)
disturbance string stability (DSS) guarantee. Then, these cen-
tralized DSS constraints are made decentralized by developing
an alternative set of sufficient conditions. Using these decentral-
ized DSS constraints and Sylvester’s criterion-based techniques,
the said centralized LMI problem is decomposed into a set of
smaller decentralized LMI problems that can be solved at each
vehicle in a compositional manner, enabling seamless vehicular
merging/splitting. Finally, simulation examples are provided to
validate the proposed co-design method through a specifically
developed simulator.

I. INTRODUCTION

With the prospect of increasing highway congestion and
fuel consumption, vehicular platoons have been proposed as
a promising solution for future transportation development
[1]. Apart from normal platooning coordination, vehicles
inevitably join or leave platoons due to different destina-
tions or schedules of passengers. Even though a variety of
platooning control methods have been presented in recent
years, e.g., linear (PID, LQR/LQG, H∞ control) and non-
linear (model predictive control (MPC), sliding mode control,
backstepping, intelligent control) methods [2], only a few
attention has been paid on merging and splitting maneuvers
for vehicular platoons. Existing literature has mainly studied
several heuristic or planning-based methods for vehicular
merging and splitting, such as PID and MPC [3] without the
assuring of the string stability. More importantly, a complete
controller re-design is generally needed for the entire platoon
after any vehicles join or leave. In other words, these methods
are not compositional and lack a formal string stability
guarantee.

Another concern is the communication topology synthesis
for merging and splitting, as the topology is usually assumed
to be fixed in most of the existing works. However, the
topology is always expected to be dynamic to enable vehicles
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to join or leave a platoon at any time. Such dynamic changes
frequently occur when ramp vehicles merge into mainlines,
long platoons pass intersections, and vehicles exit a platoon
or change lanes [4]. This makes the topology synthesis
more difficult since the platoons’ compositionality and string
stability are required to hold after vehicles join or leave the
platoons.

Based on the above discussion, in this paper, we propose
a dissipativity-based control and topology co-design method
with a string stability guarantee for vehicular merging and
splitting in a platoon. The main contributions of this paper
are summarized as follows:

1) A centralized LMI-based co-design strategy is proposed
that enforces a strong notion of string stability (in par-
ticular, the so-called disturbance string stability (DSS)
[5]);

2) Through identifying an equivalent sequence of com-
positional LMI conditions along with an alternative
sequence of compositional DSS constraints, we decen-
tralize the proposed centralized LMI-based co-design
strategy;

3) The compositionality of the proposed decentralized co-
design strategy enables seamless merging and splitting
for vehicular platoons;

4) Using a specifically developed simulator, the effective-
ness of the proposed co-design strategies is explored;

5) The proposed co-design strategy reveals crucial commu-
nication links (neighbor information) to preserve string
stability in platoons.

This paper is an extension of our preliminary work [6] with
the DSS requirements. Due to space constraints, proofs are
omitted here but will be available in our journal version.

This paper is organized as follows. Section II summarizes
the notations and preliminary concepts. The problem formu-
lation is given in Section III, followed by our main results in
Section IV. In Section V, the simulation results are presented.
Finally, a concluding remark is given in Section VI.

II. PRELIMINARIES

Notations: The real and natural numbers sets are de-
noted by R and N, respectively. We define index sets IN :=
{1, 2, . . . , N} and I0

N := IN∪{0}, where N ∈ N. An n×m
block matrix A can be represented as A := [Aij ]i∈In,j∈Im

,
where Aij is the (i, j)th block of A (for indexing purposes,
either subscripts or superscripts may be used, i.e., Aij ≡
Aij). [Aij ]j∈Im

and diag([Aii]i∈In
) represent a block row

matrix and a block diagonal matrix, respectively. We define
{Ai} := {Aii}∪ {Aij , j ∈ Ii−1}∪ {Aji : j ∈ Ii}. The zero
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and identity matrices are denoted by 0 and I, respectively
(dimensions will be obvious from the context). A positive
definite (semi-definite) matrix A ∈ Rn×n is represented as
A = A⊤ > 0 (A = A⊤ ≥ 0). The sum of a matrix A
and its transpose is defined as S(A) := A + A⊤. 1{·} is
the indicator function and eij := 1{i=j}. We use K, K∞
and KL to denote different classes of comparison functions
(e.g., see [7]). For a vector x ∈ Rn, its Euclidean norm
is given by |x|2 := |x| :=

√
x⊤x. For a time-dependent

vector x(t) ∈ Rn, its L2 and L∞ norms are given by
∥x(·)∥ :=

√∫∞
0

|x(τ)|2dτ and ∥x(·)∥∞ := supt≥0 |x(t)|,
respectively. For a function of time t, we may omit the
notation (t) for simplicity.

1) Dissipativity Theory: Consider a networked system
Σ comprised of N subsystems {Σi : i ∈ IN}, where the
dynamics of each subsystem Σi, i ∈ IN are given by

Σi :

{
ẋi = fi(xi, {xj}j∈Ei

, ui),

yi = hi(xi, ui),
(1)

where xi ∈ Rni and ui ∈ Rqi are the subsystem’s state
and input, respectively. {xj : j ∈ Ei} are the states of the
neighboring subsystems of the subsystem Σi. Consequently,
the dynamics of the networked system Σ can be written as

Σ :

{
ẋ = f(x, u),

y = h(x, u),
(2)

where x := [x⊤
i ]

⊤
i∈IN

, u := [u⊤
i ]

⊤
i∈IN

, f := [f⊤
i ]⊤i∈IN

:
Rn × Rq → Rn, n :=

∑
i∈IN

ni, q :=
∑

i∈IN
qi, and h :=

[h⊤
i ]

⊤
i∈IN

: Rn×Rq → Rm. The function f is assumed to be
locally Lipschitz continuous around each equilibrium point
x∗ ∈ X with f(x∗, u∗) = 0,∀x∗ ∈ X ⊂ Rn (X denotes a
set of equilibrium states, u∗ is the input at this equilibrium).

We assume that the equilibrium points of (2) are such that
there exists a set X ⊂ Rn where for every x∗ ∈ X , there
is a unique u∗ ∈ Rq that satisfies f(x∗, u∗) = 0 while both
u∗ and y∗ := h(x∗, u∗) being implicit functions of x∗. For
the dissipativity analysis of (2) without the explicit knowl-
edge of its equilibrium points, the X-equilibrium-independent
dissipativity (X-EID) property [8] is introduced next.

Definition 1. (X-EID [8]) The system (2) is X-EID under
supply rate s : Rq × Rm → R if there exists a continuously
differentiable storage function V : Rn × X → R satisfying:
V (x, x∗) > 0 with x ̸= x∗, V (x∗, x∗) = 0, and

V̇ (x, x∗) = ∇xV (x, x∗)f(x, u) ≤ s(u− u∗, y − y∗),

for all (x, x∗, u) ∈ Rn×X×Rq , where the supply rate s is of
the quadratic form characterized by a symmetric coefficient
matrix X := [Xkl]k,l∈I2

∈ Rq+m, i.e.,

s(u− u∗, y − y∗) :=

[
u− u∗

y − y∗

]⊤ [
X11 X12

X21 X22

] [
u− u∗

y − y∗

]
.

Note that this notion also includes the conventional dis-
sipativity property [9], particularly when X = {0} and for
X ∋ x∗ = 0, the corresponding u∗ = 0 and y∗ = 0.

Remark 1. As mentioned in our previous work [10], by dif-
ferent choices of X in Def. 1, the system (2) can characterize
different input-output behaviors, such as (strict) passive and
l2 stability. Specifically, if (2) is strictly passive with indices
ν and ρ, i.e., X =

[
−νI 1

2 I
1
2 I −ρI

]
, we denote this as (2) being

IF-OFP(ν,ρ) (input feedforward-output feedback passive).
Besides, if (2) is l2-stable with gain γ, then X =

[
γ2I 0
0 −I

]
.

2) Network Modeling and Topology Synthesis:
Configuration: To facilitate our co-design method, we

reformulate the networked system Σ as the configuration in
Fig. 1a, where each subsystem Σi is decoupled as

Σi :

{
ẋi = fi(xi, ui),

yi = hi(xi, ui),
(4)

but they are interconnected (and also controlled) via the static
interconnection matrix M with the following relationship:[

u
z

]
=

[
Muy Muw

Mzy Mzw

] [
y
w

]
≡ M

[
y
w

]
, (5)

where z := [z⊤i ]⊤i∈IN
with each zi ∈ Rli . In analogous to

(2), each subsystem Σi, i ∈ IN in (4) is assumed to have a
set Xi ⊂ Rni , where for every x∗

i ∈ Xi, there is a unique
u∗
i ∈ Rqi that satisfies fi(x

∗
i , u

∗
i ) = 0 while both u∗

i and
y∗i := hi(x

∗
i , u

∗
i ) being implicit functions of x∗

i . Moreover,
each subsystem Σi, i ∈ IN is also assumed to be Xi-EID,
where Xi = X⊤

i := [Xkl
i ]k,l∈I2 (see Def. 1).

In this way, the resulting dynamics of each subsystem is
still of the form as (1), but with the input being disturbances
wi. This setup defines how subsystems, exogenous input
signal w ∈ Rr (e.g., disturbance) and interested output signal
z ∈ Rl (e.g., performance) are interconnected with each
other.

Dissipativity-Based Topology Synthesis: Taking advan-
tage of the configuration as in Fig. 1a, we can synthesize the
interconnection matrix by solving an LMI problem, where
extra specifications like Y-EID (e.g., Y =

[
γ2I 0
0 −I

]
to

enforce l2-stability, as in Rmk. 1) can be involved. However,
to synthesize M and enforce Y-EID, as in [8], we first need
to make an assumption, which leads to a proposition.

Assumption 1. For the networked system Σ, each subsystem
Σi is Xi-EID with X11

i > 0, ∀i ∈ IN , and the given Y-
EID specification for the networked system Σ is such that
Y22 < 0.

Remark 2. As we have mentioned in [10], Asm. 1 is mild,
since it is always desirable to make the networked system Σ
either l2-stable (X11

i = γ2
i I > 0) or passive νi > 0.

 X11
p 0 Luy Luw

0 −Y22 −Y22Mzy −Y22Mzw

L⊤
uy −M⊤

zyY22 −L⊤
uyX12 − X21Luy − X22

p −X21Luw + M⊤
zyY21

L⊤
uw −M⊤

zwY22 −L⊤
uwX12 + Y12Mzy M⊤

zwY21 + Y12Mzw + Y11

 > 0 (3)
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Proposition 1. [10] Under Asm. 1, the networked system Σ
can be made Y-EID by solving the following LMI problem
to get the interconnection matrix M in (5):

Find: Luy, Luw,Mzy,Mzw, {pi : i ∈ IN}
s.t. pi > 0, ∀i ∈ IN , and (3),

(6)

where X12 := diag((X11
i )−1X12

i : i ∈ IN ), X21 := (X12)⊤

with Muy := (X11
p )−1Luy and Muw := (X11

p )−1Luw.

To evaluate the LMI-based topology synthesis (6) in a
decentralized manner, here we recall the concept of “network
matrices” and a Sylvester’s criterion [11] inspired decentral-
ization technique from [12] (and its extension [13]), i.e., a
compositional verification of the positive definiteness of a
symmetric block network matrix.

Definition 2. [12] For a network topology Gn = (V, E), any
n× n block matrix Θ =

[
Θij

]
i,j∈In

is a network matrix if:
(1) Θij consists of information specific only to the subsystems
Σi and Σj , and (2) (Σi,Σj) ̸∈ E and (Σj ,Σi) ̸∈ E implies
Θij = Θji = 0, for all i, j ∈ In.

Proposition 2. [12] A symmetric N×N block matrix W =
[Wij ]i,j∈IN

> 0 iff

W̃ii := Wii − W̃iDiW̃
⊤
i > 0, ∀i ∈ IN , (7)

where W̃i := [W̃ij ]j∈Ii−1 := Wi(DiA⊤
i )

−1, Wi :=

[Wij ]j∈Ii−1 , Di := diag(W̃−1
jj : j ∈ Ii−1), and Ai is the

block lower-triangular matrix created from [W̃kl]k,l∈Ii−1 .

3) String Stability: To capture the disturbances propaga-
tion over the network, we recall the String Stability concepts.
Consider the network (2), but with the input u being external
disturbances w := [w⊤

i ]
⊤
i∈IN

∈ Rr, where each wi ∈ Rri and
r :=

∑
i∈IN

ri, after substituting some designed controller
u := u(x) into (2). The notion of string stability we use here
is the disturbance string stability (DSS) initially proposed
in [14], which is the dominant time domain string stability
notion (for more details, see our review of different string
stability notions in [10]).

Definition 3. (DSS [5]) The networked system (2) (but with
disturbances w as input) around the equilibrium point x∗ ∈
X is disturbance string stable (DSS), if there exist functions
β ∈ KL, σ ∈ K∞, and constants cx, cw > 0, such that
for any initial condition xi(0) and disturbance wi, i ∈ IN
satisfying

sup
i∈IN

|xi(0)− x∗
i | < cx, and sup

i∈IN

∥wi∥∞ < cw, (8)

respectively, the solution xi(t), i ∈ IN of (1) exists for all
t ≥ 0 and satisfies

sup
i∈IN

|xi − x∗
i | ≤ β( sup

i∈IN

|xi(0)− x∗
i |, t) + σ( sup

i∈IN

∥wi∥∞),

(9)
for all t ≥ 0 and any N ∈ N.

Remark 3. The concept of DSS in Def. 3 implies the
uniform boundedness of the tracking errors |xi − x∗

i | for

(a) Networked system Σ (b) Platoon error dynamics Σ̃

Fig. 1: Network configuration: (a) A generic networked
system Σ; (b) Error dynamics as a networked system Σ̃.

all subsystems as they propagate over the network. More
importantly, note that this bound is also independent of N .

Before we introduce the condition to guarantee the DSS
for the general networked system (2), we first recall the
definition of the so-called Input-to-State Stability (ISS).
When the subsystems (1) are ISS, the follow-up proposition
provides a set of sufficient conditions to guarantee the DSS
of the networked system (2).

Definition 4. (ISS [15]) The subsystem (1) (but with distur-
bances wi as input) of the networked system (2) is input-to-
state stable (ISS) if there exist functions βi ∈ KL, and σxi,
σwi ∈ K∞ such that

|xi − x∗
i | ≤βi(|xi(0)− x∗

i |, t) + σxi(max
j∈Ei

∥xj∥∞)+

σwi(∥wi∥∞)

is satisfied for all t ≥ 0.

Proposition 3. [15] Suppose that each subsystem (1) of the
networked system (2) is ISS and the conditions (8) hold for
all i ∈ IN . Then, the networked system (2) is DSS if there
exist scalars σ̄xi ∈ (0, 1) such that

σxi(s) ≤ σ̄xis (10)

holds for all s ∈ R≥0 and i ∈ IN .

III. PROBLEM FORMULATION

1) System Dynamics: We consider the longitudinal dy-
namics of the ith vehicle Σi, i ∈ I0

N in the platoon as [2]:

Σi :


ẋi(t)=vi(t)+dxi(t),

v̇i(t)=ai(t)+dvi(t),

ȧi(t)=fi(vi(t), ai(t))+
1

miτi
ui(t)+dai(t),

(11)

where fi := fi(vi(t), ai(t)) := − 1
τi

(
ai +

Af,iρCd,iv
2
i

2mi
+

Cr,i

)
− Af,iρCd,iviai

mi
is the nonlinear aerodynamics of the

vehicle. In (11), we use Σ0 to represent the leading vehicle
(virtual and given) and {Σi : i ∈ IN} to represent the follow-
ing N vehicles (controllable) in the platoon. We lumped all
the uncertainties in position xi, velocity vi, and acceleration
ai channels together with the external disturbances into the
corresponding disturbances dxi, dvi, and dai, respectively,
where xi, vi, ai ∈ R, and the disturbances dxi, dvi, dai ∈ R
are assumed to be bounded and second order differentiable;
mi is the mass; Af,i is the effective frontal area; ρ is the
air density; Cd,i is the coefficient of the aerodynamic drag;
Cr,i is the coefficient of the rolling resistance; τi is the
engine time constant; and ui ∈ R is the control input (to
be designed) of Σi, i ∈ IN .
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2) Feedback Control Design: A basic configuration of a
vehicular platoon is shown in Fig. 2. We define the position
tracking error of the vehicle Σi, i ∈ IN as x̃i(t) :=
xi(t) − (x0(t) − di0), where di0 is the desired separation
between vehicles Σi and Σ0. Correspondingly, we also write
the velocity and acceleration tracking errors as ṽi(t) :=
vi(t)− v0(t)− dx0(t) and ãi(t) := ai(t)− a0(t)− dv0(t)−
ḋx0(t), respectively. Using these defined errors, we obtain the
following tracking error dynamics of the vehicle Σi, i ∈ IN :

Σ̃i :


˙̃xi = ṽi + dxi,
˙̃vi = ãi + dvi,
˙̃ai = fi +

1
miτi

ui + dai − ũ0,

(12)

where ũ0 := f0 +
1

m0τ0
u0 + da0 + ḋv0 + d̈x0. In (12), we

assume the leader’s information (x0, v0, a0) is known to all
the followers, and if the leader is noiseless with ȧ0 ≡ 0, then
ũ0 = 0,∀t ≥ 0.

Now, to control the error dynamics (15), a state feedback
controller ui(t) can be designed as:

ui = miτi

(
− fi + (L̄ii + Lii)ei +

∑
j∈IN\{i}

Lij(ei − ej)
)
, (13)

where we stack the tracking errors as ei :=
[
x̃i ṽi ãi

]⊤
,

a local controller gain L̄ii ∈ R1×3 is added to tune
the passivity properties of each vehicle Σi, and Lij :=[
lxij lvij laij

]
∈ R1×3,∀j ∈ IN are global controller

gains.

Fig. 2: Vehicle placements in a platoon.

3) Modeled as a Networked System: For ease of expres-
sion, we restate the controller (13) as:

ui = miτi

(
− fi + L̄iiei +

∑
j∈IN

K̄ijej

)
(14)

where K̄ij := −Lij ,∀j ̸= i, and K̄ii :=
Lii +

∑
j∈IN\{i} Lij . By defining

[
kxij kvij kaij

]
:=

K̄ij ,∀j ∈ IN and the external disturbances
wi :=

[
dxi dvi dai − ũ0

]⊤
, the closed-loop error

dynamics of the vehicle Σi, i ∈ IN as:

Σ̃i : ėi = (A+BL̄ii)ei + ηi, (15)

where A :=

[
0 1 0
0 0 1
0 0 0

]
, B :=

[
0
0
1

]
, and the input is:

ηi :=
∑
j∈IN

Kijej + wi, with Kij :=

[
0 0 0
0 0 0
kx
ij kv

ij ka
ij

]
. (16)

Note that the error dynamics (15) are of the same form
as (4), where each subsystem is interconnected with others
through the control ηi. If we collect subsystem inputs as

η := [η⊤i ]i∈IN
and subsystem outputs as e := [e⊤i ]i∈IN

, each
subsystem is interconnected via the similar relationship like
(5), but with u = η and y = e, and thus, Mηe := [Kij ]i,j∈IN

,
Mηw := I, Mze := I, and Mzw := 0 (see Fig. 1b).

Based on this network configuration, synthesizing Mηe

will reveal the desired individual controllers and a preferable
communication topology for the platoon. Hence, our goal
in this paper is to propose a co-design framework for the
control and topology of a platoon, such that the DSS and
the compositionality of the platoon are both ensured.

IV. MAIN RESULTS

In this section, we present our main results. Note that, to
execute the co-design process, we first require the closed-
loop error dynamics of each vehicle Σ̃i, i ∈ IN , to be IF-
OFP(νi, ρi) (see Rmk. 1). To this end, as shown in [10], at
each vehicle Σi, i ∈ IN , we need to find its local controller
L̄ii, a feasible storage function matrix Ri and passivity
indices νi, ρi by solving the following LMI problem:

Find: L̃ii, Pi, νi, ρ̃i, γ̃i,

s.t. Pi > 0,ρ̃iI Pi 0

Pi −S(APi +BL̃ii) −I + 1
2Pi

0 −I + 1
2Pi −νiI

 > 0, (17)

− γ̃i
pi

< νi < 0, 0 < ρ̃i < min

{
pi,

4γ̃i
pi

}
,

where pi > 0 is some pre-specified scalar parameter, L̄ii :=
L̃iiP

−1
i , Ri := P−1

i , and ρi := ρ̃−1
i . As detailed in [10,

Thm. 2], the first two constraints in (17) enforce the IF-
OFP(νi,ρi) property of (15) while the latter two constraints
in (17) support the feasibility of the co-design process given
in the sequel.

1) Centralized Co-Design With DSS Guarantee: With
the obtained local control parameters, we present a central-
ized LMI-based co-design method with DSS guarantee as
follows.

Theorem 1. The closed-loop platooning system {Σ̃i}i∈IN

(15)-(16) (also shown in Fig. 1b) is both finite-gain l2-stable
with some l2-gain γ (where γ̃ := γ2 < γ̄) from disturbance
input w to performance output z, and DSS with respect to
disturbance w and initial error e(0), if for some pre-specified
ϵi, the interconnection matrix block Mηe = [Kij ]i,j∈IN

(as
in Fig. 1b) is synthesized using the centralized LMI problem:

min
Q,γ,{pi:i∈IN}

∑
i,j∈IN

cij∥Qij∥1 + c0γ̃,

s.t. pi > 0, ∀i ∈ IN , 0 < γ̃ < γ̄,X11
p 0 Q X11

p

0 I I 0

Q⊤ I −Q⊤X12 − X21Q − X22
p −X21X11

p

X11
p 0 −X11

p X12 γ̃I

 > 0, (18a)

RiQii +Q⊤
iiRi ≤ piνiϵiI, ∀i ∈ IN , (18b)∑

j∈IN\{i}

|RiQij | < −piνiδi, ∀i ∈ IN , (18c)
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where c0 > 0 is a pre-specified constant, δi :=√
µiλmin(Ri) with µi := (ρi+ϵi−1)

λmax(Ri)
, and 0 < δi <

1, Q := [Qij ]i,j∈IN
shares the same structure as Mηe,

X12 := diag(− 1
2νi

I : i ∈ IN ), X21 := (X12)⊤, X11
p :=

diag(−piνiI : i ∈ IN ), X22
p := diag(−piρiI : i ∈ IN ), and

Mηe := (X11
p )−1Q.

Remark 4. Here, we provide the direct relationship between
the synthesized interconnection matrix block [Kij ]i,j∈IN

in Thm. 1 and the individual vehicle (global) controller
gains required in (16). In particular, for the error dynamics
(15), the off-diagonal elements of [Kij ]i,j∈IN

are Kij =[
0 0 0
0 0 0

−lxij −lvij −laij

]
, for all i ∈ IN , j ∈ IN\{i}, while the

diagonal elements are

Kii = Ki0 −
∑

j∈IN\{i}

Kij , (19)

for all i ∈ IN , where each Ki0 =

[
0 0 0
0 0 0
lxii lvii laii

]
.

Remark 5. The main steps for the implementation of local
controller design and centralized global co-design are:
Step 1: Select some scalar parameters: pi > 0,∀i ∈ IN ;
Step 2: Synthesize local controllers via (17);
Step 3: If (17) is infeasible, return to Step 1;
Step 4: Syntesize global co-design using Thm. 1.

More details of the selection of scalar parameters pi in
Step 1 can be found in [10]. Note that, a similar four-step
process can be applied in a decentralized fashion if Step 4
(i.e., global co-design) can be made decentralized. This is
introduced next.

2) Decentralized Co-design for Merging/Splitting: To
enable seamless vehicular merging/splitting, the co-design
method in (18) is required to be compositional in a decen-
tralized manner. In other words, upon adding or removing a
vehicle to or from the platoon, one should not have to re-
design the control (and topology) for the entire platoon. Still
using the local control parameters by (17), we next show how
the centralized co-design (18) can be made decentralized and
compositional to synthesize the controllers and the topology
for the platoon with DSS guarantee. Also note that the DSS
condition (18b) can be made decentralized. However, the
decentralization of (18c) is not straightforward. To handle
this, we simultaneously propose a sufficient alternative of
(18c). More details of how this method enables vehicular
merging/splitting can be found in our previous work [10].

Theorem 2. The closed-loop platooning system {Σ̃i}i∈IN

can be made both finite-gain l2-stable with some l2-gain γ
(where γ̃ := γ2 < γ̄, similar as in Thm. 1), and decentralized
DSS, if at each vehicle Σi, i ∈ IN : (1) the interconnection
matrix blocks {Ki} are designed via the decentralized LMI
problem:

min
{Qi},γ̂i,pi

∑
j∈Ii−1

cij∥Qij∥1 + cji∥Qji∥1 + c0iγ̂i + ci|γ̂i − γ̃i|

s.t. pi > 0, γ̂i < γ̄, W̃ii > 0, (18b),
(20a)

1

δi
|RiQij | ≤ −piνi

2j
, ∀j ∈ Ii−1 (20b)

where γ̃i is from (17) (obtained in Step 2), and W̃ii is from
(7) when enforcing W = [Wij ]i,j∈IN

> 0 with

Wij :=

eijV
ii
p 0 Qij eijV

ii
p

0 eijI eijI 0

Q⊤
ji eijI −Q⊤

jiSjj − SiiQij − eijR
ii
p −eijSiiV

ii
p

eijV
ii
p 0 −eijV

ii
p Sjj γ̂ieijI

 ,

V ii
p := −piνiI, Rii

p := −piρiI, Sii := − 1
2νi

I and blocks
{Ki} are determined by Kij = (V ii

p )−1Qij , and (2) the
update:

KNew
j0 := KOld

j0 +Kji (21)

is requested at each prior and neighboring vehicle.

V. SIMULATION EXAMPLES

In this section, we provide simulation examples for a
platoon’s merging/splitting control to verify the effective-
ness of our proposed co-design framework. The simulation
considers a platoon with ten homogeneous vehicles, and the
first vehicle is selected as the leader and the remaining ones
are the followers. Due to space constraints, here we only
show the results for merging vehicles sequentially into a
platoon using Thm. 2 (the used exact system and controller
parameters can be found in [10]). Simulation results are
generated by a simulator developed in MATLAB1.

For the considered platoon, the decentralized topology is
shown in Fig. 3a- 4a. For comparison, Fig. 3a is provided
here as a baseline that uses the decentralized co-design
without DSS constraints (18b) and (18c). Compared to Fig.
3a, the main differences of Fig. 4a obtained with DSS
constraints lie in the cancellation of the front-to-back links.
This indicates that the back-to-front information is more
critical in enhancing a platoon’s string stability, as seen in
Fig. 3b-4a. Also, we observed that this cancellation of links
results in an improvement of the l2-gain from disturbance
input to tracking performance output, as γ = 2.5154 for Fig.
3a while γ = 2.0491 for Fig. 4a.

For Fig. 3b-4a, it is worth noting that the follower vehicles
are sequentially added, i.e., the optimization (20) in Thm. 2
is incrementally/iteratively solved. Specifically, the resulting
controller gains {Ki} ∪ {Ki0}, i ∈ IN , are evaluated in a
compositional manner.

Remark 6. To address vehicles splitting from a platoon,
the remaining vehicles can directly use their KOld

j0 values
without any elaborate re-designs, and other controller gains
remain unchanged, according to Thm. 2. In essence, splitting
can be viewed as the inverse process of merging.

Besides, a measure of DSS of the platoon can be obtained
by computing (at each vehicle) the DSS estimate J :=
maxi

1
δi

∑
j∈I10\{i} |RiKij | inspired by (18c). For the case

in Fig. 4a, J = 0.8235, while for the case in Fig. 3a,
J = 0.9053. Thus, the addition of DSS constraints not
only provides a formal guarantee of string stability, but also

1Publicly available at https://github.com/NDzsong2/Longitudinal-
Vehicular-Platoon-Simulator.git
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(a) A baseline without the DSS constraints (b) A platoon with 7 vehicles (c) Add the 8th vehicles at the end
Fig. 3: Vehicular merging using decentralized co-design: (a) a baseline; (b) begin with 7 vehicles; (c) add one at the end.

(a) Add the last two vehicles (b) Velocity tracking results (c) Position tracking errors
Fig. 4: Decentralized co-design results: (a) topology configuration; (b) velocities of vehicles; (c) position tracking errors.

gives more margin towards 1. Moreover, from Fig. 4b-4c,
it is readily seen that the velocity and position tracking is
well achieved but with minor deviations from the reference
signals. Such deviations are caused by external disturbances
which have been sufficiently compensated by the enforced
l2-stability in the co-design.

VI. CONCLUSION

In this paper, we studied the merging and splitting of
vehicular platoons and proposed a dissipativity-based dis-
tributed controller and communication topology co-design
method with a formal DSS guarantee. A centralized co-
design technique was first presented with a local controller
design technique. Besides, the analysis of the DSS was
provided, resulting in a centralized DSS constraint. Next,
we showed the decentralization of these DSS constraints by
proposing a sufficient alternative condition. Then, using a
decentralization technique inspired by Sylvester’s criterion,
the centralized co-design technique was made decentralized,
enabling vehicular merging/splitting. More importantly, the
resulting control and topology co-design process maintained
the compositionality and DSS. Simulation results illustrated
the effectiveness of the proposed method. Moreover, a com-
parison to the decentralized co-design without the DSS
constraints indicates that back-to-front communication links
in the platoon play the most crucial role in enhancing the
string stability.
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