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Abstract— Building on the recent work in [1] which provides
an interacting particle system interpretation of Transformers
with a continuous-time evolution, we study the controllability
attributes of the corresponding continuity equation across the
landscape of probability space curves. In particular, we consider
the parameters of the Transformer’s continuous-time evolution
as control inputs. We prove that given an absolutely continuous
probability measure and a non-local Lipschitz velocity field that
satisfy a continuity equation, there exist control inputs such that
the measure and the non-local velocity field of the Transformer’s
continuous-time evolution approximate them, respectively, in
the p-Wasserstein and Lp-sense, where 1 ≤ p < ∞.

I. INTRODUCTION

Remarkably, the recent work [1] shows that Transformers,
which needless to say have revolutionized machine learning
and beyond [2]–[5], can be viewed as interacting particle
systems. To be more precise, in [1], the authors considered
the dynamics

ẋi(t) = Pxi(t)

 n∑
j=1

Aj(t, xi(t), xj(t))V (t)xj(t)

 . (1)

Here:

1) Pxi
: Sd−1 → Txi

Sd−1, defined as

Pxi
y = y − ⟨xi, y⟩xi (2)

represents the projection of y ∈ Sd−1 ⊂ Rd the
unit sphere onto the tangent space TxiSd−1. This
projection map ensures that the relative positions of
neighbouring states influence the dynamics of each
state.

2) The self-attention Aj(t, xi(t), xj(t)) captures the
importance or attention given by the i-th state
to the j-th state relative to sequence of states
(xi(t))i∈[n] := (x1(t) . . . , xn(t)) ∈ (Rd)n, where
[n] := {1, 2, . . . , n} ⊂ Z, at time t. Specifically,

Aj(t, xi(t), xj(t)) :=
e⟨Q(t)xi(t),M(t)xj(t)⟩∑n
l=1 e

⟨Q(t)xi(t),M(t)xl(t)⟩
,

where Q(t) ∈ Rp×d and M(t) ∈ Rp×d determine the
influence of the neighboring states.

3) The matrix V (t) ∈ Rd×d scales the dot products in the
self-attention mechanism, determining the strength of
interactions among the states.
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The analysis in [1] shows that due to the layer normalization
property, the states evolve over the unit sphere (xi(t))i∈[n] ∈
(Sd−1)n, for t ≥ 0. Moreover, they showed that (1) inherits
some clustering property almost surely, under some suitable
condition.

Related to our work is the continuity equation

∂tµt(x) +∇ ·
(
Px

(∫
eβ⟨x,y⟩ydµt(y)

)
µt(x)

)
= 0, (3)

on R≥0 × Sd−1, with initial distribution µ0 ∈ P(Sd−1),
where β > 0 is fixed and determined by the magnitude
of Q and M . In [1, Lemma 3.5] it is shown that (3) is
a Wasserstein gradient flow of some energy function on
P(Sd−1). The interacting particle systems interpretation of
Transformers is also investigated in [6], where the clustering
properties of the model is investigated, and it is shown that
absence of layer normalization leads to system instability.

This paper adopts a control-theoretic perspective. In par-
ticular, we consider

∂tµit(xi) +∇ · (F [µi,W,Ai, V, b](t, xi)µit(xi)) = 0, (4)

with initial distributions (µi0)i∈[n] ∈ (P(Sd−1))n, where

F [µi,W,Ai, V, b](t, xi) := Pxi

(
W (t)

σ

(
2∑

k=1

∫
Sd−1

Ai,k(t, xi, y)Vk(t)ydµit(y) + b(t)

))
(5)

is the trainable vector field and Ai = (Ai,1, Ai,2), where

Ai,k(t, xi, y) =
e⟨Qk(t)xi,Mk(t)y⟩∫

Sd−1 e⟨Qk(t)x,Mk(t)y⟩dµit(y)
, (6)

with k ∈ {1, 2} and i ∈ [n]. Here, W (t) ∈ Rd×d and
b(t) ∈ Rd are the weight matrix and bias vector for the
neural network, respectively, and σ is the activation function.
The specific σ will be made explicit later. Note that if µi has
density fi, then F [µi,W,Ai, V, b](t, xi) in (5) is not uniquely
determined by the value of fi(xi) but rather the value of fi
on the whole sphere Sd−1. Therefore, F in (5) is non-local.
If µi in (5) is an empirical measure, then

F [µi,W,Ai, V, b](t, xi) :=

Pxi

(
W (t)σ

 2∑
k=1

n∑
j=1

Ai,k(t, xi, xj)Vk(t)xj + b(t)

)
is the complete feed-forward layer (see [1, Section 2.3.2]).
Note that since the trainable parameters W (t), Vk(t) ∈
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Rd×d, Qk(t),Mk(t) ∈ Rp×d and b(t) ∈ Rd in (5) are
independent of i ∈ [n], the system in (4)-(5) is the i-th
component of a sequence. From this point on, we sometimes
use the shorthand notations

F := (Fi)i∈[n] where Fi := F [µi,W,Ai, V, b]. (7)

The problem under study in this paper is the following:

Problem 1.1: Given (χ, ν) := (χi, νi)i∈[n], a sequence of
Lipschtiz velocity fields and absolutely continuous probabil-
ity measures, where each pair (νi, χi) satisfies the continuity
equation of the form

∂tνit +∇ · (χi[νit]νit) = 0, (8)

does there exist control inputs W (t), Vk(t) ∈
Rd×d, Qk(t),Mk(t) ∈ Rp×d and b(t) ∈ Rd such that
the sequence (F, µ) := (Fi, µi)i∈[n], where each (Fi, µi)
in (4), approximate (χ, ν) in some proper sense?

The main objective of the paper is to provide an answer
under appropriate regularity assumptions. Before we state
this result, it is important to point out the technical difference
between our work and that of Neural ODEs, for instance
in [7]–[11]. Beyond the fact that in the Neural ODE settings,
one is often concerned with approximating one state, whereas
here we deal with sequences, which somehow mimic ensem-
ble control settings [12], complication arise from the fact
that the velocity fields in (5) and (8) are non-local [13]–[16].
Nevertheless, we show that (F, µ) = (Fi, µi)i∈[n], where
each (Fi, µi) in (4), approximate (χ, ν) := (χi, νi)i∈[n],
where each pair (χi, νi) in (8) in some proper sense. As
a result of the inherent non-local velocity fields F and χ,
the approximation of the measures ν is in p-Wasserstein
sense and that of the velocity fields χ is in Lp-sense, where
1 ≤ p < ∞. For simplicity, we only deal with the case of
1-Wasserstein sense. We assert that, akin to the significant
impact Neural ODEs have had on the understanding of
performance and training of neural networks, it is reasonable
to anticipate that the novel transformer model will assume
a comparable role. The paper is organized as follows; in
Section II, we state some Preliminary result on existence of
a general continuity equation with non-local velocity field .
We state the main result in Section III and follow with the
proof in Section IV.

II. PRELIMINARIES ON TRANSPORT PDES WITH
NON-LOCAL VELOCITIES

In this section, we provide some mathematical background
that will be used throughout this paper. The following
notations will be needed: let L∞(Rd;Rd) denote the space of
essentially bounded functions from Rd to Rd, L∞

loc(R;R) be
the space of locally essentially bounded functions from R
to R and C(Rd;Rd) be the space of continuous functions
from Rd to Rd. Let P(Rd) and Pac(Rd) be the set of
probability and absolutely continuous probability measures

on Rd, respectively. We define the metric W1 on P(Rd) as

W1(µ0, µf ) :=

sup

{∫
Rd

fd(µ0 − µf ) : f ∈ C∞(Rd) ∩ Lip1(Rd)

}
, (9)

where Lip1(Rd) is the set of Lipschitz functions on Rd

with Lipschitz constant less than 1. It is well-known, see
for instance [17, Theorem 7.12], that the topology induced
by W1 on P(Rd) coincides1 with weak convergence on
P(Rd). Suppose that T : Rd → Rd is a measurable map,
and µ0, µf ∈ P(Rd). Then the pushforward of µ0 ala T is
denoted by T#µ0 = µf and given by∫
Rd

g(T (x))dµ0(x) =

∫
Rd

g(y)dµ0(T
−1(y)) =

∫
Rd

g(y)dµf

(10)
where g ∈ L1(Rd, µf ) is any integrable function and as usual
L1(Rd, µf ) is the space of µf -integrable functions defined
on Rd.

We collect preliminary results of general non-local trans-
port PDE [13]–[16]. We say that a given pair (ϑ, ς) satis-
fies (8) if the function

t 7→
∫
Rd

f(t, x)dςt

is absolutely continuous for every f ∈ C∞
c (R≥0 × Rd;R)

and∫
Rd

f(t, x)dςt(x)dx−
∫
Rd

f(0, x)dς0 =∫ t

0

∫
Rd

(∂tf(s, x) +∇f(s, x) · ϑ[ςs](s, x))dςs(x)ds

holds, for almost every t ∈ R≥0. To guarantee the existence
of a solution to (8), following from [13]–[16], the following
assumptions are needed:

Assumption 2.1: There exists positive functions
L1, L2,K ∈ L∞

loc(R≥0;R) such that

ϑ : C(R≥0;P(Rd)) → C(R≥0×Rd;Rd)∩L∞(R≥0×Rd;Rd)

satisfies:

1) the inequality

∥ϑ[ςt](t, x)− ϑ[ςt](t, y)∥Rd ≤ L1(t)∥x− y∥Rd , (11)

for all ςt ∈ P(Rd) and x, y ∈ Rd and t ∈ R≥0.
2) the inequality

∥ϑ[ςt](t, x)∥Rd ≤ L2(t)(1 + ∥x∥Rd), (12)

for all ςt ∈ P(Rd) and x, y ∈ Rd and t ∈ R≥0.
3) the inequality

∥ϑ[ς0]− ϑ[ς1]∥L∞(R≥0;C0(Rd)) ≤ K(t)W1(ς0, ς1)
(13)

for all ς0, ς1 ∈ P(Rd) and t ∈ R≥0.

1The distance W1 metrizes the weak convergence of measures only if
the measure has finite first moment. This condition is satisfied whenever the
measures have compact support.



It is well known (see for instance [16, Theorem 2.3] and
reference therein) that if ϑ satisfies Assumption 2.1, there
exists a unique solution ς ∈ C(R≥0;Pac(Rd)) to (8),
whenever ς0 ∈ Pac(Rd).

III. MAIN RESULTS

This section presents the key findings of the paper. To this
end, we fix the activation function σ : Rd → Rd to be the
rectified linear function (ReLU) applied to each component
of a vector xi = (xi1, . . . , xi,d) ∈ Rd:

σ(xi) = ReLU(xi) := (ReLU(xi1), . . . ,ReLU(xid)) ,
(14)

where ReLU(xij) := max{xij , 0}, j ∈ [d]. Under the
activation function, [18] has laid the groundwork by estab-
lishing that Transformers characterized as

T :=
{
(xi)i∈[n] 7→ (F [µi,W,Ai, V, b](xi))i∈[n]

:= (F [µi,W,Ai, V, b](xi + ωi))i∈[n] : W,Vk ∈ Rd×d,

Qk,Mk ∈ Rp×dand b, ωi ∈ Rd,where k ∈ {1, 2}
}
, (15)

where µi is a given empirical measure, serve as universal
approximators of continuous sequence-to-sequence functions
defined on a compact domain f ∈ C((Sd−1)n; (Rd)n),
where

C((Sd−1)n; (Rd)n) :=

{f : (Sd−1)n → (Rd)n : f is continuous functions}.

In particular, we later use the following universal approxi-
mation result, presented as [18, Theorem 3].

Theorem 3.1: Let 1 ≤ p < ∞ and ϵ > 0. Then for any
f ∈ C((Sd−1)n; (Rd)n), there exists g ∈ T such that

d(f, g) :=

(∫
(Sd−1)n

∥f
(
(xi)i∈[n]

)
− g

(
(xi)i∈[n]

)
∥pdx1 . . . dxn

) 1
p

≤ ϵ. (16)

We state here that the universal approximation result also
holds true when k ≥ 3 in (15), see [18]. We now state the
main result of this paper.

Theorem 3.2: Consider (χ, ν) := (χi, νi)i∈[n], where for
each i ∈ [n], we have that χi satisfies Assumption 2.1
and νi ∈ C(R≥0;Pac(Sd−1)) is the corresponding unique
solution to (8) with initial measure νi0 ∈ Pac(Sd−1). Then,
for any ϵ > 0, there exist a final time tf > 0 and piecewise
constant in time control inputs

W,Vk ∈ L∞([0, tf ];Rd×d) Qk,Mk ∈ L∞([0, tf ];Rp×d),

where k ∈ {1, 2} and b, ω ∈ L∞([0, tf ];Rd) such that
the pair of sequence (F, µ) := (Fi, µi)i∈[n], where each
(Fi, µi) is characterized in (4)-(5), approximates (χ, ν) in
the following sense:

d(F (t, ·), χ(t, ·)) ≤ ϵ,

where χ(t, (xi)i∈[n]) := (χi[νti](t, xi))i∈[n], for all t ∈
[0, tf ] and

sup
t∈[0,tf ]

W1(µit, νit) ≤ ϵ,

for all i ∈ [n].

The theorem ensures that there exist appropriate control
inputs such that (F, µ) characterized in (4)-(5) can approxi-
mate a given sequence of velocity fields and measures that
solves (8).

IV. PROOFS OF MAIN RESULT

This section is devoted to presenting the proof of The-
orem 3.2. The proof is organized into two subsections:
firstly, we provide some properties on a generic sequence
{(χm

i , νmi )}m≥1, where χm
i is piecewise constant in time

vector field that approximate the solutions (χi, νi) to the
continuity equations (8) in Proposition 4.2. Next, we prove
in Corollary 4.1 that the set of control inputs W,Vk, Qk,Mk,
where k ∈ {1, 2} and b, ω can be selected in such a
way as to ensure that the Transformer in (4) generates a
sequence (FN , µN ), where FN is in (15) that have the
required properties in the former subsection. This core idea is
inspired from [8]; however, in our derivations, the technical
details differ as we deal with non-local vector fields and
approximating sequence-to-sequence functions. For that part,
we utilize Theorem 3.1 and modified techniques in [13]–[16],
[19].

A. Approximating the solutions to (8)

We start with a stepping stone result on the support of the
solutions to (8).

Proposition 4.1: Let i ∈ [n] and consider the continuity
equation (8) where each χi satisfies Assumption 2.1 and
νi0 ∈ Pac(Sd−1). There exists a final time tf > 0 such
that the solution νi ∈ C(R≥0;Pac(Rd)) to (8), satisfies

supp(νit) ⊂ Sd−1, (17)

for all t ∈ [0, tf ].

Proof: Suppose that χi in (8) satisfies Assumption 2.1
and νi0 ∈ Pac(Sd−1). Following from [16, Theorem 2.3] the
unique solution νi ∈ C(R≥0;Pac(Rd)) is characterized as

νit = Φi(t, ·)#νi0, (18)

where Φi(t, ·) is the diffeomorphic flow on Rd that satisfies

∂tΦi(t, x) = χi[νit](t,Φi(t, x)) and Φi(0, x) = x, (19)

on R+ × Rd, where i ∈ [n]. We proceed to show that
there exists tf such that (19) admits a unique solution on
[0, tf ]. To this end, let T > 0 be fixed. From (12), since
∥χi[νit](t, x)∥Rd ≤ 2L̄i2 holds for all (t, x) ∈ [0, T ]×Sd−1,
where L̄i2 = essupt∈[0,T ]Li2(t). If tf ≤ mini∈[n]

1
2L̄i2

, then
from [20, Chapter 1, Theorem 1], for any x ∈ Sd−1, we have
that (19) admits a solution on [0, tf ]. For uniqueness, since
the Lipschitz conbdition (11) holds, for any (t, x), (t, y) ∈



[0, T ] × Sd−1, from [20, Chapter 1, Theorem 2] we have
that the unique solution satisfies Φi(t, supp(νi0)) ⊂ Sd−1,
where t ∈ [0, tf ].

We now show (17). Let z ∈ supp(νit). Then, from (18)
and (10), since νit(Bz(ϵ)) = νi0

(
Φ−1

i (t,Bz(ϵ))
)
> 0 holds,

for all ϵ > 0, where Bz(ϵ) ⊂ Rd is the ball with radius
ϵ centred at z ∈ supp(νit), we have that Φ−1

i (t,Bz(ϵ)) ⊂
supp(νi0) holds, for all ϵ > 0. Since Φ(t, ·) is a diffeomor-
phic flow on Rd and t 7→ Φ(t, ·) is continuous map, we
have that Bz(ϵ) ⊂ Φi(t, supp(νi0)), for all ϵ > 0. Since
Φi(t, supp(νi0)) ⊂ Sd−1, holds, for all t ∈ [0, tf ], we have
that Bz(ϵ) ⊂ Sd−1, for all ϵ > 0. This completes the proof.

Next, we provide an approximation result for (8).

Proposition 4.2: Suppose, for each i ∈ [n], we have that
χi satisfies Assumption 2.1 and νi ∈ C([0, tf ];Pac(Sd−1))
is the corresponding solution in (8) with initial distribution
νi0 ∈ Pac(Sd−1). Then, for each i ∈ [n], there exists
{(χm

i , νmi )}m≥1 such that each χm
i is piecewise constant in

time and (χm
i , νmi ) solves (8) with initial distribution νi0 ∈

Pac(Sd−1) and χm
i : C([0, tf ];Pac(Sd−1)) → C([0, tf ] ×

Sd−1;Sd−1)∩L∞([0, tf ]×Sd−1;Sd−1) uniformly converges
to χi and νmi ∈ C([0, tf ];Pac(Sd−1)) weakly converges to
νi.

Proof: Let 0 := tm0 < tm1 < · · · < tm2m−1 := tf ,
where tmℓ = ℓ2−mtf be a regular partition of [0, tf ] into 2m

subintervals. Given (χ, ν), let

χm
i [νit] := χi[νitml ], (20)

where t ∈ [tmℓ , tmℓ+1], then χm
i is piecewise constant in time

velocity field on C([0, tf ];Pac(Sd−1)). Since χi satisfies
Assumption 2.1, we have that χm

i satisfies

∥χm
i [νit](t, x)−χm

i [νit](t, y)∥Rd ≤ Li1∥x−y∥Rd , and
∥χm

i [νit](t, x)∥Rd ≤ 2Li2, (21)

where Liα = esssupt∈[0,tf ]
Liα(t), with α ∈ {1, 2}, hold for

all x, y ∈ Sd−1. Therefore, the unique solution νmi to

∂tνi +∇ · (χm
i [νi]νi) = 0 and νmi0 = νi0

is characterized by

νmit = Φm
i (t, ·)#νitml , (22)

∂tΦ
m
i (t, x) = χi[νitml ](tmℓ ,Φm

i (t, x)),

and Φm
i (tml , x) := Φi(t

m
l , x), for all t ∈ [tmℓ , tmℓ+1], where

Φi is as given in (18). We show that, for each i ∈ [n], the
pair (χm

i , νmi ), characterized in (20) and (22), respectively,
converges to (χi, νi) in some sense.

We show that for any ϵ > 0, there exists N0 ∈ N such
that for any m ≥ N0, we have

∥χm
i − χi∥ ≤ ϵ,

where

∥χm
i − χi∥ := sup

ν∈C([tmℓ ,tmℓ+1];P(Sd−1))

∥χm
i [νi]− χi[νi]∥L∞

(23)

and L∞ := L∞([tmℓ , tmℓ+1] × Sd−1;Sd−1). To this end,
using (20) and since

∥χm
i [νit]− χi[νit]∥L∞ = ∥χi[νitml ]− χi[νit]∥L∞ ,

for all t ∈ [tmℓ , tmℓ+1], using (13), we have that

∥χm
i [νit]− χi[νit]∥L∞ ≤ KiW2(νitml , νit)

≤ Kiai
tf
2m

, (24)

for all νi ∈ C([tmℓ , tmℓ+1];P(Sd−1)), where the second in-
equality follows from the fact that the solution curve t 7→ νit
in (8) is ai-Lipschitz continuous, for some positive constant
ai ∈ R (see for instance [15, Proposition 5]). Therefore, we
conclude that χm

i uniformly converges to χi.

To show that the sequence (νmi )m≥1 weakly converges to
νi, we first show that the family of functions t 7→ νmit is equi-
continuous and equi-bounded. To this end, equi-bounded
follows from the fact that from Proposition 4.1, we have
that supp(νit), supp(ν

m
it ) ⊂ Sd−1, for all t ∈ [0, tf ] and

m ≥ 1. For equi-continuous, from (20), since ∥χm
i ∥ ≤ 2Li2,

following from [15, Proposition 1] we have that

W1(ν
m
it , ν

m
itml

) ≤ 2Li2|t− tmℓ |. (25)

Therefore, the family of functions t 7→ νmit is equi-Lipschitz
and hence equi-continuous. Hence, by Arzela-Ascoli Theo-
rem, we have that the sequence (νmi )m≥1 admits a subse-
quence (νmr

i )r≥1 that weakly converges to ν̃i. We proceed
to show that the limit measure ν̃i satisfies∫ tf

0

∫
Sd−1

(∂tf(t, x)+∇f(t, x)·χi[ν̃it](t, x))dν̃it(x)dt = 0,

(26)
for every f ∈ C∞([0, tf ]×Sd−1;R), where f(tf , x) = 0 for
all x ∈ Sd−1. We prove this by showing that the following
statements hold:

1)

lim
r→∞

∫ tf

0

∫
Sd−1

∂tf(t, x)d(ν̃it(x)−νmr
it (x))dt = 0.

2)

lim
r→∞

∫ tf

0

∫
Sd−1

∇f(t, x) · (χi[ν̃it](t, x)−

χmr
i [νmr

it ](t, x))dν̃it(x)dt = 0.

3)

lim
r→∞

∫ tf

0

∫
Sd−1

∇f(t, x) · χmr
i [νmr

it ](t, x)

d(ν̃it(x)− νmr
it (x))dt = 0.

For Statement 1: using (9) and since∣∣∣∣∫ tf

0

∫
Sd−1

∂tf(t, x)d(ν̃it(x)− νmr
it (x))dt

∣∣∣∣ ≤
max

(t,x)∈[0,tf ]×Sd−1
∥∂tf(t, x)∥tf sup

t∈[0,tf ]

W1(ν̃it, ν
mr
it )



and νmr
it weakly converges to ν̃it, uniformly in t ∈ [0, tf ],

we conclude that Statement 1 holds.

For Statement 2, since∣∣∣∣ ∫ tf

0

∫
Sd−1

∇f(t, x) · (χi[ν̃it](t, x)−

χmr
i [νmr

it ](t, x))dν̃it(x)dt

∣∣∣∣ ≤ max
(t,x)∈[0,tf ]×Sd−1

∥∂tf(t, x)∥

2m−1∑
l=0

∫ tl+1

tl

∫
Sd−1

∥χi[ν̃it](t, x)−χmr
i [νmr

it ](t, x)∥dν̃it(x)dt,

from (13), we have that

∥χi[ν̃it]− χi[ν
mr

itmr
l

]∥ ≤KW1(ν̃it, ν
m
itmr

l
)

≤K(W1(ν̃it, ν
mr
it ) +W1(ν

mr
it , νmr

itml
))

≤K

(
W1(ν̃it, ν

mr
it ) + 2Li2

tf
2mr

)
,

where the last term in the later inequality follows from (25).
Since νmr

it weakly converges to ν̃it, we have that Statement 2
holds.

For Statement 3, from (12), we have that∣∣∣∣ ∫ tf

0

∫
Sd−1

∇f(t, x) · χmr
i [νmr

it ](t, x)d(ν̃it(x)− νmr
it (x))

dt

∣∣∣∣ ≤ max
(t,x)∈[0,tf ]×Sd−1

∥∂tf(t, x)∥2Li2tfW1(ν̃it, ν
mr

itmr
l

).

Using similar arguments in Statement 2, we conclude that
Statement 3 holds. This completes the prove.

B. Using Transformers to approximate the solutions to a
continuity equation

We are now ready to present our main proof. We first state
a corollary of universal approximation result which we later
combine with the observation made in the previous section
to prove Theorem 3.2.

Corollary 4.1: Given (χ, ν) := (χi, νi)i∈[n], where

χ(t, (xi)i∈[n]) := (χi[νit](t, xi))i∈[n] . (27)

Suppose that χi satisfies Assumption 2.1 and νi ∈
C([0, tf ];Pac(Sd−1)) is the solution in (8) with initial dis-
tribution νi0 ∈ Pac(Sd−1). Furthermore, suppose that the
time component of χi remain constant on [tNℓ , tNℓ+1], where
ℓ ∈ {0, . . . , 2N − 1} with tNℓ := ℓ2−N tf . Then, there exist
sequence of functions FN (t, ·) ∈ T , where t 7→ FN (t, ·) is
constant on the interval [tNℓ , tNℓ+1], such that

lim
N→∞

d(FN (t, ·), χ(t, ·)) = 0

for all t ∈ [0, tf ].

Proof: Given (χ, ν), consider (27). Then, by assump-
tion and from (11), since (t, (xi)i∈[n])) 7→ χ(t, (xi)i∈[n]) is
constant on [tNℓ , tNℓ+1] and Lipschitz over (Sd−1)n, we have
that χ ∈ C((Sd−1)n; (Rd)n) on [tNℓ , tNℓ+1]. Therefore, from
Theorem 3.1 given an empirical measure µi, we have that, for

every ϵ > 0, there exists FN (t, ·) ∈ T , piecewise constant
in time on [0, tf ] such that d(FN (t, ·), χ(t, ·)) ≤ ϵ holds, for
all t ∈ [tNℓ , tNℓ+1]. This completes the proof.

We are now ready to provide the proof of Theorem 3.2.
Proof: [Proof of Theorem 3.2] Given (χ, ν) := (χi, νi)i∈[n],
where for each i ∈ [n], we have that χi satisfies Assump-
tion 2.1 and νi ∈ C(R≥0;Pac(Sd−1)) is the corresponding
unique solution to (8) with initial measure νi0 ∈ Pac(Sd−1).
From Proposition 4.2, we have that for each i ∈ [n],
there exists {(χm

i , νmi )}m≥1, where the pair (χm
i , νmi ) is

characterized in (20) and (22), respectively, such that

lim
m→∞

∥χm
i − χi∥ = 0, and lim

m→∞
W1(ν

m
it , νit) = 0,

(28)
for all t ∈ [0, tf ]. Here ∥ · ∥ is defined in (23) and, for any
m ≥ 1, we have that χm

i is constant in time on [tmℓ , tmℓ+1]
with tmℓ = ℓ2−mtf . Let m ≥ 1 be fixed. Then, from
Corollary 4.1, given an empirical measure µi, there exists
a sequence {FN}N≥1 ⊂ T in (15) such that

lim
N→∞

d(FN (t, ·), χm(t, ·)) = 0 (29)

holds, for all t ∈ [0, tf ]. Furthermore, from (7), we have that{
FN :=

(
FN
i

)
i∈[n]

}
N≥1

admits the following characterization: for a given em-
pirical measure µi, there exists piecewise time con-
trol inputs WN , V N

k ∈ L∞([0, tf ];Rd×d), QN
k ,MN

k ∈
L∞([0, tf ];Rp×d) and bN , ωN

i ∈ L∞([0, tf ];Rd), where
k ∈ {1, 2} such that for N ≥ 1, we have that

FN
i (t, xi) :=

Pxi

(
WN (t)σ

(
2∑

k=1

n∑
j=1

AN
i,k(t, xi, xj)V

N
k (t)xj + bN (t)

))
.

We proceed to generate the corresponding measures µN
i . To

this end, we consider the piecewise constant in time vector
field

FN
i (t, xi) :=

Pxi

(
WN (t)σ

(
2∑

k=1

∫
Sd−1

AN
i,k(t, xi, y)V

N
k (t)ydµit(y)

+ bN (t)

))
, (30)

and show that, for a fixed N and i ∈ [n], we have that
FN
i (t, xi) above satisfies Assumption 2.1.

To this end, since the projection map P in (2) is uniformly
bounded and Lipschitz on Sd−1, it is enough to show that

GN
i (t, xi) :=

WN (t)σ

(
2∑

k=1

∫
Sd−1

AN
i,k(t, xi, y)V

N
k (t)ydµit(y) + bN (t)

)



satisfies Assumption 2.1. For Statement 1 in Assumption 2.1,
from (6) since

∇xiG
N
i (t, xi) =

WN (t)σ

(
2∑

k=1

∫
Sd−1

∇xi
AN

i,k(t, xi, y)V
N
k (t)ydµit(y)

)
for every i ∈ [n] and m ≥ 1, we have that

∥∇xi
GN

i ∥L∞ ≤

2∥WN∥L∞

(
2∑

k=1

∥MN
k ∥L∞∥QN

k ∥L∞∥V N
k ∥L∞

)
.

Therefore, we conclude that xi 7→ GN
i (t, xi) is Lipschitz.

For uniform boundedness, since

∥WN (t)σ

( 2∑
k=1

∫
Sd−1

AN
i,k(t, xi, y)V

N
k (t)ydµit(y)

+ bN (t)

)
∥ ≤ ∥WN∥L∞

(
2∑

k=1

∥V N
k ∥L∞ + ∥bN∥L∞

)
we have that

∥GN
i ∥L∞ ≤ ∥WN∥L∞

(
2∑

k=1

∥V N
k ∥L∞ + ∥bN∥L∞

)
.

This concludes that µi 7→ GN
i is uniformly bounded.

Lastly, we show that µi 7→ GN
i is Lipschitz. From (14),

since for xi = (xi1, . . . , xid) ∈ Sd−1 we have that
ReLU(xij) is Lipschitz and

∥
2∑

k=1

∫
Sd−1

AN
i,k(t, xi, y)V

N
k (t)yd(µit1(y)− µit2(y))∥ ≤(

2∑
k=1

∥AN
i,k(t)∥L∞∥V N

k ∥L∞

)
W1(µit1, µit2).

we conclude that µi 7→ GN
i is Lipschitz. Therefore,

FN
i (t, xi) satisfies Assumption 2.1. From [16, Theorem 2.3],

we have that there exists a unique solution µN
i to

∂tµit(xi) +∇ ·
(
FN
i (t, xi)µit(xi)

)
= 0, (31)

with initial distribution µi0 ∈ (Pac(Sd−1))n, where i ∈ [n].
Furthermore, from (29), for a fixed m ≥ 1, by Arzela-Ascoli
Theorem, we have that

lim
N→∞

W1(µ
N
it , ν

m
it ) = 0 (32)

uniformly in t ∈ [0, tf ].

Since W1(µ
N
it , νit) ≤ W1(µ

N
it , ν

m
it ) + W1(ν

m
it , νit),

for all m ≥ 1, from (32), we have that 0 ≤
limN→∞ W1(µ

N
it , νit) ≤ W1(ν

m
it , νit), for all m ≥

1, uniformly in t ∈ [0, tf ]. From (28), we have
that limN→∞ W1(µ

N
it , νit) = 0, uniformly in t ∈

[0, tf ]. Therefore, for every ϵ > 0, there exists
N0 ∈ N such that for N ≥ N0, we have that

supt∈[0,tf ]
W1(µ

N
it , νit) ≤ ϵ, holds, for all i ∈ [n]. Sim-

ilarly, since d(FN (t, ·), χ(t, ·)) ≤ d(FN (t, ·), χm(t, ·)) +
d(χm(t, ·), χ(t, ·)), from (29), we conclude that given
(χ, ν), there exists sequence of piecewise constant con-
trol inputs WN , V N

k ∈ L∞([0, tf ];Rd×d), QN
k ,MN

k ∈
L∞([0, tf ];Rp×d) and bN , ωN

i ∈ L∞([0, tf ];Rd) such that
limN→∞ d(FN (t, ·), χ(t, ·)) = 0, for all t ∈ [0, tf ]. This
finishes the proof.
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