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Abstract— In this paper, we derive a class of step-size
rules (time-varying gains) for gradient-based extremum seeking
algorithms that guarantee classical asymptotic convergence
rather than practical convergence. The obtained step-size rule
conditions are similar to the classical step-size rules known in
stochastic approximation theory.

I. INTRODUCTION

Extremum seeking is a powerful control technique aimed
at finding and stabilizing an a priori unknown optimal state
of a system using very limited knowledge about the system’s
model and objective function. While the first investigations
of extremum seeking problems date back to the early 1920s,
it can be considered a branch of modern control theory due
to the intensive studies and results it has garnered since the
beginning of the 21st century. Currently, there exist many
significant results on theory and applications of extremum
seeking control, see, e.g., [1]–[18]. We refer to [19], [20] for
a comprehensive review. To steer a system to an unknown
optimal state, many extremum seeking control algorithms
employ time-periodic control inputs with rapidly varying
frequencies and high amplitudes. Typically, this results in
highly oscillating behavior of the solutions of the extremum
seeking systems, which tend toward a neighborhood of the
optimal state. This behavior is known as practical conver-
gence, where the desired proximity to the optimal state is
achieved by selecting suitable control design parameters. In
this context, an important problem is to find control design
parameters that achieve classical asymptotic convergence and
thus ensure that the system’s trajectory tends to the optimal
state. One way to solve this problem is to design vector
fields which vanish at the optimal state, as shown in, for
example, [10], [14], [21]. These solutions, however, are only
applicable to extremum problems with an a priori known
optimal value.

In this paper, we develop control design parameters, in
particular, step-size rules, for extremum seeking algorithms
that are similar to the step-size rules known from stochastic
gradient descent and stochastic approximation algorithms
and that guarantee classical asymptotic convergence prop-
erties. In more detail, consider the stochastic gradient flow

dx = γ̃(t)(−∇J(x)dt+Bdw). (1)
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For the sake of simplicity, let J :R→R be convex with a
unique minimum x∗, γ̃(t) ≥ 0 be some time-varying gain
function, which can be thought of as a continuous-time step-
size rule, B ∈ R\{0}, and dw be a standard Wiener process.
This stochastic differential equation can be considered as
a continuous-time version of the discrete-time stochastic
gradient descent algorithm

xk+1=xk+γ̃k(−h∇J(xk)+
√
hBnk),

where h>0 corresponds to the time discretization (Euler-
Maruyama discretization), γ̃k≥0 to the step-size rule, and
nk is a normally distributed random variable with zero
mean and unit variance. To achieve convergence to x∗ in
expectation and with zero variance (limt→∞E[x(t)]=x∗,
limt→∞E[(x(t)−x∗)2]=0), i.e., convergence in the means
square sense, it is well-known from stochastic approximation
theory that γ̃ must converge to zero to ensure zero variance.
However, γ̃ should not converge too fast to zero in order
to maintain convergence in expectation. For example, for
J(x)=x2, it is a rather simple calculation (using Ito calculus)
to observe that the following classical conditions on γ̃
achieve the desired asymptotic convergence properties for
(1) for the first and second moment (see also, e.g., [22]):

(P̃1) lim
t→∞

∫ t

0

γ̃(τ)dτ = ∞, (P̃2) lim
t→∞

∫ t

0

γ̃(τ)2dτ <∞.

A main motivation and goal of this paper is to develop sim-
ilar conditions for extremum seeking algorithms. Gradient-
based extremum seeking algorithms and stochastic gradient
descent algorithms are both based on gradient approximation
methods. Extremum seeking typically utilizes deterministic
approximation methods while stochastic gradient descent
uses stochastic approximation methods. Both approxima-
tions come with errors, e.g., deterministic error terms from
remainders in Taylor-like expansions or, correspondingly,
variances from sampling methods appear in the convergence
analysis. Due to this and other conceptual similarities be-
tween stochastic gradient descent and extremum seeking
algorithms, it is natural to ask whether conditions like (P̃1)
and (P̃2) can be obtained for gradient-based extremum
seeking in order to achieve asymptotic convergence to
x∗ instead of the commonly in the literature encountered
practical convergence results. To address this question, we
examine extremum seeking algorithms designed within the
Lie bracket approximation framework as in, e.g., [6], [10],
[14], [23]. However, unlike these results, we introduce a
suitable class of time-varying gains (step-size rules) γ.
Note that the Lie bracket approximation framework requires
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uniform asymptotic stability of the optimal state for the
associated Lie bracket system, which is generally not the
case for systems with a time-varying gain. Therefore, the
above-mentioned results are not applicable. Time-varying
gains have been recently utilized, for example, in [24], [25].
However, the gains therein are increasing in time, while in
our contribution we utilize decreasing and asymptotically
vanishing gain functions. In addition, the analysis carried
out in this paper allows us to derive rather general conditions
on γ and describe the asymptotic behavior of the resulting
system.

The primary contribution of this paper lies in establish-
ing sufficient conditions on γ that guarantee asymptotic
convergence to x∗. As discussed in Section II-B, while
these conditions share similarities with (P̃1) and (P̃2), they
also present certain distinctions. Furthermore, we estimate
the speed of convergence of the solutions of the derived
extremum seeking system. Additionally, we investigate ex-
tremum seeking systems with time-varying frequencies and
establish convergence conditions for such systems. We illus-
trate the obtained results through a numerical example.

Notations: R+ = [0,∞); ej – unit vector with non-zero
j-th entry; Bδ(x

∗) – δ-neighborhood of an x∗ ∈ Rn with
δ > 0;
C(D) (resp., Cp(D), p ∈ N) – the space of continuous (resp.,
p times continuously differentiable) functions on D ⊂ Rn;
∇f(x) – the gradient of f evaluated at x;
for f, g : Rn → Rn, Lgf(x) = lim

s→0

f(x+sg(x))−f(x)
s ;

[f, g](x)=Lfg(x)−Lgf(x) – the Lie bracket of f, g.

II. MAIN RESULTS

A. Problem statement and extremum seeking algorithm

Consider the optimization problem

x∗ = arg min
x∈Rn

J(x). (2)

In extremum seeking problems, the mathematical expression
of J : Rn → R is not known but J can be evaluated at
any x ∈ Rn. This paper discusses the case of so-called
static maps (integrator plant dynamics), i.e., our continuous-
time algorithm is of the form ẋ = u such that the to-
be-designed time-varying control law u = u(t, J(x(t))
achieves limt→∞ x(t) = x∗ for a suitable set of initial data.
This choice of problem setup is justified by the need to
clarify concepts and to keep technical steps rather simple.
Extensions to more general cases, such as dynamic maps or
constrained problems, are reasonable.

To solve the above extremum seeking problem, consider

ẋ=γ(t)

n∑
j=1

(
F1j (J(x))u

ε
1j(t) + F2j (J(x))u

ε
2j(t)

)
ej ,

(3)
where x ∈ D is the state, D ⊂ Rn is a domain, x∗ ∈ D. For

the sake of simplicity, we take the time varying inputs as

uε1j(t)=2

√
πj

ε
cos

(
2πjt

ε

)
,

uε2j(t)=2

√
πj

ε
sin

(
2πjt

ε

)
,

(4)

however, other choices are possible, see, e.g., [6]. The
cost-dependent functions F1j , F2j ∈ C1(D) are such that
[F1j , F2j ](z) = −1 for all z ∈ R. The function γ can
be thought of as a time-varying gain and corresponds to a
step-size rule when discretizing the equations for example
with Euler’s method. System (3) with a time-invariant gain
function (constant step-size) γ(t) = γ0 ∈ R is well-known in
extremum-seeking systems. Without additional assumptions
on F1 and F2, its solutions exhibit practical uniform asymp-
totic convergence to the minimizer x∗ of objective function
J , as shown in [10], [23] and many other works on the Lie
bracket approximations of extremum-seeking systems. For
example, in the paper [10], it is proven that it is possible
to achieve uniform asymptotic stability of x∗ by the proper
choice of F1 and F2 vanishing at x∗. However, the use of
such functions requires the knowledge of the minimal value
of J(x), which can be restrictive for general applications.

Remark 1: In [10], [14] we have proposed the following
formula for generating F1j , F2j :

F1j(z) = f(z) sinϕ(z), F2j(z) = f(z) cosϕ(z),

where f ∈ C(D) and ϕ ∈ C1(D) are such that r2(z)dϕ(z)dz =
1. Some possible choices of the pairs F1j , F2j are, for
example, F1j(z) = z, F2j(z) = 1 [6], F1j(z) = sin z,
F2j(z) = cos z [23], F1j(z) = (tanh z

2 )
1/2 sin(2 ln(ez −

1)− z), F2j(z) = (tanh z
2 )

1/2 cos(2 ln(ez − 1)− z) [14].
We impose the following assumptions.

Assumption 1 (Properties of J): The function
J ∈ C2(D) has a unique extremum point x∗ in D
and, for all x ∈ D,

• (∇J(x), x− x∗) ≥ µ1∥x− x∗∥2, with some µ1 > 0;
• ∥∇J(x)∥ ≤ µ2∥x − x∗∥ for all x ∈ D, with some
µ2 > 0.

Assumption 2 (Regularity assumption): The functions
F1j , F2j(J(·)) ∈ C2(D \ {x∗};R), D ⊆ Rn; the functions
LFpj

Fsi(J(·)), LFqk
LFpj

Fsi(J(·)) ∈ C(D;R), for all
p, s, q ∈ {1, 2}, i, j ∈ {1, 2, . . . , n}.

B. Convergence properties
Using for example the approach of [26], one can prove

semi-global practical asymptotic stability of the point x∗

for system (3) provided that γ(t) and γ′(t) are bounded.
This means that the trajectories of the system (3) converge
to a neighborhood of the point x∗ (where the size of the
neighborhood depends on ε) but in general not to the point
x∗. In the main results of this paper, we show that under a
suitable choice of γ, the trajectories of (3) indeed converge
asymptotically to the point x∗.

Theorem 1: Consider system (3) and suppose the Assump-
tions 1 and 2 are satisfied. Let γ ∈ C1(R+;R+) be a
monotonically decreasing function which satisfy



(P1) lim
t→∞

∫ t

0

γ2(τ)dτ = ∞;

(P2) lim
t→∞

∫ t

0

max{γ3(τ), |γ′(τ)|}dτ <∞.

Then for any δ ∈ (0,dist(x∗, ∂D)) there exists an ε̂ > 0
such that the solutions x(t) of system (3) with any ε ∈ (0, ε̂),
t0 ≥ 0, and x(t0) ∈ Bδ(x

∗) satisfy the property

lim
t→∞

∥x(t)− x∗∥ = 0.

In summary, (P2) in Theorem 1 guarantees that the step-
size and its derivative converge to zero. Further, (P1) guar-
antees that the convergence of the step-size to zero is not too
fast. Comparing (P1) in Theorem 1 with (P̃1), we observe
that γ(t) plays the role of

√
γ̃(t). This may initially appear

surprising but is indeed natural when taking into account that
the averaged (Lie bracket) system of (3) has the time-varying
gain functions γ2(t) (see Remark 5 below). Comparing (P2)
in Theorem 1 with (P̃2), we see a difference between
the common step-size rule condition in stochastic gradient
descent and the one obtained in this paper. In particular,
also the absolute value of the derivative of γ must approach
zero. However, both conditions are qualitatively similar in
the sense that (P2) and (P̃2) ensure that the deterministic
error terms (Chen-Fliess remainder terms) and the stochastic
error terms (variances) in the convergence analysis to not
destroy to the asymptotic convergence to x∗.

The proof of Theorem 1 and some further results about
specific step-size rules as well as convergence speed proper-
ties are presented in the remainder of this section.

Remark 2: Let us underline that the convergence property
established in Theorem 1 is non-uniform with respect to t0.
To be precise, limt→∞ ∥x(t)−x∗∥ = 0 in Theorem 1 means
that for any ρ > 0, δ ∈ (0,dist(x∗, ∂D)), there exists an
ε̂ > 0 and a Tρ = Tρ(t0, ε, δ) with ε ∈ (0, ε̂), such that
∥x(t) − x∗∥ ≤ ρ for all t ≥ T . Nevertheless, ε̂ can be
chosen independently of t0, as it follows from the proof of
Theorem 1.

Remark 3: Theorem 1 requires γ(t) to be decreasing for
all t ≥ 0. In fact, it is enough to assume that γ(t) decreases
for all t ≥ T with some T ≥ 0. Furthermore, the requirement
of a decreasing γ(t) can be omitted if (P1) is replaced as:
for any t ≥ 0, ε > 0,

∑∞
j=0 γ

2(t0+εj) = ∞. Moreover, the
C1-requirement for γ(t) can be relaxed, e.g., by the well-
definiteness of its Dini-derivatives or Lipschitz continuity.

Remark 4: It is worth noting that, while the controls of
type (3) achieve asymptotic convergence for static maps,
the (asymptotic) convergence speed may be slow. Further,
it may lack of robustness against disturbances and the
ability to track a time-varying optimum. These issues are
common for controls with vanishing gains, see, e.g., in [24].
However, extremum seeking algorithms with vanishing gains
can be considered as deterministic alternatives to stochastic
approximation algorithms and thus maybe of interest in
stochastic approximation problems. The analysis of (3) in
the presence of disturbances or in case of a time-varying
objective function represents interesting directions of future
studies.

Corollary 1: Let γ(t) = λ(α+ t)−κ, λ ̸= 0, α >
0, κ ∈ (1/3, 1/2] . Then the conditions of Theorem 1 are
satisfied.
Some other choices of γ are discussed in Section III.

Corollary 2: Consider the system

ẋ =

n∑
j=1

(
F1j (J(x))u

ε
1j(ω(τ)) + F2j (J(x))u

ε
2j(ω(τ))

)
ej , (5)

where ω(τ) is invertible in R+ and γ(t) = 1
ω′(ω−1(t)) is in

C1(R+;R), monotonically decreasing, and satisfies (P1)–
(P2). Then for any δ ∈ (0,dist(x∗, δD)) there is an ε̂ > 0
such that the solutions x(τ) of system (5) with any ε ∈ (0, ε̂),
τ0 ≥ 0, x(τ0) ∈ Bδ(x

∗) satisfy limt→∞ ∥x(τ)− x∗∥ = 0.

This result follows from the fact that (5) on the time scale
t = ω(τ) has exactly the form (3) with γj(t) = 1

ω′(ω−1(t)) .
Corollary 3 (Convergence speed estimate): Under the

conditions of Theorem 1,

∥x(t)− x∗∥≤ν∥x0−x∗∥e−µ
∫ t
t0

γ2(s)ds
+
√
εζ(t), (6)

with some ν, µ > 0 which can be made arbitrary close to 1
and µ1, respectively, by choosing a small enough ε, and a
non-negative bounded function ζ(t) tending to 0 as t→ ∞.

The proof is given in Section II-D.
Remark 5: The estimate (6) can be also seen from the

properties of solutions of the corresponding Lie bracket
system. Although the approach of [6] requires uniform
asymptotic stability properties for the Lie bracket system,
we may formally derive it as

x̄=− γ2(t)∇J(x̄), x̄(t0) = x0.

Under Assumption 1, the time derivative of the function
V = ∥x−x∗∥2 can be estimated as V̇ ≤ −2γ2(t)µ1V. Inte-
grating the obtained comparison inequality, we get V (t) ≤
V (t0)e

−2µ1

∫ t
t0

γ2(s)ds
, or

∥x(t)− x∗∥ ≤ ∥x0 − x∗∥e−µ1

∫ t
t0

γ2(s)ds for all t ≥ t0.

This estimate shows the decay behavior of solutions and
illustrates the importance of (P1). The term e

−µ1

∫ t
t0

γ2(s)ds

in (6) provides a measure for the decay behavior of the
oscillatory solutions of (5) towards x∗. This term does not
define an asymptotic decay rate due to the presence of√
εζ(t). However, the constant ε in

√
εζ(t) can be made

arbitrarily small, as can be seen from the proof of Theorem 1.
Furthermore it also follows from the proof that the conver-
gence speed of ζ(t) to zero is governed by the properties of
γ(t) and γ′(t).

C. Proof of Theorem 1

To simplify the presentation, we assume x ∈ D ⊂ R, i.e.

ẋ = γ(t) (F1 (J(x))u
ε
1(t) + F2 (J(x))u

ε
2(t)) ,

with uε1(t) = 2
√

π
ε cos

(
2πt
ε

)
, uε2(t) = 2

√
π
ε sin

(
2πt
ε

)
. The

proof for D ⊂ Rn goes along the same lines.



Notations: For an ε > 0, j ∈ N ∪ {0}, denote tj =
t0 + jε, x(tj) = xj . From (P2), there is an Mγ > 0 such
that

φ(t) := max{γ3(t), |γ′(t)|} ≤Mγ for all t ≥ 0. (7)

Let D0⊂D be a closed domain, x∗∈D0. Define
MF= sup

x∈D0,s=1,2
∥Fs(J(x))∥,

M2F= sup
x∈D0,i,j=1,2

∥LFjFi(J(x))∥,

M3F = supx∈D0,i,j,ℓ=1,2 ∥LFℓ
LFj

Fi(J(x))∥.
The proof of the theorem proceeds in several steps. In steps
a)-d), we assume that for any δ>0 with Bδ(x

∗) ⊂ D0, there
is an ε0>0 such that for any t0≥0, the solutions x(t) of (3)
with ε∈(0, ε0) and x(t0)=x0∈Bδ(x

∗) are well-defined in D
for all t≥t0. Independently of ε0, we define ε1>0 such that
∥x(t) − x∗∥ → ∞ as t → ∞, provided that ε∈(0, ε1). The
value ε0 will be specified in the final step e), when some
auxiliary constants will be introduced. Subsequently, the
assertion of the theorem will be proved with ε̂=min{ε0, ε1}.

a) Representation of solutions: Expanding the solu-
tions of system (3) into the Chen–Fliess-like series (similarly
to [26]), we represent the solution of system (3) with initial
data x(tj) = xj ∈ D0 at time tj+1 as

xj+1 = xj − εγ2(tj)∇J(xj) +R(tj , ε),

with R(tj , ε) = −
∫ tj+1

tj

∫ t

tj

γ′(s)

2∑
i=1

Fi(J(x(s)))u
ε
i (t)ds dt

+

∫ tj+1

tj

∫ t

tj

∫ s

tj

γ(p)

 2∑
i,j=1

(
γ2(p)LFℓ

LFjFi(J(x(p)))u
ε
ℓ(p)

−2γ′(p)LFj
Fi(J(x(p)))

))
uεi (t)u

ε
j(s)dp ds dt.

Such a representation follows from the zero-mean and pe-
riodicity properties of inputs (4) and the relation between
F1, F2. For more details we refer to, e.g., [6], [10]. Using
Assumption 1 and estimate (7), we get

∥xj − x∗ − εγ2(tj)∇J(xj)∥2

≤ ∥xj − x∗∥2
(
1− εγ2(tj)(2µ1 − εM2

γµ2)
)
.

For any µ ∈ (0, µ1), let ε1 = min
{

2(µ1−µ)
M2

γµ2
, 1
2M2

γµ1

}
. Then

1− 2εµγ2(tj) > 0 for all tj ≥ 0, ε ∈ (0, ε1), and

∥xj−x∗−εγ2(tj)∇J(xj)∥ ≤ ∥xj−x∗∥
(
1−εµγ2(tj)

)
.

(8)
b) Estimates of ∥R(tj , ε)∥: From (7),

∥R(tj , ε)∥ ≤ 2MF

√
2π

ε

∫ tj+1

tj

∫ t

tj

φ(s)ds dt+
16π

ε3/2

×
(√

εM2FM
1/3
γ +M3F

√
2π
)∫ tj+1

tj

∫ t

tj

∫ s

tj

φ(p)dp ds dt.

Integration by parts and assumption ε ∈ (0, ε1) yields

∥R(tj , ε)∥ ≤
√
εCR

∫ tj+1

tj

φ(t)dt (≤ ε3/2CRMγ).

(9)

where CR =
(
2MF

√
2π + 16π(

√
ε1M2FM

1/3
γ +

√
2πM3F )

)
.

Estimates (8)–(9) imply that, for all j ∈ N∪{0}, ε ∈ (0, ε1),

∥xj+1 − x∗∥ ≤ ∥xj − x∗∥
(
1− εµγ2(tj)

)
+

√
εCR

∫ tj+1

tj

φ(t)dt.
(10)

c) Estimate of ∥xj+1 − x∗∥: Denote

λ0 = 1− εµγ2(t0), λj =

j∏
ℓ=0

(
1− εµγ2(tj)

)
,

r0 = CR

∫ t1

t0

φ(t)dt,

rj = rj−1

(
1− εµγ2(tj)

)
+ CR

∫ tj+1

tj

φ(t)dt for j ≥ 1.

(11)
Then

∥x1 − x∗∥ ≤ ∥x0 − x∗∥
(
1− εµγ2(t0)

)
+

√
εCR

∫ t1

t0

φ(t)dt

= ∥x0 − x∗∥λ0 +
√
εr0,

∥x2 − x∗∥ ≤ ∥x1 − x∗∥
(
1− εµγ2(t1)

)
+

√
εCR

∫ t2

t1

φ(t)dt

≤ ∥x0 − x∗∥
(
1− εµγ2(t0)

) (
1− εµγ2(t1)

)
+

√
εr0
(
1− εµγ2(t1)

)
+
√
εCR

∫ t2

t1

φ(t)dt

= ∥x0 − x∗∥λ1 +
√
εr1, etc.

Thus, we may conclude that, for any j ∈ N,

∥xj+1 − x∗∥ ≤ ∥x0 − x∗∥λj +
√
εrj . (12)

Let us prove that lim
j→∞

∥xj+1 − x∗∥ = 0. With this purpose,

consider the sequences {λj}j∈N and {rj}j∈N. The values λj
in (11) can be estimated as

0 ≤ λj =

j∏
ℓ=0

(
1− εµγ2(tℓ)

)
≤ e−εµ

∑j
ℓ=0 γ2(tℓ).

Recall that by (P1), lim
j→∞

j∑
ℓ=0

γ2(tℓ) = ∞. Since λj ≥ 0, this

implies lim
j→∞

λj = 0. Consider now the sequence {rj}j∈N.

Observe that the elements rj in (11) can be represented as

rj = CR

j∑
ℓ=0

∫ tℓ+1

tℓ

φ(t)dt

j∏
m=ℓ+1

(
1− εµγ2(tm)

)
. (13)

Let us prove that lim
j→∞

rj=0, i.e. for any ρ>0 there is an

Nρ∈N such that rj<ρ for all j>Nρ. By (P2) and Cauchy’s
convergence test, for any ρ>0 there is an Nρ,1∈N such that∫ tℓ2

tℓ1

φ(t)dt <
ρ

2CR
for all ℓ2 > ℓ1 > Nρ,1. (14)

As lim
j→∞

e
−εµ

j∑
m=ℓ+1

γ2(tm)

= 0 for any ℓ > 0, then for any

ρ > 0 and the corresponding Nρ,1 there is an Nρ,2 ∈ N such



that

e
−εµ

j∑
ℓ=Nρ,1+1

γ2(tℓ)

<
ρ

2(Nρ,1 + 1)MγCR
for all j > Nρ,2.

(15)
Let us fix Nρ = max {Nρ,1, Nρ,2}. Then for any j > Nρ,

j∑
ℓ=0

∫ tℓ+1

tℓ

φ(t)dt

j∏
m=ℓ+1

(
1− εµγ2(tm)

)
=

Nρ,1∑
ℓ=0

∫ tℓ+1

tℓ

φ(t)dt

j∏
m=ℓ+1

(
1− εµγ2(tm)

)
+

j∑
ℓ=Nρ,1+1

∫ tℓ+1

tℓ

φ(t)dt

j∏
m=ℓ+1

(
1− εµγ2(tm)

)

≤ε(Nρ,1 + 1)Mγe
−εµ

j∑
ℓ=Nρ,1+1

γ2(tℓ)

+

∫ tj+1

tNρ,1+1

φ(t)dt.

Inserting (14)–(15) into the above estimate, we conclude that
rj < ρ for all j ≥ Nρ + 1, which proves that lim

j→∞
rj = 0.

All in all, we conclude that lim
j→∞

∥xj+1 − x∗∥ = 0.

d) Convergence of the solutions as t→∞: For any t ≥
0,

∥x(t)−x∗∥ ≤
∥∥∥x(t0 + ĵε

)
− x∗

∥∥∥+∥∥∥x(t)− x
(
t0 + ĵε

)∥∥∥ ,
where ĵ =

[
t−t0
ε

]
. Since t− t0 −

[
t−t0
ε

]
ε ∈ [0, ε),∥∥∥x(t)− x

(
t0 + ĵε

)∥∥∥ ≤ 2

√
2π

ε
MF

∫ t

t0+ĵε

γ(τ)dτ

≤ 2
√
2πεMF sup

t0+ĵε≤s≤t

γ(s),

what follows from the integral representation of solutions.
Assumptions of the theorem imply γ(t) → 0 as t → ∞.

Hence, as t→ ∞,

∥x(t)− x∗∥ ≤ ∥xĵ − x∗∥+2
√
2πεMF sup

t0+ĵε≤s≤t

γ(s) → 0.

e) Well-definiteness of the solutions: It remains to find
a small enough ε0 such that the solutions of system (3) with
ε ∈ (0,min{ε0, ε1}) and x(t0) ∈ Bδ(x

∗) are well-defined
in D0 for all t ≥ t0, i.e. that x(t) ∈ D0 for all t ≥ t0.
Let δ0 be such that Bδ(x

∗) ⊂ Bδ0(x
∗) ⊂ D0, and

d0 = dist(∂Bδ0(x
∗), D0). Using the integral representation

of solutions with x(tj) = xj , j ∈ N ∪ {0}, we obtain

∥x(t)− xj∥ ≤ 2
√
2πMγMF

t− tj√
ε

≤ cx
√
ε

with cx = 2
√
2πMγMF . Then, for any xj ∈ Bδ0(x

∗),

∥x(t)− x∗∥ ≤ ∥xj − x∗∥+ ∥x(t)− xj∥ ≤ δ0 + cx
√
ε.

Let ε01 = (d0/cx)
2. Then for any ε ∈ (0, ε01), t ∈ [tj , tj+1],

x(t) ∈ D0 provided that xj ∈ Bδ0(x
∗). It remains to define

an ε02 > 0 such that xj ∈ Bδ0(x
∗) fro all j ∈ N. Recall the

formulas (12) and (13), which imply

∥xj+1 − x∗∥ ≤ ∥x0 − x∗∥+
√
εCR

∫ tj+1

t0

φ(t), (16)

whenever x(t) ∈ D0 for t ∈ [t0, tj ]. Similarly to (14), for any
fixed d > 0 there exists an Nd > 0 such that

∫ tℓ2
tℓ1

φ(t)dt <

d for all ℓ2 > ℓ1 > Nd. Note that Nd does not depend on ε
and t0. Given any ε > 0, let jd = [Nd/ε], where [. . . ] stand
for the integer part. Then, for any x0 ∈ Bδ(x

∗), t0 ≥ 0,
j = 1, . . . , jd, estimate (16) yields

∥xj − x∗∥ ≤ δ +
√
εCRMγjdε = δ +

√
εCRMγNd.

Furthermore, for any j = jd + 1, jd + 2, . . . ,

∥xj − x∗∥ ≤ ∥x0 − x∗∥+
√
εCR

(∫ tjd

t0

φ(t) +

∫ tj

tjd+1

φ(t)

)
≤ δ +

√
εCR(MγNd + d).

Taking ε12 =
(

δ0−δ
CR(MγNd+d)

)2
, we conclude that, for any

ε ∈ (0, ε02), xj ∈ Bδ0(x
∗). Thus, the solutions of system (3)

with ε ∈ (0, ε0 = min{ε01, ε02}) and x(t0) ∈ Bδ(x
∗)

are well-defined in D0 for all t ≥ t0. Let us underline
that ε2 does not depend on jd, allowing us to establish the
well-definiteness property step-by-step for intervals [t0, t1],
[t1, t2], and so forth, similarly to our approach in [10]. Thus,
we complete the proof by defining ε̂ = min{ε0, ε1}.

D. Proof of Corollary 3

As it follows from the proof of Theorem 1 (cf. Section II-
C, parts d) and e)), the solutions of system (3) satisfies the
following estimate, for all t ≥ t0:

∥x(t)− x∗∥ ≤ ∥x0 − x∗∥e
−εµ

ĵ−1∑
ℓ=0

γ2(t0+εℓ)
+ ζ(t)

√
ε,

with the bounded non-negative function ζ(t) can be explicitly
defined from the proof of Theorem 1), and ĵ =

[
t−t0
ε

]
.Then

we may estimate
ĵ−1∑
ℓ=0

γ2(t0 + ℓε) as

ĵ−1∑
ℓ=0

γ2(t0 + εℓ) ≥
∫ ĵ

0

γ2(t0 + εs)ds =
1

ε

∫ t0+εĵ

t0

γ2(s)ds

=
1

ε

∫ t

t0

γ2(s)ds− 1

ε

∫ t

t0+εĵ

γ2(s)ds

≥ 1

ε

∫ t

t0

γ2(s)ds− γ2(t0).

Thus,

∥x(t)− x∗∥ ≤ ∥x0 − x∗∥e−µ
∫ t
t0

γ2(s)ds+εµγ2(t0) + ζ(t)
√
ε,

implying the assertion of the corollary with ν = eεµγ
2(t0).

III. SIMULATIONS

Consider system (3) with F1(z) = sin(x), F2(z) =
cos(z):

ẋ = γ(t) (sin (J(x))uε1(t) + cos (J(x))uε2(t)) . (17)

For numerical simulations, we set J(x) = x2

2 , ε = 0.1.
Figure 1 shows the trajectory of the system with x(0) = 1
and γ(t) from Corollary 1, γ(t) = λ

(α+t)κ , with α = 0.1,
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Fig. 1. Time plots of the trajectories of systems (17) and (18) (top) and the
corresponding functions ln ∥x(t)∥ (bottom). Curves in blue, green, and red
correspond to (17) with γ(t) = 1√

0.1+t
, γ(t) ≡ 1, and to (18), respectively.

The plot of the function ∥x(0)∥e−
∫ t
0 γ2(s)ds = 1

1+10t
is depicted in black

(top).
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Fig. 2. Time plots of the trajectories of system (17) with γ(t) =√
sin 1

0.5+t
(blue, top) and γ(t) = 1√

0.1+t
+ 10e−10t (blue,

bottom), x(0) = 1, and the plots of the corresponding functions
∥x(0)∥e−

∫ t
0 γ2(s)ds (black).

λ = 1, κ = 1
2 . To illustrate Corollary 3, we add the graph of

ψ(t) = ∥x0−x∗∥e−µ
∫ t
t0

γ2(s)ds. As mentioned in Remark 5,
the trajectory of (17) oscillates around the curve ψ(t) with
vanishing amplitude of oscillations. In this case, t0 = 0, x0 =
1, µ = 1. Figure 1 also shows the solution of system (3) with
γ(t) ≡ 1 to compare the behavior of (3) with an extremum
seeking algorithm with time-invariant gain. Furthermore, we
consider system (5) with F1(z) = sin(x), F2(z) = cos(z),
ω(τ) = which corresponds to γ(t) = λ

(α+t)κ .

ẋ = sin (J(x))uε1(ω(t)) + cos (J(x))uε2(ω(t)). (18)

We put the same parameters for the numerical simulation:
ε = 0.1, α = 0.1, λ = 1, κ = 1

2 , x(0) = 1. The
time-plot of the corresponding solution of system (18) is
presented on Figure 1 in red. To better illustrate the behavior
of all three systems, we have also included the corresponding
logarithmic plots on Fig. 1, right. Of further interest is the
investigation and comparison of other possible γ(t). For
example, Fig. 2 (left) shows the trajectories of system (17)
with γ(t) =

√
sin 1

0.5+t . The other parameters remain
the same as before. Although the trajectory of the system
exhibits a slower decay rate, this example illustrates a variety
of functions γ satisfying the conditions of Theorem 1. Fig. 2
(right) presents the results of numerical simulation for the
case γ(t) = 1√

0.1+t
+ 10e−10t.
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