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Abstract— This study proposes a method for designing a
feedback controller that makes a prescribed set invariant for a
given polynomial system. Although the system is restricted to
polynomial systems, the class of invariant sets is not limited
to algebraic sets; it is the zero sets of nonlinear functions
satisfying a specific type of partial differential equations (PDE)
with coefficients in polynomials. Based on the algebraic relations
between a nonlinear function and its derivatives derived from
the PDE, a constructive sufficient condition for the existence of
the desired controllers is provided. Using symbolic computation,
the controllers can be computed exactly. Numerical examples
are provided to illustrate the effectiveness of the proposed
method.

I. Introduction
A subset of the state space is said to be invariant for a

dynamical system if the trajectory of the system remains in
the subset as long as it starts from the subset and is defined.
Invariant sets for dynamical systems are crucial in systems
and control theory [1], [2]. For example, it has been used to
ensure recursive feasibility in model predictive control [3],
[4], certify stability in terms of Lyapunov functions [1], [2],
and provide safety guarantees through barrier certificates and
control barrier functions [5], [6]. On the one hand, various
estimation and approximation techniques for invariant sets
have been studied to determine the limitations of a given
control system under certain constraints [7]–[9]. On the other
hand, a problem of designing a controller that makes a
prescribed set invariant for a given dynamical system can
be considered. This type of problem has been studied using
various techniques, such as barrier certificates [5], template
polynomials in constraint satisfaction problems [10], and
symbolic computations based on commutative algebra and
algebraic geometry [11], [12], [16].

In [11], a sufficient condition was provided for the ex-
istence of a polynomial feedback controller that renders
a prescribed algebraic set invariant for the corresponding
closed-loop system. The construction of the controller is
performed symbolically by using the theory of Gröbner
bases [13]. Therefore, this method does not suffer from
numerical computational errors. This construction method
and the condition for existence were extended to the case
of output feedback control in [14]. In similar problem set-
tings, controllers consisting of rational functions have been
considered [15]. The class of invariant sets was extended to
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semi-algebraic sets [12], [16]. In [16], it was shown that the
controllers can include continuously differentiable functions.
However, in all of the above results, the class of invariant
sets is limited to the sets described by polynomials, that is,
algebraic or semi-algebraic sets.

The aim of this paper is to push the boundary of the
class of invariant sets to a more general one for polynomial
systems. Specifically, zero sets of nonlinear functions satis-
fying a certain type of partial differential equation (PDE)
with polynomial coefficients are considered. By imposing
algebraic relations between the function defining the invariant
set and its derivatives, we can derive a constructive sufficient
condition for the existence of the desired controllers. Note
that algebraic relations of a function and its derivatives have
also been used, for example, in model structure simplifica-
tion via immersion [18] and state estimation of nonlinear
systems [19].

A similar approach was considered in [17], where the
system and invariant set were defined by the compositions
of polynomial functions and a continuously differentiable
function that may be non-polynomial. The Jacobian of the
non-polynomial function is also assumed to consist of com-
positions of polynomials and the non-polynomial function
itself, which is satisfied by, for example, cosine and sine
functions. This assumption allows us to apply the results
developed in [11] to images of the non-polynomial function.
Consequently, invariant sets can be constructed in the preim-
age of the non-polynomial function, which leads to defining
more general invariant sets than algebraic sets.

The target system and its invariant set must be defined
using a common non-polynomial function in [17]. In this
paper, although the target system is assumed to be polynomial
one, the invariant set can be defined using non-polynomial
functions that are not included in the target system, which
highlights the difference between the proposed and existing
methods. It is worth mentioning that many non-polynomial
dynamical systems can be converted to polynomial systems
via immersion [18], and the proposed method can also be
applied to the converted systems.

The remainder of this paper is organized as follows:
Section II formulates the problem setting and introduces a
class of nonlinear functions that define the invariant sets
by imposing an assumption described by a certain type of
PDE. Section III briefly reviews the invariance property for
autonomous systems and reformulates the sufficient condition
for the existence of the desired controllers in a form com-
patible with the assumption made in the previous section.
Section IV presents the controller synthesis problem, a
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sufficient condition for the existence of the desired controller,
and an algorithm for constructing it. Section V presents
numerical examples to illustrate the effectiveness of the
proposed method and the differences between the proposed
framework and existing method [17]. Finally, Section VI
concludes the study and discusses future work.

Notations: For the field of real numbers R and a vector
of indeterminates 𝑦 = [𝑦1 · · · 𝑦𝑛]>, R[𝑦] denotes the ring of
polynomials in 𝑦1, . . . , 𝑦𝑛 over R. The set of 𝑚 × 𝑙 matrices
with components in R[𝑦] is denoted by R[𝑦]𝑚×𝑙 . When
𝑙 = 1, R[𝑦]𝑚×1 is abbreviated by R[𝑦]𝑚. The ring of all
continuously differentiable functions in 𝑦, which is endowed
with usual addition and multiplication, is denoted by 𝐶1 (𝑦).
For a subset 𝑉 ∈ R𝑛, the set of functions that vanish at
all 𝑦 ∈ 𝑉 is denoted by I𝐶1 (𝑉) B { 𝑓 ∈ 𝐶1 (𝑦) | 𝑓 (𝑦) =

0 for all 𝑦 ∈ 𝑉}. For a given elements 𝑣1, . . . , 𝑣𝑙 ∈ 𝑅𝑛 with
a subring 𝑅 ⊂ 𝐶1 (𝑦), 〈𝑣1, 𝑣2, . . . , 𝑣𝑙〉 denotes the 𝑅-module
generated by 𝑣1, . . . , 𝑣𝑙 , that is, 〈𝑣1, 𝑣2, . . . , 𝑣𝑙〉𝑅 B {𝑣 ∈
𝑅𝑛 | 𝑐1𝑣1 + · · · + 𝑐𝑙𝑣𝑙 , 𝑐 𝑗 ∈ 𝑅 ( 𝑗 = 1, . . . , 𝑙)}. The subset
{𝑐 ∈ 𝑅𝑙 | 𝑐1𝑣1+· · · 𝑐𝑙𝑣𝑙 = 0} is called the syzygy of 𝑣1, . . . , 𝑣𝑙
and denoted by Syz𝑅 (𝑣1, . . . , 𝑣𝑙). ∇𝑦 B [𝜕𝑦1 · · · 𝜕𝑦𝑛 ]>
denotes the column vector of the differential operators, where
𝜕𝑦𝑖 = 𝜕/𝜕𝑦𝑖 . The symbols ∇𝑦 and 𝜕𝑦𝑖 are abbreviated as ∇
and 𝜕𝑖 , respectively, if 𝑦 is clearly specified according to
the context. For 𝑓 (𝑦) ∈ 𝐶1 (𝑦)𝑛, the Lie derivative L 𝑓 𝑝 of
𝑝 ∈ 𝐶1 (𝑦) with respect to 𝑓 is defined as L 𝑓 𝑝 B 𝑓 >∇𝑝.

II. Problem Setting

Consider the following control-affine nonlinear system:

¤𝑥 = 𝑓 (𝑥) + 𝐺 (𝑥)𝑢, (1)

where 𝑥(𝑡) ∈ R𝑛 and 𝑢(𝑡) ∈ R𝑚 are the state and control
input, respectively, at time 𝑡 ∈ R+, and 𝑓 (𝑥) ∈ R[𝑥]𝑛 and
𝐺 (𝑥) = [𝑔1 (𝑥) 𝑔2 (𝑥) · · · 𝑔𝑚 (𝑥)] ∈ R[𝑥]𝑛×𝑚 are polynomial
vector and matrix, respectively, in the components of 𝑥.

In this study, the following problem is considered: For
a given nonlinear function 𝑝(𝑥), find a feedback controller
𝑢 = 𝛼(𝑥) that renders the zero set {𝑥 ∈ R𝑛 | 𝑝(𝑥) = 0}
invariant. The class of functions to which 𝑝(𝑥) belongs is
stated by the following assumption.

Assumption 1: Let B B [1 ∇>]𝑇 and 𝑙 > 1 be
an integer. For each 𝑘 = 1, . . . , 𝑙, there exist 𝑎𝑘 (𝑥) =

[𝑎𝑘1 𝑎𝑘2 · · · 𝑎𝑘𝑛]> ∈ R[𝑥]𝑛 and 𝑏𝑘 (𝑥) ∈ R[𝑥] such that
𝑝(𝑥) satisfies the following PDE:

[𝑏𝑘 𝑎>𝑘 ]B𝑝(𝑥) = 𝑏𝑘 (𝑥)𝑝(𝑥) + 𝑎>𝑘 (𝑥)∇𝑝(𝑥) = 0. (2)
Evidently, polynomials and rational functions satisfy As-
sumption 1. Moreover, the exponentials and logarithms of
polynomials and rational functions satisfy Assumption 1, as
shown in the following examples.

Example 1: For a rational function 𝑟 (𝑥) = 𝑛𝑟 (𝑥)/𝑑𝑟 (𝑥)
(𝑛𝑟 , 𝑑𝑟 ∈ R[𝑥]), 𝑝(𝑥) = exp(𝑟 (𝑥)) satisfies Assumption 1
because 𝜕𝑖 exp(𝑟 (𝑥)) = exp(𝑟 (𝑥))𝜕𝑖𝑟 (𝑥) yields

𝑑2
𝑟𝜕𝑖 𝑝 = (𝑑𝑟𝜕𝑖𝑛𝑟 − 𝑛𝑟𝜕𝑖𝑑𝑟 )𝑝.

Example 2: For 𝑟 (𝑥) defined in the previous example,
𝑝(𝑥) = log(𝑟 (𝑥)) also satisfies Assumption 1 because

𝜕𝑖 log(𝑟 (𝑥)) = 𝜕𝑖𝑟 (𝑥)/𝑟 (𝑥) implies that

(𝑑𝑟𝜕 𝑗𝑛𝑟 − 𝑛𝑟𝜕 𝑗𝑑𝑟 )𝜕𝑖 𝑝 − (𝑑𝑟𝜕𝑖𝑛𝑟 − 𝑛𝑟𝜕𝑖𝑑𝑟 )𝜕 𝑗 𝑝 = 0.

Note that logarithms do not belong to the class of functions
considered in [17] because the derivative of a logarithm is
the reciprocal of its argument, which cannot be expressed as
a polynomial of the logarithm itself.

Example 3: Trigonometric functions cos(𝑥) and sin(𝑥) for
𝑥 ∈ R cannot be treated in this framework because their
derivatives − sin(𝑥) and cos(𝑥) do not admit any algebraic
relations of the form (2). However, the situation in the
multi-dimensional case is different. For instance, sin(𝑎>𝑥)
for 𝑥 ∈ R𝑛 and a constant vector 𝑎 ∈ R𝑛, 𝑎 𝑗𝜕𝑖 sin(𝑎>𝑥) −
𝑎𝑖𝜕 𝑗 sin(𝑎>𝑥) = 0 holds for each pair 𝑖, 𝑗 ∈ {1, . . . , 𝑛} with
𝑖 ≠ 𝑗 .

III. Invariance in Autonomous Case
Before discussing controller synthesis, the invariance re-

sult for an autonomous system:

¤𝑥 = ℎ(𝑥) (3)

with ℎ(𝑥) ∈ 𝐶1 (𝑥)𝑛 is revisited. The initial state 𝑥0 ∈ R𝑛

is arbitrary, and 𝐼 (𝑥0) ⊂ R denotes the maximal existence
interval of the solution 𝜑𝑥0 (𝑡) to (3) starting from 𝜑𝑥0 (0) =
𝑥0. For 𝑝(𝑥) ∈ 𝐶1 (𝑥), its zero set 𝑉 B {𝑥 ∈ R𝑛 | 𝑝(𝑥) = 0}
is said to be invariant for ℎ(𝑥) if 𝑥0 ∈ 𝑉 implies 𝜑𝑥0 (𝑡) ∈ 𝑉

for all 𝑡 ∈ 𝐼 (𝑥0).
The following is a standard result for the controlled

invariance, which is included for completeness:
Lemma 1: For ℎ(𝑥) and 𝑉 as defined above, the following

statements hold:
(i) If there exists 𝜆(𝑥) ∈ 𝐶1 (𝑥) such that

Lℎ𝑝(𝑥) = 𝜆(𝑥)𝑝(𝑥), (4)

then, 𝑉 is invariant for ℎ.
(ii) Suppose Lℎ𝑝(𝑥) ∈ 𝐶1 (𝑥). If 𝑉 is invariant for ℎ, then

Lℎ𝑝(𝑥) ∈ I𝐶1 (𝑉).
Proof: (i) For the solution 𝜑𝑥0 (𝑡) to (3), the time

derivative of 𝑝(𝜑𝑥0 (𝑡)) is given by

𝑑

𝑑𝑡
𝑝(𝜑𝑥0 (𝑡)) = Lℎ𝑝(𝜑𝑥0 (𝑡))

= 𝜆(𝜑𝑥0 (𝑡))𝑝(𝜑𝑥0 (𝑡)),

where the last equality is obtained from (4). It suffices to
show that 𝑝(𝜑𝑥0 (𝑡)) = 0 for all 𝑡 ∈ 𝐼 (𝑥0) if 𝑥0 ∈ 𝑉 . Indeed,
if 𝑥0 ∈ 𝑉 , then

𝑑

𝑑𝑡
𝑝(𝑥0) = Lℎ𝑝(𝑥0) = 𝜆(𝑥0)𝑝(𝑥0) = 0

holds, implying that 𝑝(𝜑𝑥0 (𝑡)) = 𝑝(𝑥0) = 0 for all 𝑡 ∈ 𝐼 (𝑥0)
because of the uniqueness of the solution.

(ii) From the assumption, 𝑝(𝜑𝑥0 (𝑡)) = 0 for all 𝑡 ∈ 𝐼 (𝑥0)
if 𝑥0 ∈ 𝑉 . Hence, the time derivative of 𝑝(𝜑𝑥0 (𝑡)) is also
zero for all 𝑡 ∈ 𝐼 (𝑥0); that is,

Lℎ𝑝(𝜑𝑥0 (𝑡)) = 0.
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In particular, at 𝑡 = 0 ∈ 𝐼 (𝑥0), we obtain Lℎ𝑝(𝑥0) = 0 for
any 𝑥0 ∈ 𝑉 . Thus, Lℎ𝑝(𝑥) |𝑥∈𝑉 = 0, which implies Lℎ𝑝(𝑥) ∈
I𝐶1 (𝑉).

The left-hand side of (4) includes ∇𝑝(𝑥) whereas the right-
hand side includes 𝑝(𝑥). Hence, if an algebraic relation exists
between ∇𝑝(𝑥) and 𝑝(𝑥), (4) can be reduced to an algebraic
condition by isolating the non-polynomial components in
𝑝(𝑥). This consideration leads to another formulation of (4)
as follows:

Corollary 1: For B defined in Assumption 1, if there
exists 𝜆(𝑥) ∈ 𝐶1 (𝑥) such that

[𝜆 ℎ>]B ◦ 𝑝(𝑥) = 0, (5)

𝑉 is invariant for ℎ.
Proof: The condition (5) is equal to Lℎ𝑝(𝑥) +

𝜆(𝑥)𝑝(𝑥) = 0, which is equivalent to (4) with the replacement
of 𝜆 with −𝜆.

IV. Controller Synthesis for Invariant Set Defined by
Non-Polynomial Functions

Let us now return to the controller design problem. The
problem of determining a feedback controller 𝑢 = 𝛼(𝑥) that
renders the zero set {𝑥 ∈ R𝑛 | 𝑝(𝑥) = 0} invariant can be
reformulated as follows: By using B in Assumption 1, (4)
can be rewritten as

0 = L 𝑓 +𝐺𝑢 𝑝 − 𝜆𝑝

=

[
0
𝑓

]>
B𝑝 +

𝑚∑︁
𝑗=1

𝑢 𝑗

[
0
𝑔 𝑗

]>
B𝑝 − 𝜆

[
1
0𝑛

]>
B𝑝

=
©­«
[
0
𝑓

]
+

𝑚∑︁
𝑗=1

𝑢 𝑗

[
0
𝑔 𝑗

]
− 𝜆

[
1
0𝑛

]ª®¬
>

B𝑝, (6)

where 0𝑛 ∈ R𝑛 denotes the zero vector. Hence, 𝑉 is invariant
for 𝑓 +𝐺𝑢 with feedback 𝑢 = 𝛼(𝑥) if there exist 𝛼 𝑗 ∈ 𝐶1 (𝑥)
and 𝜆 ∈ 𝐶1 (𝑥) such that

𝑣0 +
𝑚∑︁
𝑖=1

𝑢𝑖𝑣𝑖 − 𝜆𝑣𝑚+1 = 0𝑛+1, (7)

where
𝑣0 B [0 𝑓 >]>, 𝑣𝑚+1 B [1 0>𝑛 ]>

𝑣 𝑗 B [0 𝑔>𝑗 ]> ( 𝑗 = 1, . . . , 𝑚). (8)

However, (7) implies that 𝜆 = 0 because the first components
of 𝑣𝑖 are zero, except for 𝑣𝑚+1. This results in 𝑣0+𝑢1𝑣1+· · ·+
𝑢𝑚𝑣𝑚 = 0𝑚+1, which corresponds to the trivial system ¤𝑥 =

𝑓 +𝐺𝑢 = 0𝑛. To obtain more nontrivial feedback controllers,
the algebraic property of 𝑝(𝑥) imposed by Assumption 1 is
utilized.

As 𝑝(𝑥) satisfies Assumption 1, there exist 𝑎𝑘 ∈ R[𝑥]𝑛
and 𝑏𝑘 ∈ R[𝑥] such that [𝑏𝑘 𝑎>

𝑘
]B𝑝 = 0 holds for each

𝑘 = 1, . . . , 𝑙. This indicates that the addition of any linear
combination of vectors

𝑣𝑚+1+𝑘 B [𝑏𝑘 𝑎>𝑘 ]
> (𝑘 = 1, . . . , 𝑙) (9)

to the left-hand side of (7) does not change the right-hand
side. Consequently, the following theorem is obtained:

Theorem 1: For 𝑣 𝑗 ∈ R[𝑥]𝑛+1 ( 𝑗 = 0, . . . , 𝑚+𝑙+1) defined
so far, if there exist 𝛼1, 𝛼2, . . . , 𝛼𝑚+𝑙+1 ∈ 𝐶1 (𝑥) such that

𝑣0 +
𝑚+𝑙+1∑︁
𝑗=1

𝛼 𝑗𝑣 𝑗 = 0𝑛+1 (10)

holds, then 𝑉 is invariant for 𝑓 +𝐺𝑢 with feedback 𝑢 𝑗 = 𝛼 𝑗 (𝑥)
for 𝑗 = 1, . . . , 𝑚.

Proof: As 𝑣𝑚+𝑘+1 = [𝑏𝑘 𝑎>
𝑘
]>, by multiplying (B𝑝)>

to both sides of (10), the terms corresponding to 𝑗 ∈ {𝑚 +
2, 𝑚 + 3, . . . , 𝑚 + 𝑙 + 1} are nullified. Hence, we have

(B𝑝)>𝑣0 +
𝑚+1∑︁
𝑗=1

𝛼 𝑗 (B𝑝)>𝑣 𝑗 = 0,

which is equivalent to (6) with 𝑢 𝑗 = 𝛼 𝑗 (𝑥) and 𝜆(𝑥) =

𝛼𝑚+1 (𝑥).
All solutions 𝑤 = [𝛼1 𝛼2 · · · 𝛼𝑚+𝑙+1] ∈ R[𝑥]𝑚+𝑙 to (10)

are expressed as follows:

𝑤 = 𝑤0 + 〈𝑤1, . . . , 𝑤𝑠〉R[𝑥 ] ,

and 𝑤0, 𝑤1, . . . , 𝑤𝑠 ∈ R[𝑥]𝑚+𝑙 can be computed sym-
bolically using some computer algebra system such as
Risa/Asir [22], SINGULAR [20], Macaulay2 [21], or Maple
(see, e.g., [23]–[25]). Moreover, as shown in [16], all solu-
tions 𝑤 ∈ 𝐶1 (𝑥)𝑚+𝑙 can be expressed as

𝑤 = 𝑤0 + 〈𝑤1, . . . , 𝑤𝑠〉𝐶1 (𝑥) .

Finally, the design of a feedback controller 𝑢 = 𝛼(𝑥)
that renders the zero set {𝑥 ∈ R𝑛 | 𝑝(𝑥) = 0} invariant
is summarized in Algorithm 1.

Note that the information of 𝑝(𝑥) is encoded in the
polynomials 𝑎𝑘 (𝑥) and 𝑏𝑘 (𝑥) and is thus considered through
those polynomials. To the best of the author’s knowledge, no
algorithm exists for determining 𝑎𝑘 and 𝑏𝑘 for a given 𝑝(𝑥);
hence, they must be handcrafted.

V. Numerical Example
Consider system (1) with

𝑓 (𝑥) =


𝑥2
(1 − 𝑥2

1)𝑥2 − 𝑥1
(𝑥1 − 𝑥2)𝑥3

 , 𝐺 (𝑥) =

0 0
𝑥2 0
0 𝑥3

 , (11)

Algorithm 1 Feedback controller synthesis that achieves
invariance of 𝑉 for 𝑓 + 𝐺𝑢

Input: Polynomial vectors 𝑓 , 𝑔1, 𝑔2, . . . , 𝑔𝑚, 𝑎1, 𝑎2, . . . , 𝑎𝑙 ∈
R𝑛 [𝑥] and polynomials 𝑏1, 𝑏2, . . . , 𝑏𝑙 ∈ R[𝑥]

Output: Feedback controller 𝑢 = 𝛼(𝑥) that makes 𝑉 = {𝑥 ∈
R𝑛 | 𝑝(𝑥) = 0} invariant

1: Define 𝑣0, 𝑣1, . . . , 𝑣𝑚+𝑙+1 ∈ R[𝑥]𝑛+1 as in (8) and (9)
2: Find a polynomial vector 𝑤0 ∈ R[𝑥]𝑚+𝑙 that satisfy (10)
3: Find a set of generators 𝑤1, . . . , 𝑤𝑠 ∈ R[𝑥]𝑚+𝑙 of the

syzygy module SyzR[𝑥 ] (𝑣1, . . . , 𝑣𝑚+𝑙+1)
4: Select the coefficients 𝛽𝑖 ∈ 𝐶1 (𝑥) (𝑖 = 1, . . . , 𝑠) and

define 𝛼 = 𝑤
[1:𝑚]
0 +∑𝑠

𝑖=1 𝛽𝑖𝑤
[1:𝑚]
𝑖

, where 𝑤
[1:𝑚]
𝑖

denotes
the vector consisting of the first 𝑚 components of 𝑤𝑖 ,
that is, [𝑤𝑖1 𝑤𝑖2 · · · 𝑤𝑖𝑚]> ∈ R[𝑥]𝑚
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where 𝑥(𝑡) ∈ R3 and 𝑢(𝑡) ∈ R2. For this system, invariant
sets defined by two nonlinear functions are considered. Both
of them are non-polynomial, and one of them does not
belong to the class considered in the existing literature [17].
Note that all the symbolic computations for the numerical
examples were performed using Risa/Asir and took less
than one second on a laptop PC (Intel Core i7-1255U,
1.70GHz; RAM: 16.0GB; Windows 11 64bit).

A. Invariant set defined by a non-polynomial function
Consider the nonlinear function

𝑝(𝑥) = exp

(
−
𝑥2

1
10

+
𝑥2

2
10

)
− 𝑥3, (12)

whose derivatives are given as follows:

𝜕1𝑝 = −𝑥1
5

exp

(
−
𝑥2

1
10

+
𝑥2

2
10

)
,

𝜕2𝑝 =
𝑥2
5

exp

(
−
𝑥2

1
10

+
𝑥2

2
10

)
,

𝜕3𝑝 = −1.

(13)

From (12) and (13), the following relations can be obtained:

𝜕1𝑝 − 𝑥1𝑥3
125

𝜕3𝑝 + 𝑥1
125

𝑝 =
1

125
[𝑥1 1 0 𝑥1𝑥3]B𝑝 = 0,

𝜕2𝑝 + 𝑥2𝑥3
125

𝜕3𝑝 − 𝑥2
125

𝑝 =
1

125
[𝑥2 0 1 𝑥2𝑥3]B𝑝 = 0,

(14)

where B = [1 𝜕1 𝜕2 𝜕3]>. For the vectors 𝑣 𝑗 ( 𝑗 = 0, . . . , 5)
obtained from (11) and (14), the basis of solutions 𝑤0 and
𝑤1 are computed using Risa/Asir as

𝑤0 =
1
5


0

(𝑥2
1 − 1)𝑥2

2 + (2𝑥1 − 5)𝑥2 + 5𝑥1
(𝑥2

1 − 1)𝑥2
2 − 2𝑥1𝑥2

−5𝑥1 (𝑥2 + 1) + 5𝑥2
5𝑥2


, 𝑤1 =


−5
−𝑥2

2
𝑥2

2
5𝑥2
0


.

Hence, each controller expressed as

𝛼(𝑥) = 1
5

[
0

(𝑥2
1 − 1)𝑥2

2 + (2𝑥1 − 5)𝑥2 + 5𝑥1

]
+ 𝛽(𝑥)

[
−5
−𝑥2

2

]
(15)

with 𝛽 ∈ 𝐶1 (𝑥) makes 𝑉 = {𝑥 ∈ R3 | 𝑝(𝑥) = 0} invariant.
To illustrate the effectiveness of the controller (15), nu-

merical simulations were conducted for the uncontrolled
system and two closed-loop systems with 𝛽(𝑥) = 0 and
𝛽(𝑥) = sin(10𝑥1)/3. The initial state is set to 𝑥0 = [1 1 1]>,
which satisfies 𝑝(𝑥0) = 0; thus 𝑥0 ∈ 𝑉 , and the time interval
is set to 𝑡 ∈ [0, 10]. Fig. 1 shows the state trajectories
obtained by the uncontrolled system and both the controllers.
Fig. 2 shows the input sequences generated by the controllers.
Unlike the uncontrolled trajectory, which immediately jumps
out of 𝑉 , the controlled trajectories remain within 𝑉 . This
is also confirmed by Figs. 3 and 4, which show the time
series of each axis {𝜑𝑥0 (𝑡)}𝑖 (𝑖 = 1, 2, 3) and 𝑝(𝜑𝑥0 (𝑡)).

The difference between the trajectories with 𝛽 = 0 and
𝛽 = sin(10𝑥1)/3 shows the effect of the choice of 𝛽(𝑥), which
indicates that this degree of freedom may be utilized for other
purposes, such as stabilization or energy minimization, while
maintaining the invariance of 𝑉 .

x 1

−2

0

2x2

−2
0

2

x
3

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Uncontrolled
Controlled with α1(x)

Controlled with α2(x)

Fig. 1: Comparison of state trajectories. Dotted curve is
uncontrolled trajectory, solid curve is controlled trajectory
with 𝛽 = 0, and dashed curve is controlled trajectory with
𝛽 = sin(10𝑥1)/3. Gray meshed surface depicts 𝑉 .

0 2 4 6 8 10
t

−5

0

5

α
i(
ϕ
x

0
(t

))
(i

=
1,

2)

α1 with β = 0
α2 with β = 0

α1 with β = sin(10x1)/3

α2 with β = sin(10x1)/3

Fig. 2: Input sequences generated by feedback controller
𝛼(𝑥) = [𝛼1 (𝑥) 𝛼2 (𝑥)]> for case V-A.

0 2 4 6 8 10
t

−2

0

2

p(ϕx0
(t)) {ϕx0

(t)}1 {ϕx0
(t)}2 {ϕx0

(t)}3

Fig. 3: Time series of 𝑝(𝑥) and each axis of 𝜑𝑥0 (𝑡) for trajec-
tory with 𝛽 = 0. Solid curve shows 𝑝(𝜑𝑥0 (𝑡)). Dotted, dash-
dotted, and dashed curves show 𝑥1-, 𝑥2-, and 𝑥3-components,
respectively.
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0 2 4 6 8 10
t

−2.5

0.0

2.5

p(ϕx0
(t)) {ϕx0

(t)}1 {ϕx0
(t)}2 {ϕx0

(t)}3

Fig. 4: Time series of 𝑝(𝑥) and each axis of 𝜑𝑥0 (𝑡) for tra-
jectory with 𝛽 = sin(10𝑥1)/3. Solid curve shows 𝑝(𝜑𝑥0 (𝑡)).
Dotted, dash-dotted, and dashed curves show 𝑥1-, 𝑥2-, and
𝑥3-components, respectively.

B. Invariant set not considered in literature [17]
Consider another nonlinear function

𝑝(𝑥) = log(𝑥2
1 + 𝑥2

2 + 1) −
𝑥2

3
4

− 1,

which includes a logarithm and does not belong to the class
of functions considered in [17] (see also Example 2). By
inspecting 𝑝(𝑥) and its derivatives, the algebraic relations
among them can be determined as follows:

(𝑥2
1 + 𝑥2

2 + 1)𝑥3𝜕1𝑝 + 4𝑥1𝜕3𝑝 = 0,
(𝑥2

1 + 𝑥2
2 + 1)𝑥3𝜕2𝑝 + 4𝑥2𝜕3𝑝 = 0.

These relations, combined with (11), lead to the following
family of controllers:

𝛼(𝑥) =
[
𝑥2

1 − 1
𝑥2 − 𝑥1

]
+ 𝛽(𝑥)

[
−(𝑥2

1 + 𝑥2
2 + 1)𝑥2

3
−4𝑥2

2

]
.

Note that the closed-loop system with 𝑢 = 𝛼(𝑥) satisfies
L 𝑓 +𝐺𝛼𝑝 = 0 for any 𝛽(𝑥) ∈ 𝐶1 (𝑥), which is a more
restrictive condition than (4). This is because, for logarithms,
𝑏𝑘 in Assumption 1 is always zero, which implies 𝛼𝑚+1 =

𝜆 = 0 in (10). Therefore, condition (10) is more restrictive
than the general condition (4) when logarithms are included
in 𝑝(𝑥) although it can be addressed by the proposed method.

Numerical simulations are also conducted for this case.
The initial state is set to 𝑥0 = [2 1

√︁
log(6) − 1]> such that

𝑝(𝑥0) = 0 and the time interval is set to 𝑡 ∈ [0, 10]. Two
closed-loop systems with 𝛽(𝑥) = 0 and 𝛽(𝑥) = 1/(𝑥2

3 + 100)
are considered. Fig. 5 shows the invariant set and the state
trajectories obtained by both the controllers, while Fig. 6
shows the input sequences. Moreover, Figs. 7 and 8 show
the time series for both the controllers. The trajectory with
𝛽 = 0 depicts a circle with a constant 𝑥3-coordinate, which
is also observed in Fig. 5. This is because when 𝛽 = 0,
the closed-loop system is reduced to a linear system: ¤𝑥1 =

𝑥2, ¤𝑥2 = −𝑥1, ¤𝑥3 = 0.

VI. Conclusion
This study proposes a controller synthesis method for poly-

nomial systems that provides a set of controllers to achieve
the invariance of a prescribed set. Compared with existing

x 1

−2

0

2x2

−2
0

2

x
3

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Controlled with α1(x)

Controlled with α2(x)

Fig. 5: Comparison of state trajectories. Solid curve is con-
trolled trajectory with 𝛽 = 0, and dashed curve is controlled
trajectory with 𝛽 = 1/(𝑥2

3+100). Gray meshed surface depicts
𝑉 .

0 2 4 6 8 10
t

−2.5

0.0

2.5

α
i(
ϕ
x

0
(t

))
(i

=
1,

2)

α1 with β = 0
α2 with β = 0

α1 with β = 1/(x2
3 + 100)

α2 with β = 1/(x2
3 + 100)

Fig. 6: Input sequences generated by 𝛼(𝑥) = [𝛼1 (𝑥) 𝛼2 (𝑥)]>
for case V-B.

0 2 4 6 8 10
t

−2

0

2

p(ϕx0
(t)) {ϕx0

(t)}1 {ϕx0
(t)}2 {ϕx0

(t)}3

Fig. 7: Time series of 𝑝(𝑥) and each axis of 𝜑𝑥0 (𝑡) for trajec-
tory with 𝛽 = 0. Solid curve shows 𝑝(𝜑𝑥0 (𝑡)). Dotted, dash-
dotted, and dashed curves show 𝑥1-, 𝑥2-, and 𝑥3-components,
respectively.

methods, the proposed method can handle the invariant sets
defined with a wider class of nonlinear functions, which are
defined by certain algebraic relations between the function
and its derivatives. The construction of controllers is per-
formed algorithmically using symbolic computations, except
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0 2 4 6 8 10
t

−2

0

2

p(ϕx0
(t)) {ϕx0

(t)}1 {ϕx0
(t)}2 {ϕx0

(t)}3

Fig. 8: Time series of 𝑝(𝑥) and each axis of 𝜑𝑥0 (𝑡) for tra-
jectory with 𝛽 = 1/(𝑥2

3 + 100). Solid curve shows 𝑝(𝜑𝑥0 (𝑡)).
Dotted, dash-dotted, and dashed curves show 𝑥1-, 𝑥2-, and
𝑥3-components, respectively.

for finding algebraic relations. For future work, invariant
sets defined by multiple nonlinear equations and inequalities
would be considered.
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