
Scalable Optimal Motion Planning for Multi-Agent
Systems by Cosserat Theory of Rods

Amirreza Fahim Golestaneh1, Member, IEEE, Maxwell Hammond1, and Venanzio Cichella1, Member, IEEE

Abstract—We address the motion planning problem for large

multi-agent systems, utilizing Cosserat rod theory to model the

dynamic behavior of vehicle formations. The problem is formu-

lated as an optimal control problem over partial differential

equations (PDEs) that describe the system as a continuum.

This approach ensures scalability with respect to the number of

vehicles, as the problem’s complexity remains unaffected by the

size of the formation. The numerical discretization of the gov-

erning equations and problem’s constraints is achieved through

Bernstein surface polynomials, facilitating the conversion of the

optimal control problem into a nonlinear programming (NLP)

problem. This NLP problem is subsequently solved using off-

the-shelf optimization software. We present several properties

and algorithms related to Bernstein surface polynomials to

support the selection of this methodology. Numerical demonstra-

tions underscore the efficacy of this mathematical framework.

Index Terms—Multi-agent system, Continuum mechanics,

Cosserat theory of rods, Bernstein surface polynomial.

I. INTRODUCTION

Multi-agent systems surpass the capabilities of single-
agent systems, providing essential advantages in various
fields including search and rescue, surveillance, and explo-
ration of hard-to-reach areas. Their impact extends across
numerous sectors, revolutionizing practices in logistics and
military operations. The significant promise of these systems
has sparked extensive research into their control [3], [7], [15],
[18]–[20]. Nevertheless, current control strategies for multi-
agent systems still have potential for improvement, especially
in addressing scalability issues.

Scalability stands as a critical challenge in multi-agent sys-
tems’ modeling and control, as issues like coordination and
communication escalate with the increase of agent numbers.
Given that the quantity of agents can vary dramatically based
on the task and environment, methods which are independent
of the number of necessary agents become extremely favor-
able. In recent literature, the use of PDE-based formulations
in trajectory generation and tracking control has facilitated
this independence by representing multi-agents as continu-
ums deforming in time. In particular, the diffusion equation
[15], Burgers’ equation [7], [14], hyperbolic PDEs [17],
parabolic distributed parameter systems [8], and principles
from continuum mechanics [13] are some examples of the
methods used to represent multi-agents in this way. Intu-
itively, the PDEs chosen to represent a multi-agent system

This work was supported by NASA and ONR.
1 The authors are with the Department of Mechanical

Engineering, University of Iowa, Iowa City, IA 52240
{amirreza-fahimgolestaneh, maxwell-hammond,
venanzio-cichella} @uiowa.edu

significantly impacts the behavior of the output from the path
planner or controller. Ideally, this choice will be applicable
to a wide range of agent dynamics while providing tools for
safe constraint enforcement of agent interactions. To this end,
the Cosserat theory of rods [1], [16] is of interest given its
flexibility. This model provides a mathematical framework
for describing the deformation of slender elastic rods, and it
is particularly noteworthy as it tracks position and orientation
along space and time. These variables are readily transferable
in meaning to multi-agent applications, describing position
and heading of vehicles, and their derivatives translate to
agent interactions along space, and vehicle dynamics in time.

In [10] the authors implemented optimal-control based
path planning algorithms for a soft robot modeled by Cosserat
rod theory. Bivariate Bernstein polynomials, also known as
Bernstein surfaces, were utilized as a numerical tool to
transform the problem into a nonlinear programming problem
(NLP) dependent on the Bernstein coefficients, which can be
solved with widely available optimization software [11], [12].
Within this context, the Bernstein basis provides numerically
stable convergence and several desirable properties for safe
constraint enforcement and obstacle avoidance, as demon-
strated in [12], where the Bernstein basis is used for path
planning of multiple vehicles, each modeled using ordinary
differential equations. In comparison to other polynomial
bases used in pseudospectral methods, such as Legendre and
Chebyshev, the Bernstein basis’s unique properties ensure
safety at any approximation order, enabling the potential
for near real-time low order solutions without compromising
constraint satisfaction [4], [6]. Building on these ideas, we
use Cosserat rods theory as the basis for our problem formu-
lation and similarly employ Bernstein surfaces for solutions
to the resulting problem. Cosserat rod theory, as opposed
to traditional ODE modeling, allows us to treat the multi-
agent system as a whole, overcoming scalability issues of
conventional planning strategies.

Our primary contribution is to demonstrate the applicabil-
ity of Cosserat theory in creating scalable motion planning
algorithms for large vehicle formations. Section II introduces
kinematics PDEs for multi-agent motion using Cosserat the-
ory, formulating motion planning and outlining constraints.
Section III discusses discretizing continuum-based motion
with Bernstein polynomials. Section IV presents numerical
results, and Section V summarizes key findings and implica-
tions.

IEEE Control Systems Letters paper presented at
2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

Copyright ©2024 IEEE

II. PROBLEM FORMULATION

A. Multi-agent system dynamics

In standard Cosserat theory of rods [1], the configuration
of the rod is determined by the position vector r(s, t) 2
R

3 of the centerline of the rod. The orientation of the rod
cross section is described by the rotation matrix R(s, t) 2
SO(3), where s 2 [0, sf] denotes the curve length of the
centerline of the undeformed (reference) rod and t 2 [0, tf]
represents time. The system of kinematic PDEs which defines
the deformation of a Cosserat rod is given as

rs(s, t) = R(s, t)l(s, t),

Rs(s, t) = R(s, t)h^(s, t),

rt(s, t) = R(s, t)v(s, t)

Rt(s, t) = R(s, t)!^(s, t)
(1)

where the operator (·)^ returns the skew-symmetric matrix
corresponding to a vector and subscripts s and t respec-
tively denote the spatial and temporal derivatives. In these
equations, the vectors l(s, t) = [⌫1, ⌫2, ⌫3]> and v(s, t) =
[v1, v2, v3]> represent the translational strain and velocity
vectors, respectively. Similarly, h(s, t) = [µ1, µ2, µ3]> and
!(s, t) = [!1,!2,!3]> are vectors denoting the bending
strain and angular velocity, respectively.

Central to this paper is the idea that the variables of the
Cosserat rod kinematics directly correspond to the pose of
individual agents within the multi-agent system. The desired
position for an agent at time t corresponds to a specific
point along the rod, denoted as r(si, t), where for equal
spacing between agents si = i · sf/nv , i = 1, . . . , nv ,
and nv represents the number of vehicles. Similarly, R(si, t)
returns the orientation of a given agent in the system, and
the temporal partial derivatives v(si, t) and !(si, t) give the
vehicles linear and angular velocity. Fig.1 provides a visual
representation of this concept. Notice, by choosing si as
above, the problem’s dependence on the number of vehicles
nv is removed, as increasing this parameter only changes
how an individual agent’s path is extracted from the solution.
Consequently, only the rod’s pose must be considered in
problem formulation. The dynamic equations on the left-
hand side of the kinematic system (1), which represent spatial
derivatives, are used to regulate interactions among vehicles
within a fleet. Further, the equations on the right-hand side
represent the dynamic constraints pertinent to each individual
vehicle.

A noteworthy aspect of employing Cosserat rod theory
in this context is the decoupling of temporal and spatial
dynamics. For instance, in scenarios involving vehicles with
more complex dynamic behavior, the standard system of
equations can be substituted with a more general form:

rs = Rl,

Rs = Rh^,

xt = f(x,u)

r = gr(x,u)

R = gR(x,u)

where f , gr and gR represent the nonlinear motion dynamics
specific to a given system, with x and u being some state
vector and control input. Likewise, for more complex multi-
agent configurations, the spatial derivative equations can

Fig. 1: Multi-agent motion.

also be adapted to embody more generalized interactions.
However, the focus of this paper will remain on the system
as described by (1), thereby illustrating the application of
Cosserat rod theory within the scope of multi-agent motion
planning.

B. Optimal motion planning
Here, the motion planning problem for the multi-agent

system is formulated as an optimal control problem over the
PDE system in (1). Subsequently, a detailed mathematical
framework is introduced to outline the objectives that the
motion planner is designed to fulfill.

1) Feasibility Constraints: Within the framework pro-
vided by (1), the motion planning algorithm is tasked with
generating trajectories for each vehicle that are dynamically
feasible. The designed trajectories must enforce specific
inter-vehicle constraints to ensure desired spacing. These
constraints include preventing the vehicles from approach-
ing too closely to one another or straying too far apart.
Such requirements are enforced through the application of
constraints on the variables of the Cosserat rod model. In
particular, we consider the following constraints:

⌫2min kl(s, t)k2 ⌫2max

kh(s, t)k2 µ2
max

kv(s, t)k2 v2max

k!(s, t)k2 !2
max

(2)

for all s 2 [0, sf], t 2 [0, tf], where the norm ||·|| denotes the
Euclidean norm. The constraints on the left-hand side of (2)
primarily address the inter-vehicle requirements by regulating
both the position and orientation (attitude) of each vehicle
with respect to its neighbour. For the sake of illustration,
consider again the case of equally spaced agents located at
si. The separation between neighboring agents at time t can
be constrained by evaluating the ratio r(si+1,t)�r(si,t)

si+1�si
. This

ratio effectively represents the strain. Transitioning to the
continuum case, this strain corresponds to l(s, t). Analogous
reasoning is applicable to the analysis of attitude dynamics.
Conversely, the constraints on the right-hand side are focused
on the individual dynamics of each vehicle, ensuring that
their speed and angular velocity profiles remain bounded.

2) Initial and Final Conditions: The motion planning
algorithm must incorporate initial constraints to ensure the
trajectory aligns with the agents’ initial positions and at-
titudes. Final constraints can be included if the terminal
pose needs to match a predefined spatial formation. These

conditions can be formulated on the Cosserat rod states as
follows:

IC(r(s, 0), R(s, 0), l(s, 0),h(s, 0),v(s, 0),!(s, 0)) = 0

FC(r(s, tf), R(s, tf),l(s, tf),h(s, tf),

v(s, tf),!(s, tf)) = 0. (3)

3) Obstacle Avoidance: Finally, obstacle avoidance con-
straints need to be formulated to ensure that the optimal
planned motion of the multi-agent system preserves a requi-
site safe distance from any obstacles within the operational
workspace. Specifically, any point r(s, t) needs to remain at
a distance greater than a specified safety margin, ✏, from any
point p on the boundary @P of an obstacle P ⇢ R

3. This is
formally represented as:

d(r(s, t),p) > ✏, 8s 2 [0, sf], 8t 2 [0, tf], 8p 2 @P (4)

where d(r(s, t),p) denotes the distance between r(s, t) and
the obstacle point p.

Finally, the motion planning problem for multi-agent sys-
tem can be formulated as follows:

Problem 1: Find sf , tf , r, R, l,h,v, and ! that minimize
Z sf

0

Z tf

0
`(r, R, l,h,v,!)dtds. (5)

subject to (1), (2), (3), and (4).
Here, the running cost function `() can be tailored to reflect

goals pertinent to the collective operation of the multi-agent
system. These objectives may vary, ranging from spatial
considerations—such as maintaining proximity—to temporal
goals, including minimizing travel time. If needed, the cost
can be modified to incorporate terminal costs. However, in
most cases of interest, the proposed formulation is general
enough.

III. BERNSTEIN SURFACE APPROXIMATION

In this section, we explore the application of bivariate
Bernstein polynomials as a numerical approximation tech-
nique for addressing the motion planning problem at hand.
By representing the variables of interest as Bernstein sur-
faces, Problem 1 is reformulated into a NLP, which can
be solved using off-the-shelf optimization software. This
approach was initially introduced in [10] for the motion
planning of soft robots. In this paper, we extend the concept
to develop a scalable algorithm for multi-agent systems
planning.

Recall that the desired position assigned to agent i at time
t is denoted as r(si, t). We let r(s, t), s 2 [0, sf], t 2 [0, tf]
be parameterized by an m⇥ n Bernstein surface defined as

r(s, t) =
mX

i=0

nX

j=0

r̄
m,n
i,j Bm

i (s)Bn
j (t). (6)

where r̄
m,n
i,j 2 R

3, i = 0, . . . ,m, j = 0, . . . , n are control
points and Bm

i (s) is the Bernstein polynomial basis over the
interval [0, sf],

Bm
i (s) =

✓
m

i

◆
si (sf � s)m�i

smf
, 0 i m,

where
�m
i

�
= m!

i!(m�i)! . Fig. 2 depicts an example of Bernstein
surface (orange) defined by its control points (red circles).
Similarly, consider the desired orientation assigned to the ith
agent at time t, which can be characterized by the Euler
angles (�(si, t), ✓(si, t), (si, t)). For the angle �(s, t), the
Bernstein surface is defined by:

�(s, t) =
mX

i=0

nX

j=0

�̄m,n
i,j Bm

i (s)Bn
j (t), (7)

where �̄m,n
i,j denotes the control points associated with the

surface. The angles ✓(s, t) and (s, t) are analogously
defined, utilizing their respective control points ✓̄m,n

i,j and
 ̄m,n
i,j , for i = 0, . . . ,m and j = 0, . . . , n. Similarly, the

variables l(s, t), h(s, t), v(s, t), and !(s, t) are characterized
by equivalent summations, employing their respective control
points, l̄m,n

i,j , h̄m,n
i,j , v̄m,n

i,j , and !̄m,n
i,j for i = 0, . . . ,m and

j = 0, . . . , n.
This parameterization allows the transcription of the mo-

tion planning problem for multivehicle systems into an
optimization problem utilizing the control points of the
aforementioned variables as the optimization variables:

Problem 2: Find sf , tf , r̄
m,n
i,j , �̄m,n

i,j , ✓̄m,n
i,j , ̄m,n

i,j , l̄
m,n
i,j ,

h̄
m,n
i,j , v̄

m,n
i,j and !̄m,n

i,j , i = 0, . . . ,m and j = 0, . . . , n, that
minimize

mX

i=0

ws,i

nX

j=0

wt,j
˜̀(r̄m,n

i,j , Rij , l̄
m,n
i,j , h̄

m,n
i,j , v̄

m,n
i,j , !̄m,n

i,j) (8)

subject to (1), (2), (3), and (4).
In (8), Rij is defined as Rij = R(�̄m,n

i,j , ✓̄m,n
i,j , ̄m,n

i,j). The
cost function is approximated using numerical integration
over the Bernstein polynomial basis, with the weights ws,i =
sf

m+1 and wt,i = tf
n+1 for all i = 0, . . . ,m, j = 0, . . . , n.

Next, we present algorithms and properties of Bernstein
surfaces that facilitate the approximation of the constraints.
These underscore the main advantages of employing this
particular approximation method over alternative approaches.

Property 1 (Arithmetic operations): Addition and sub-
traction between two Bernstein surfaces can be performed
directly through the addition and subtraction of their control
points. The control points of the Bernstein surface y(·, ·)
resulting from multiplication between two Bernstein surfaces,
g(·, ·) and h(·, ·) with control points ḡm,n

i,j and h̄a,b
k,l can be

obtained by

ȳm+a,n+b
e,f =

min(m,e)X

q=max(0,e�a)

min(n,f)X

r=max(0,f�b)

�m
q

��n
r

�� a
e�q

�� b
f�r

�
�m+a

e

��n+b
f

� ḡm,n
q,r h̄a,b

e�q,f�r

(9)

Property 2 (Derivatives): The partial derivatives of a
Bernstein surface can be calculated by multiplying a differen-
tiation matrix with the surface’s control points. For example,
consider the Bernstein surface representing the rotation of
the rod, (7), and let �̄m,n be the matrix of control points,

Fig. 2: Bernstein surface of order m = 5, n = 5. The red dots
represent control points, the orange dots represent points on
the surface, and the blue polygon is the convex hull.

Fig. 3: Bernstein surface from Fig. 2 after being degree
elevated to m = 10, n = 10.

i.e., {�̄m,n}i,j = �̄m,n
i,j . The partial derivatives @

@s�(s, t) and
@
@t�(s, t) are given by control points

�̄m,n
s = D

>
m�̄m,n, �̄m,n

t = �̄m,n
Dn, (10)

where Dm and Dn are square differentiation matrices, see
[12].

Using the two properties above, the dynamic constraints
(1) can be expressed as a system of algebraic equations. The
expressions in (2) can be represented by

||l(s, t)||2 =
2mX

i=0

2nX

j=0

l̄2m,2n
i,j B2m

i (s)B2n
j (t)

||v(s, t)||2 =
2mX

i=0

2nX

j=0

v̄2m,2n
i,j B2m

i (s)B2n
j (t)

||h(s, t) ||2 =
2mX

i=0

2nX

j=0

h̄2m,2n
i,j B2m

i (s)B2n
j (t)

||!(s, t) ||2 =
2mX

i=0

2nX

j=0

!̄2m,2n
i,j B2m

i (s)B2n
j (t)

(11)

where the coefficients l̄2m,2n
i,j , v̄2m,2n

i,j , h̄2m,2n
i,j , and !̄2m,2n

i,j
can be obtained from algebraic manipulation of the Bernstein
coefficients of l(s, t), v(s, t), h(s, t) and !(s, t).

To enforce the inequality constraints we use the convex
hull property of Bernstein surfaces.

Fig. 4: Bernstein surface from Fig. 2 being split along the
red line using the de Casteljau algorithm.

Property 3 (Convex Hull): A Bernstein surface lies within
the convex hull defined by its control points. For example,
the surface described in (11) satisfies:

min
i,j

v̄2m,2n
i,j ||v||2 max

i,j
v̄2m,2n
i,j (12)

where i = 0, . . . , 2m and j = 0, . . . , 2n.
This property can be used to impose boundary constraints by
directly applying them to the control points of the surface.
In fact, the dynamic limits in (2) can be imposed as follows

⌫2min l̄2m,2n
i,j ⌫2max, v̄2m,2n

i,j v2max,

h̄2m,2n
i,j µ2

max, !̄2m,2n
i,j !2

max,
(13)

for all i = 0, . . . , 2m, j = 0, . . . , 2n.
Remark 1: The convex hull that encloses the Bernstein

surface may be significantly larger that the surface itself,
leading to conservativeness when imposing bounds. To miti-
gate this conservativeness, degree elevation (see Fig. 3) and
the de Casteljau split (see Fig. 4) can be employed. These
are numerically stable methods that reduce the convex hull’s
dimensions, aligning it more closely with the actual surface.
For a detailed description on these techniques and their
application, the reader is directed to [12].

Regarding the boundary conditions, the endpoint value
property of Bernstein surfaces is relevant.

Property 4 (End point values): The terminal points of a
Bernstein surface coincide with their corresponding terminal
control points. For instance,

r(0, 0) = r̄
m,n
0,0 , r(0, tf) = r̄

m,n
0,n , r(sf , 0) = r̄

m,n
m,0 , (14)

Moreover, the surface’s edges can be represented by the
Bernstein polynomials of the edge’s control points. For
example,

r(s, 0) =
mX

i=0

r̄
m,n
i,0 Bm

i (s). (15)

Leveraging this property, the boundary conditions specified
in (3) can be expressed as functions of the control points
of the Bernstein surfaces corresponding to the variables of
interest.

To address obstacle avoidance constraints, the minimum
distance algorithm for Bernstein surfaces is utilized [2], [12].

Fig. 5: Case 1 - Optimal motion of agents from initial to
final configurations. The black straight line depicts the initial
formation of agents and the blue curve is a quarter of an
ellipse for final formation, independent of number of agents.
The colored curves depict the transitions of agents from their
initial to final formations.

This algorithm calculates the minimum distance between
a Bernstein surface and a convex shape, corresponding to
the left-hand side of (4). It integrates the Convex Hull
property, the Endpoint Values property, the de Casteljau
Algorithm, and the Gilbert-Johnson-Keerthi (GJK) algorithm
[9], combining these techniques to efficiently determine the
minimum separation distance. We direct the reader to [12]
for further discussion. The inputs to the algorithm are the
sets of Bernstein coefficients defining the Bernstein surface
representing the multi-agent system moving in time, i.e.,
r̄
m,n, and the vertices of a convex shape that must be avoided,

i.e., Q̄. The function provides the minimum distance between
the two objects as its result, i.e., mins,t d(r(s, t),p), where
d() was defined in (4).

By leveraging the properties of the Bernstein basis, Prob-
lem 2 can be solved as a NLP over Bernstein polynomial
coefficients. When optimal control problems are approxi-
mated into NLP using Bernstein polynomials, the solutions
to the NLP converge uniformly to the optimal solution of
the original control problem as the order of approxima-
tion increases [5]. Of course, increasing the order leads to
an increased computational cost. However, guarantees on
constraint satisfaction afforded by the unique properties of
the chosen basis offer a balance between computational
efficiency and optimality without compromising on safety.
By extension, the end user can determine an appropriate
order for their application. For example, when an efficient
solution is needed immediately to react to an unforeseen
obstacle, a low-order safe solution can be generated almost
instantly. Alternatively, a solution that closely approximates
the optimal one can be computed in advance for a mission.
The computational efficiency of this approach is furthered in
the context of this work by the independence of this approach
from the number of agents.

Fig. 6: Case 1 -Translational velocities comply with con-
straints.

Fig. 7: Case 1 - Angular velocities comply with constraints.

IV. NUMERICAL RESULTS

In this section we discuss two cases of multi-agent motions
with elliptical and helical final formations. The cost function
for these specified scenarios is defined as follows:

Z tf

0
{kr(0, t)� r~desk

2
2 + k✓(0, t)� ✓~

desk
2
2+

+kr(sf , t)� rfdesk
2
2 + k✓(sf , t)� ✓f

desk
2
2}dt. (16)

In this formulation, r(0, t) and r(sf , t) represent the positions
of two agents at the formation’s extremities, namely the
leaders, with analogous definitions for the angles ✓(0, t) and
✓(sf , t). The cost function’s goal is to ensure that these two
vehicles achieve convergence to the desired positions and
orientations, denoted by r~des, ✓~

des, rfdes and ✓f
des, in the

shortest possible time. The problem is approximated using
a Bernstein surface of order m = 6, n = 6, providing sat-
isfactory accuracy for our results. The optimization problem
is executed in MATLAB, using fmincon optimization. The
initial guess used to start the optimizer is a static point
surface with constant attitude. Given the constraints of the
problem, discussed below, this initial guess is unfeasible.
This demonstrates the capability of the approach to generate
feasible and near-optimal solutions even when the initial
guess is far from being ideal.

Table I presents two case studies, outlining data relevant to
each enforced constraint. In Case 1, the multi-agent system
transitions from a straight line formation to an elliptical
one, with the final formation representing a quarter of an
ellipse oriented in three-dimensional space. Details regarding
the ellipse’s center point, dimensions, and orientation are

Fig. 8: Case 2 - Optimal motion of agents from initial and
final configuration. The black straight line depicts the initial
formation of agents and the blue curve is a helix for final
formation, independent of number of agents. The colored
curves depict the transitions of agents from their initial to
final formations.

TABLE I: Case studies of motion planning.

Case 1 Case 2

Initial Formation: line

Xo = se3
s 2 [0, 0.24]m

Initial Formation: line

Xo = se3
s 2 [0, 0.24]m

Final Formation: Ellipse

Center: [0.1, 0.1, 0.1]T m
Semi-axis: 0.2, 0.1m
Axis 1: [0.53, 0.26, 0.80]T m
Axis 2: [0.45,�0.89, 0]T m
Parameterization: ✓ 2 [0,⇡/2]

Final Formation: Helix

Radius: 0.01m
Pitch: 0.02⇡m
Slope: ⇡/4 Rad

Obstacle: Sphere

Center: [0.11, 0.05, 0.16]T m
Radius: 0.03m

Obstacle: Sphere:

Center: [0.06, 0.05, 0.08]T m
Radius: 0.04m

⌫max = 2.25, ⌫min = 0.7
µmax = 1.55 Rad
vmax = 0.35 m/s
!max = 2.5 Rad/s

⌫max = 2.25, ⌫min = 0.7
µmax = 1.55 Rad
vmax = 0.35 m/s
!max = 2.5 Rad/s

specified in Table I. The output of Case 1 is summarized
in the Figs. 5-7. In Fig. 5 black lines represent the initial and
final formation of the agents, and the continuous manifold
between these lines is the optimal trajectory of the system
according to the scenario detailed in Table I. Figs. 6 and
7 represent the satisfaction of linear and angular velocity
constraints, respectively. In each Fig., the upper bound of
the relevant variable is shown as a plane over s 2 [0, sf] and
t 2 [0, tf], and the plotted surface demonstrates adherence to
this bound within the domain. Similar plots for constraints on
spatial partial derivatives are omitted for brevity. The output
of Case 2 is similarly represented in Fig. 8.

V. CONCLUSION

This paper presented a scalable, PDE-based motion plan-
ning framework for large multi-agent systems, utilizing the
Cosserat theory of rods. By employing Bernstein surface
polynomials for discretization, we transformed the continu-

ous problem into a solvable NLP, demonstrating the efficacy
of our approach through numerical results. Future research
will explore alternative continuum mechanics models tailored
to specific operational formations. For instance, while the
Cosserat rod model excels in planning for vehicles flying in
1D formation, two-dimensional formations may benefit from
an extended Cosserat rod model or a Cosserat shell approach.

REFERENCES

[1] Stuart S. Antman. Nonlinear Problems of Elasticity. Springer, 2005.
[2] Jung-Woo Chang, Yi-King Choi, Myung-Soo Kim, and Wenping

Wang. Computation of the minimum distance between two bézier
curves/surfaces. Computers & Graphics, 35(3):677–684, 2011.

[3] Jongeun Choi, Songhwai Oh, and Roberto Horowitz. Distributed
learning and cooperative control for multi-agent systems. Automatica,
45(12):2802–2814, 2009.

[4] Venanzio Cichella, Isaac Kaminer, Claire Walton, and Naira Hov-
akimyan. Optimal motion planning for differentially flat systems using
bernstein approximation. IEEE Control Systems Letters, 2(1):181–186,
2017.

[5] Venanzio Cichella, Isaac Kaminer, Claire Walton, Naira Hovakimyan,
and António M Pascoal. Consistent approximation of optimal control
problems using bernstein polynomials. In 2019 IEEE 58th Conference
on Decision and Control (CDC), pages 4292–4297. IEEE, 2019.

[6] Venanzio Cichella, Isaac Kaminer, Claire Walton, Naira Hovakimyan,
and Antonio M Pascoal. Optimal multivehicle motion planning using
bernstein approximants. IEEE transactions on automatic control,
66(4):1453–1467, 2020.

[7] G. Freudenthaler and T. Meurer. Pde-based tracking control for multi-
agent deployment**financial support by the german research council
(dfg) in the project me 3231/2-1 is gratefully acknowledged. IFAC-
PapersOnLine, 49(18):582–587, 2016. 10th IFAC Symposium on
Nonlinear Control Systems NOLCOS 2016.

[8] Gerhard Freudenthaler and Thomas Meurer. Pde-based multi-agent
formation control using flatness and backstepping: Analysis, design
and robot experiments. Automatica, 115:108897, 2020.

[9] Elmer G Gilbert, Daniel W Johnson, and S Sathiya Keerthi. A fast
procedure for computing the distance between complex objects in
three-dimensional space. IEEE Journal on Robotics and Automation,
4(2):193–203, 1988.

[10] Maxwell Hammond, Venanzio Cichella, Amirreza F Golestaneh, and
Caterina Lamuta. Path planning for continuum rods using bernstein
surfaces. arXiv preprint arXiv:2312.12333, 2023.

[11] Calvin Kielas-Jensen and Venanzio Cichella. Bebot: Bernstein polyno-
mial toolkit for trajectory generation. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3288–
3293. IEEE, 2019.

[12] Calvin Kielas-Jensen, Venanzio Cichella, Thomas Berry, Isaac
Kaminer, Claire Walton, and Antonio Pascoal. Bernstein polynomial-
based method for solving optimal trajectory generation problems.
Sensors, 22(5):1869, 2022.

[13] Bruce J. MacLennan. Continuum mechanics for coordinating massive
microrobot swarms: Self-assembly through artificial morphogenesis.
2019.

[14] Thomas Meurer and Miroslav Krstic. Finite-time multi-agent de-
ployment: A nonlinear pde motion planning approach. Automatica,
47(11):2534–2542, 2011.

[15] Jie Qi, Rafael Vazquez, and Miroslav Krstic. Multi-agent deployment
in 3-d via pde control. IEEE Transactions on Automatic Control,
60(4):891–906, 2015.

[16] Miles Barton Rubin. Cosserat Theories: Shells, Rods and Points. 0925-
0042. Springer Dordrecht, 1 edition, 2000.

[17] Anton Selivanov and Emilia Fridman. Pde-based deployment of
multiagents measuring relative position to one neighbor. IEEE Control
Systems Letters, 6:1–1, 04 2022.

[18] Jin-Liang Wang and Huai-Ning Wu. Leader-following formation
control of multi-agent systems under fixed and switching topologies.
International Journal of Control, 85(6):695–705, 2012.

[19] Feng Xiao, Long Wang, Jie Chen, and Yanping Gao. Finite-time
formation control for multi-agent systems. Automatica, 45(11):2605–
2611, 2009.

[20] Ping Xuan and Victor Lesser. Multi-agent policies: From centralized
ones to decentralized ones. pages 1098–1105, 01 2002.

