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Abstract— The Performance Estimation Problem (PEP) ap-
proach consists in computing worst-case performance bounds
on optimization algorithms by solving an optimization problem:
one maximizes an error criterion over all initial conditions
allowed and all functions in a given class of interest. The
maximal value is then a worst-case bound, and the maximizer
provides an example reaching that worst case. This approach
was introduced for optimization algorithms but could in prin-
ciple be applied to many other contexts involving worst-case
bounds. The key challenge is the representation of infinite-
dimensional objects involved in these optimization problems
such as functions, and complex or non-convex objects as
linear operators and their powers, networks in decentralized
optimization etc. This challenge can be resolved by interpolation
constraints, which allow representing the effect of these objects
on vectors of interest, rather than the whole object, leading
to tractable finite dimensional problems. We review several
recent interpolation results and their implications in obtaining
of worst-case bounds via PEP.

I. INTRODUCTION

A. Worst-case bounds

A classical way of characterizing the efficiency of op-
timization is through the derivation of worst-case bounds:
guarantees on the evolution of a quantity of interest valid for
all functions in a given class F . As a pedagogical example,
consider the gradient descent algorithm with a constant step-
size α > 0

xi+1 = xi − α∇f(xi), i = 0, . . . , N − 1, (1)

and let FL be the set of L-smooth convex functions defined
on Rd, i.e. functions for which for all x, y there holds{

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ∀λ ∈ [0, 1],

||∇f(x)−∇f(y)|| ≤ L||x− y||.
(2)

One can prove, e.g. from [1, Theorem 2.1.13], that for every
function f ∈ FL, every N and every 0 ≤ α ≤ 2

L there holds

f(xN )− f(x∗) ≤ 2L||x0 − x∗||2

4 +NLα(2− Lα)
. (3)

Such bounds can be used not only for the intrinsic guarantees
they provide, but also to compare the performances of
algorithms, and tune their parameters, e.g. α in (1). One
would indeed assume that an algorithm with a better bound is
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more efficient, and typically select the algorithm parameters
leading to the best bound. However, this seemingly intuitive
approach may lead to sub-optimal or misguided choices
when the bounds are too conservative: an algorithm with
a stronger bound is not necessarily more efficient, and may
just be more amenable to the analysis technique that was
used. Similarly, the parameters minimizing the bound do
not necessarily optimize the actual performance, and may
just be those for which the proof technique introduces the
smallest amount of conservatism. Far from being theoretical
possibilities, these phenomena have been observed even in
very simple settings. Fig. 1 compares the bound (3) with
the exact worst-case bound in this setting, obtained via the
method described in Section II. One can see that the classical
bound (3) is minimized by α = L−1, while the actual
performance is minimized by α ≈ 1.834L−1 [2]. This step-
size improves the bound by a factor 2 compared to α = L−1,
and can be shown to actually divide the number of iterations
required to achieve a given accuracy by 2. Moreover, this
phenomenon is accentuated as N increases: the optimal step-
sizes approach 2L−1, a range of values that would seem
absurd based on the theoretical bound [2].
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Fig. 1: Evolution with the adimensional step-size h = Lα of
two worst-case guarantees on f(xN )− f(x∗) for L-smooth
convex functions f , where the number of iterations N is
set to 10. The plot shows (i) the theoretical bound (3) and
(ii) the exact bound for this setting. This tight bound allows
improving the step-size selection, since the choice h = 1
minimizing the bound (3) requires doubling the number of
steps to obtain the same performance as the true optimal step-
size. This highlights the benefits of relying on tight bounds
for parameter selection and algorithm comparisons.
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This demonstrates the importance of bounds that are
tight, or as tight as possible, to not only understand the
performances of algorithms but also to compare them on
a sound base in order to select or tune them, and to guide
further progress in algorithmic development.

B. Sources of Conservatism

At an abstract level, almost all proofs of worst-case bounds
consist in (i) translating conceptual assumptions on the
function classes into algebraic relations between quantities
playing a role in the algorithm, often the iterates xi and
the gradient ∇f(xi) and/or function values f(xi) at these
iterates, and (ii) combining these relations with the algorithm
description to obtain a bound on a quantity of interest, see
e.g. [1]. Conservatism can then come from two possible
sources: an insufficiently effective translation of the concep-
tual assumptions, and/or a sub-optimal combination of the
algebraic relations obtained with the algorithm description.

We defer the discussion of the second aspect to Section II
and focus here on the first one, coming back to our example
set FL of convex L-smooth functions defined in (2). Due
to the use of quantifier ∀λ, (2) cannot be easily directly
manipulated for finite set of points. However, an equivalent
definition of FL, involving only easily discretizable con-
straints is the following [1]:{

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩
||∇f(x)−∇f(y)|| ≤ L||x− y||

∀x, y. (4)

An alternative definition, if less intuitive one, is

f(x) ≥ f(y)+⟨∇f(y), x−y⟩+ 1

2L
||∇f(x)−∇f(y)||2, (5)

∀x, y. One can show that constraints (4) and (5) are both
completely equivalent to the definition (2) of FL when they
are imposed for every couple (x, y) ∈ Rd [1]. However, most
proofs will involve a finite number of equations, meaning
that the constraints would be imposed on a finite number
of pairs (x, y), corresponding typically to the iterates of the
algorithm and to remarkable points of the functions. And the
equivalence between the constraints no longer holds when
they are imposed on only a finite number of pairs: Constraint
(4) is indeed weaker than (5), and sometimes significantly
weaker as demonstrated in Fig. 2. Consequently, for most
problems, the best bound that can be obtained using (4)
will be weaker than that obtainable from (5), as further
illustrated in Fig. 3: one can observe that the tightest bound
obtained based on constraint (4) is minimized by a step-
size of α ≈ 0.694L−1, which yields an even worse actual
performance than the classical choice of α = L−1, and that
the bound explodes as α approaches 2L−1. In other words,
relying on (4) to derive performance guarantees directly
introduces more conservatism than using (5).

C. Interpolation Constraints

The simple example in Section I-B highlights the impor-
tance of working with algebraic characterizations of func-
tions classes that introduce the smallest amount of conser-
vatism, or none at all if possible. This is in fact the case of
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Fig. 2: Comparison between the admissible values for f2
and g2 under respectively the discretized versions of (4) (in
grey) and (5) (in black), assuming x2 = 0, x1 = 1, g1 =
1, f1 = 0. This shows that, despite the equivalence between
these constraints when imposed on all pairs (x, y), (4) is
significantly weaker than (5). In particular, the points in the
grey (but not black) area do not correspond to any actual
function f ∈ FL.
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Fig. 3: Evolution with the adimensional step-size h = Lα
of three worst-case guarantees on f(x10) − f(x∗) for L-
smooth convex functions f . The plot shows (i) the theoretical
bound (3), (ii) the best possible bound (i.e. PEP-based, see
Section II), relying on the non-tight representation of FL (4)
(see Section III), and (iii) the tight worst-case bound, i.e.
the best possible bound relying on interpolation constraints
(5). As already observed in Fig. 1, one can see that the
step-sizes minimizing non-tight bounds lead to poorer actual
performances, even if the bound is PEP-based, that is the
best possible bound given a class representation, when the
representation is non-tight. This highlights the necessity of
relying on tight descriptions of classes to efficiently tune
methods.
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(5): it has been shown that for any arbitrary set of N triples
{(xi, gi, fi)}i∈I satisfying its discretized version

fj ≥ fi + ⟨gi, xi − xj⟩+
1

2L
||gi − gj ||2 ∀i, j, (6)

there exists an actual function f ∈ FL such that f(xi) = fi
and ∇f(xi) = gi for every i. Replacing the assumption f ∈
FL by (6) being satisfied for all pairs of points appearing
in the problem does not introduce any conservatism, since
there is always a function in FL that would correspond to
these values. We say that such a function interpolates the
{(xi, gi, fi)} and that (6) is an interpolation constraint since
it guarantees the existence of an interpolating function. By
contrast, the weaker constraint (4) is not an interpolation
constraint for FL, as sets of triples {(xi, gi, fi)} satisfying it
do not necessarily correspond to an actual function f ∈ FL,
see Fig. 2. Hence any bound established using (4) is valid
for a class of unspecified “objects" larger than the functions
in FL and will thus in most cases be conservative for FL.

D. Paper Organization

In this tutorial paper we will first describe how interpola-
tion constraints can be used to automatically compute worst-
case bounds in Section II, and then review interpolation
constraints for several classes of objects: functions and
general operators in Section III, linear operators in Section
IV, and doubly-stochastic matrices related to networks in
decentralized optimization in Section V.

II. AUTOMATIC COMPUTATION OF
WORST-CASE BOUNDS

We come back to the second sources of conservatism
identified in Section I-B, i.e. the combination of algebraic
translations of the conceptual assumptions and the algorithm
description to obtain a bound. Combining such algebraic
relations efficiently could in principle be solved by skilled
manipulations, but finding the best way of manipulating
them can in many cases be very challenging. Fortunately,
this process can be automated, thanks among others to the
Performance Estimation Problem (PEP) approach, which was
the initial motivation for the formalization of the notion of
interpolation constraints in this context [2]–[5] and which
we will demonstrate here on our pedagogical example of the
gradient descent algorithm (1).

Suppose we want to obtain the best possible bound of
the form (3). The idea of PEP is to compute the maximal
value of f(xN )− f(x∗) over all possible functions f ∈ FL

and starting points x0 for which ||x0 − x∗||2 ≤ 1 (We can
then obtain a bound proportional to ||x0 − x∗||2 using a
simple scaling argument). This a priori infinite-dimensional
problem can be re-expressed in a finite manner: rather
than considering the function f as a whole, we will only
consider a discrete set {(xi, gi, fi)}i∈I={0,...,N,∗} of iterates
and optimal point xi together with their gradient-vectors gi
and function values fi, under the constraint that the set is
consistent with an actual function f ∈ FL, i.e. that there
exists a function f ∈ FL interpolating it. The optimality of

x∗ and the fact that the iterates are obtained by the algorithm
(3) can then also be expressed as constraints. The PEP takes
thus the form:

max
{(xi,gi,fi)}i∈I

fN − f∗ (7)

s.t.
algorithm: xi+1 = xi − αgi for i = 0, . . . , N − 1.

optimality: g∗ = 0

initial cond.: ||x0 − x∗||2 ≤ 1

consistency of {(xi, gi, fi)}i∈I with some f ∈ FL.

The optimum of this problem gives by definition a tight
worst-case performance bound for the gradient descent with
L-smooth convex functions. Moreover, the optimal solution
corresponds to an instance of function and initial condi-
tion actually reaching this upper bound, which can provide
very relevant information on the bottlenecks faced by the
algorithm. In many cases, these worst-case instances have
actually a surprisingly simple structure [3].

In (7), the consistency of {(xi, gi, fi)}i∈I with some f ∈
FL is implicit, but can be directly replaced by an interpola-
tion constraint when one is available, as (6) in the case of FL.
When no interpolation constraint is known, one can always
relax the consistency constraint into a necessary constraint
for interpolability, as e.g. (4). The solution to the problem
obtained will then be a valid worst-case upper bound, and
in fact the best upper bound that could possibly be obtained
using the necessary constraint used, but in general not a tight
one, as illustrated in Fig. 3.

Observe that in both the cases of (6) and (4), the re-
sulting problem is quadratic and potentially non-convex in
the iterates and gradients vectors, but it is linear in the
scalar products of these and in the function values. Hence,
letting the matrix of these scalar products and the vector of
function values be the decision variables of the PEP, one can
reformulate it as a semi-definite program (SDP) and solve it
efficiently, see e.g. [2, Section 3.2] for more details. We refer
to any constraint linear in these scalar products and function
values as PEP-representable.

The PEP framework allows computing the exact per-
formance of a wide range of first-order methods on var-
ious classes of functions and objects for which PEP-
representable interpolation constraints are known. In partic-
ular, any method, whether implicit or explicit, consisting
in (sub)gradient queries, linear operators, and with PEP-
representable constraints can be straightforwardly analyzed.
This includes e.g the gradient method, the proximal gradient
method [6], the coordinate descent [7], inexact gradient
methods [8], Bregman gradient methods [9], variational
problems and splitting methods [10], [11], and their combi-
nations. In general, the analysis requires pre-determined step-
sizes, possibly time-varying but independent of the function
values or gradients. But some efforts have also been made
in adaptive first-order methods [12], [13]. The formulation
and resolution of Performance Estimation Problems is im-

3017



plemented in Matlab and Python toolboxes: PESTO [14] and
PEPit [15]. These toolboxes allow for a simple and human
readable description of the algorithms and objects, close to
their mathematical expression.

Note that interpolation constraints are also used to ob-
tain tight automated convergence guarantees via another
approach, relying on tools from robust control [16]–[18].
The idea is to automatically derive a quadratic Lyapunov
function that serves as certificate for the linear convergence
of various first-order methods, by analyzing a single step of
the method. Provided that the method is analysed over a class
of functions for which interpolation constraints are available,
the Lyapunov function obtained is tight in the sense that it
guarantees the best decrease rate possible for any single (or
fixed number of) iteration of the algorithm and for a quadratic
Lyapunov function. Compared to the PEP framework, one of
the assets of this approach is its tractability, since the SDP to
solve is of small size. One the other hand, it cannot deal with
time-varying steps or sublinear rates, and the PEP framework
can achieve better rates by analyzing several steps.

III. FUNCTIONS AND OPERATORS INTERPOLATION

In this section, we review the functions classes F for
which the following question has been answered: what
necessary and sufficient constraints, i.e. interpolation con-
straints, must a set of data (points, functions values and
(sub)gradients) satisfy to ensure its F-interpolability:

Definition 1 (F-interpolability): Let I be a finite set of
indices. A set of triples {(xi, gi, fi)}i∈I is F-interpolable if

∃F ∈ F :

{
fi = F (xi)

gi = ∇F (xi)
∀i ∈ I.

The concept of interpolation constraint applied to opti-
mization was introduced in [2], to tightly analyze first-order
methods on the class of smooth strongly convex functions
Fµ,L, classically defined by:{
f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ µ

2 ||x− y||2

||∇f(x)−∇f(y)|| ≤ L||x− y||
∀x, y. (8)

When µ = 0, definition (8) amounts to definition (4) of FL.
Separately, the discretized versions of the two constraints
in (8) are interpolation constraints: for instance, a data set
{(xi, gi, fi)}i∈I is interpolable by a strongly convex function
if and only if it satisfies

fi ≥ fj + ⟨gj , xi − xj⟩+
µ

2
||xi − xj ||2 ∀i, j ∈ I.

However, it can be shown that the juxtaposition of these
two interpolation constraints, i.e. the discretized version of
Definition (8), is not tight, while an interpolation constraint
for Fµ,L is given by :

Theorem 1 (Fµ,L-interpolation constraint [2], [19]): A
set of triples {(xi, gi, fi)}i∈I is Fµ,L-interpolable if

fi ≥ fj + ⟨gj , xi − xj⟩+
||gi − gj ||2

2(L− µ)

+
µL||xi − xj ||2

2(L− µ)
− µ

L− µ
⟨gi − gj , xi − xj⟩ ∀i, j,

when µ ̸= L, and

fi ≥ fj +
1

2
⟨gi + gj , xi − xj⟩

+
||gi − gj − L(xi − xj)||2

L
∀i, j,

otherwise.
Hence, an analysis relying on these interpolation constraints
is a priori tighter than any analysis relying on different
definitions of this function class, as shown in Fig. 3 for
µ = 0. It was later shown in [20] that this result also holds
for negative values of µ as well, that is for smooth weakly
convex functions, i.e. convex up to the addition of a quadratic
term. Interpolation constraints for Fµ,L that do not explicitly
imply function values, in case one would not want to use
these as variables, also exist, based on Rockafellar’s cyclic
monotonicity conditions [3], [21]:

Theorem 2 (Fµ,L-interpolation without function values):
A set of pairs {(xi, gi)}i∈I is Fµ,L-interpolable, in the
sense that ∃F ∈ Fµ,L : gi = ∇F (xi) ∀i ∈ I , if for any
cyclic sequence (xi1 , gi1), . . . , (xiN , giN ), (xi1 , gi1),

N∑
k=1

⟨gik , xik − xik+1
⟩ −

⟨gik , gik − gik+1
⟩

L

− µ⟨xik , xik − xik+1
⟩ −

µ⟨xik , gik − gik+1
⟩

L
≥ 0.

However, checking these constraints rapidly becomes in-
tractable when the data set size increases, so that when
possible, introducing function values as variables is more
efficient.

In [2], interpolation constraints are also given for smooth
functions with bounded subgradient CL,M and strongly con-
vex functions with bounded domain Sµ,D. While, in general,
the juxtaposition of two interpolation constraints does not
remain an interpolation constraint, it is the case in these
particular cases:

Theorem 3 (CL,M -interpolation constraints [3]): A set of
triples {(xi, gi, fi)}i∈I is CL,M -interpolable if{

fi ≤ fj + ⟨gj , xi − xj⟩+ L
2 ||xi − xj ||2

||gi|| ≤ M.

On the other hand, one can show that this property does
not hold anymore for the class of weakly convex functions
with bounded subgradient, for which the juxtaposition of the
two constraints is not interpolable [19]. Finally, interpolation
constraints are also available for indicator functions [3]:

iC(x) =

{
0 if x ∈ C

1 otherwise.

for C a closed convex set. Let IM be the class of indicator
functions bounded in radius by some M, i.e. ||x|| ≤ M ∀x ∈
C. These functions are of especially high importance for pro-
jections in constrained optimization, and their interpolation
constraints are given by:
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Theorem 4 (IM -interpolation constraints [3]): A set of
triples {(xi, gi, fi)}i∈I is IM -interpolable if

fi = 0

⟨gj , xi − xj⟩ ≤ 0

||xi|| ≤ M.

Aside from these interpolation constraints for function
classes, we can adapt Definition 1 to consider operator
classes Q. In this work, we focus on real operators which
are defined as multi-dimensional mappings Q : Rd → Rm.

Definition 2 (Q-interpolability): Let I be a finite set of
indices. A set of pairs {(xi, qi)}i∈I is Q-interpolable if

∃Q ∈ Q : qi = Q(xi) ∀i ∈ I.
Note that operator interpolation can be viewed as zero-
th order function interpolation for multi-valued functions.
Moreover, the concept of interpolation without function val-
ues, e.g Theorem 2, can be seen as operator interpolation for
a subclass of operators, coherent as gradients of a function.
Interpolation constraints exist for (strongly) monotone Mµ,
cocoercive Cβ and Lipschitz operators NL[10], [22], [23]:

Theorem 5 ( Mµ, Cβ , NL-interpolation [10]): A set of
pairs {(xi, qi)}i∈I is

Mµ-interpolable if ∀i, j, ⟨qi − qj , xi − xj⟩ ≥ µ||xi − xj ||2,

Cβ-interpolable if ∀i, j, ⟨qi − qj , xi − xj⟩ ≥ β||qi − qj ||2,

NL-interpolable if ∀i, j, ||qi − qj || ≤ L||xi − xj ||.
However, no interpolation result is known for operators
combining several of these properties.

As explained in Section II, combining the PEP frame-
work with any of these interpolation constraints, when PEP-
representable (i.e. linear in the function values and scalar
products of points and (sub)gradients), allows tightly analyz-
ing a wide variety of first-order methods on these function
and operator classes. Even when interpolation constraints
are not PEP-representable, involving e.g. absolute values
or exponentials, it holds that any theoretical analysis based
on them will be a priori tighter than an analysis based on
non interpolable constraints, which explains why deriving
interpolation constraints has an interest far beyond the PEP
framework.

IV. LINEAR OPERATOR INTERPOLATION

A. Motivations

Many optimization problems involve a particular subclass
of operators that has not yet been described in Section III,
that is linear operators Q(x) = Mx. These problems, includ-
ing a large number of classical optimization problems as total
variation deblurring, basis pursuit, resource allocation, etc.,
contain the linear operator in their objective function, e.g.,

min
x

f(x) + h(Mx),

or in their constraints

min
x

f(x) s.t. Mx = b,

possibly with more terms in the objective function or con-
straint (e.g. f(x)+ g(M1x)+h(M2x) or M1x+M2y = b).

Consequently, many methods have been designed to solve
such structured problems, e.g. Chambolle-Pock method [24],
primal-dual fixed point method [25] or alternating direction
method of multipliers [26]. They typically combine gradient
and linear operator queries. Therefore, tightly analyzing these
methods in PEP requires obtaining interpolation constraints
representing a linear operator or, more precisely, representing
its effect.

In this section, we consider finite-dimensional linear op-
erators, i.e. matrices. The matrices considered are not nec-
essarily symmetric and have their maximal singular value
bounded by some L ≥ 0. In other words, we work with the
following set of linear operators:

LL = {M : σmax(M) ≤ L}.

B. Interpolation Constraints for Linear Operators

To allow tightly analyzing methods involving linear oper-
ators, we now explain how to represent the application of a
linear operator in PEP.

Let us consider a function F (x) = h(Mx), where
h ∈ F , and its (sub)-gradient ∇F (xi) = MT∇h(Mxi) at
xi. Introducing intermediate variables yi, ui and vi allows
decomposing the gradient as

yi = Mxi,

ui = ∇h(yi),

vi = MTui = ∇F (xi).

If interpolation constraints are known for F , the existence
of some h ∈ F such that ui = ∇h(yi) is guaranteed by im-
posing the corresponding interpolation constraints on the set
{(yi, ui)}i∈I , involving potentially unused function values
hi if necessary, see Section III for more details. To impose
constraints yi = Mxi and vi = MTui, one could consider
M as a variable of the PEP and try to impose conditions
on its singular values. However, the problem would then
become non convex since involving the multiplication of
variables. We rather take the view of interpolation constraints
for operators and impose convex constraints on the sets
{(xi, yi)} and {(ui, vi)}, guaranteeing the existence of a
matrix M ∈ LL interpolating them.

Definition 3 (LL-interpolability): Let I = {1, . . . , N} a
set of indices. Sets of pairs {(xi, yi)}i∈I and {(ui, vi)}i∈I

are LL-interpolable if

∃M ∈ LL :

{
yi = Mxi, ∀i ∈ I,

vi = MTui, ∀i ∈ I.
In [27], interpolation constraints for the class LL are derived:

Theorem 6 (LL-interpolation constraints): Sets of pairs
{(xi, yi)}i∈I and {(ui, vi)}i∈I are LL-interpolable if

XTV = Y TU,

Y TY ⪯ L2XTX,

V TV ⪯ L2UTU,
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where X = (x1 . . . xN ), Y = (y1 . . . yN ), U =
(u1 . . . uN ) and V = (v1 . . . vN ).

Observe that these constraints are convex semidefinite
constraints on the scalar products of the points and therefore
PEP-representable. They can hence be used to analyze worst-
case performance of any method involving linear operators
via PEP. In [27], the authors exploit this result to analyze,
e.g., the Chambolle-Pock method [24] or the gradient method
on a structured function h(Mx), where h ∈ F and F is a
function class for which interpolation constraints are known.
Note that Theorem 6 can be extended to symmetric linear
operators with bounded eigenvalues, see [27].

V. NETWORK MATRICES INTERPOLATION

In this section, we focus on the interpolation of a specific
set of finite-dimensional linear operators: the set of sym-
metric doubly-stochastic matrices, which have a given range
of eigenvalues. These matrices are often used to represent
consensus steps over a network of agents, which are a
building block of most distributed optimization methods.
Therefore, having such interpolation constraints allows build-
ing a PEP computing worst-case guarantees for distributed
optimization algorithms. The main difference with the set
of linear operator LL characterized in Section IV is the
stochasticity of the matrix, required for having an averaging
consensus.

A. Distributed Optimization

Distributed optimization methods aim at minimizing the
average of local functions that are distributed across a
network of agents {1, . . . , V }. They are used, for example, in
large-scale machine learning or sensor networks for various
reasons, including data privacy, easy scaling to large size
problems, robustness to failure and possible speed up. For-
mally, the goal of decentralized optimization algorithms is
to collaboratively solve the following optimization problem:

minimize
x ∈ Rd

f(x) =
1

V

V∑
a=1

fa(x),

where fa : Rd → R is the private function locally held
by agent a. Each agent a holds its own version xa ∈ Rd

of the decision variable x, performs local computations and
exchanges local information with its neighbors to come to
an agreement on the minimizer x∗ of the global function f .
In this work, we focus on decentralized algorithms where
the exchanges of information take the form of an average
consensus on some quantity, e.g., on the xa. One of the
first and simplest algorithm of this form is the distributed
gradient descent (DGD) [28], [29] for which iteration i can
be described as

ya,i =

V∑
b=1

wab xb,i, for a = 1, . . . , V. (9)

xa,i+1 = ya,i − αi∇fa(xa,i), for a = 1, . . . , V.

The vectors ya,i ∈ Rd represent the result of the consensus
step. The matrix W ∈ RV×V contains all the averaging

weights wab and is called the network or averaging matrix.
Consensus step (9) can be written as a matrix multiplication
where the variables of all the agents are stacked in single
columns xi,yi ∈ RV d:

yi = (W ⊗ Id)xi, with yi =

y1,i...
yV,i

 and xi =

x1,i

...
xV,i

 ,

where ⊗ denotes the Kronecker product and Id the identity
matrix of size d. This corresponds to applying a linear
operator with a particular matrix shape and properties. In
what follows, we consider the following set of network
matrices, for a fixed number of agents V > 1 and a fixed
bound λ ∈ [0, 1) on the non-principal eigenvalues:

Wλ =

{
W ∈ RV×V :

W is symmetric and λ1(W ) = 1,
−λ ≤ λV (W ) ≤ · · · ≤ λ2(W ) ≤ λ

}
.

The performance guarantees from the literature, see [29] for
a survey, usually add a non-negativity assumption for the
network matrices, by qualifying them as doubly-stochastic,
but these guarantees are in fact often valid for all the matrices
from the set Wλ. Representing Wλ in PEP through inter-
polation constraints is therefore important to obtain general
and comparable bounds for DGD or any other decentralized
algorithm involving consensus steps.

B. Interpolation Constraints for Consensus Steps

We now present interpolation constraints to describe the
effect of consensus steps with an averaging matrix from Wλ.
This allows to formulate the performance estimation problem
for any decentralized algorithm using averaging consensuses.
To analyze such algorithms with the PEP framework, we
need to find the worst-case for the local function and the
sequence of local iterates of each agent. The same techniques
as in Section II can be applied to discretize the problem, us-
ing proper interpolation constraints on each local function. In
this section, we focus on the representation of the consensus
steps that are part of these algorithms:

yi = (W ⊗ Id)xi with W ∈ Wλ.

As in Section IV, we cannot add matrix W as variable of the
PEP problem because it makes it intractable but we rather
impose convex constraints on the (scalar products of the)
iterates yi and xi that are necessary for the existence of
the desired network matrix W . The idea is thus to obtain a
relaxed representation of the network matrix by formulating
necessary constraints on the discretized points. As explained
in Section II, sufficiency of the formulation can be verified
a posteriori and will be discussed below.

Definition 4 (Wλ-interpolability): Let I be a set of in-
dices of consensus steps. A set of pairs {(xi,yi)}i∈I is Wλ-
interpolable if,

∃W ∈ Wλ : yi = (W ⊗ Id)xi for i ∈ I.

While we do not have necessary and sufficient interpola-
bility constraints for Wλ, Theorem 7 below provides nec-
essary conditions that have been shown to lead to good
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results in practice. It is expressed in terms of the matrices
X = (x1 . . . xN ), Y = (y1 . . . yN ), as well as their
decomposition in two terms, the average and centered parts:

X = (X ⊗ 1V ) +X⊥, Y = (Y ⊗ 1V ) + Y⊥,

where X and Y are agents average vectors in Rd×N ,
defined as X ·i = 1

V

∑V
a=1 xa,i, Y ·i = 1

V

∑V
a=1 ya,i for

i = 1, . . . , N and 1V = [1 . . . 1]
T ∈ RV .

Theorem 7 (Wλ-interpolation necessary constraints [30]):
If a set of pairs {(xi,yi)}i∈I is Wλ-interpolable, then it
holds that

(Average preservation) X = Y , (10)

(Symmetry) XT
⊥Y⊥ = Y T

⊥ X⊥, (11)

(Variance reduction) Y T
⊥ Y⊥ ⪯ λ2XT

⊥X⊥. (12)
Constraints (10) of average preserving come from the
double-stochasticity of the network matrix W ; the symmetry
constraint (11) directly reflects the symmetry of W ; and
the constraint (12) of variance reducing is a consequence
of the bound λ on the eigenvalues of W ∈ Wλ. All
these constraints can be expressed as linear constraints in
terms of scalar products of the iterates and are therefore
PEP-representable, allowing to automatically compute per-
formance guarantees of a given distributed optimization
methods. The guarantees obtained are valid for any averaging
matrix W ∈ Wλ. This theorem can be extended to general
range of non-principal eigenvalues [λ−, λ+] ̸= [−λ, λ] with
λ− ≤ λ+ ∈ (−1, 1), see [30, Theorem 1].

In contrast with previous sections, the constraints from
Theorem 7 are necessary, but not sufficient to the Wλ-
interpolability, which remains an open question. This means
that these constraints describe a feasible set containing at
least all the sets of iterates X,Y that are Wλ-interpolable,
but maybe also some others, for which there exists no matrix
W ∈ Wλ such that Y = (W ⊗ Id)X . Therefore, using
these constraints in a PEP provides a valid upper bound
on the worst-case performance of the algorithm we analyze.
If the worst-case solution obtained with PEP corresponds
to iterates for which there is a matrix W ∗ ∈ Wλ such
that Y = (W ∗ ⊗ Id)X , then we know that the worst-case
bound is exact. Moreover, based on the results of Section
IV, one can show that we can always recover a matrix
M ∈ RV d×V d which is symmetric and with λ1(M) = 1,
−λ ≤ λV (M) ≤ . . . ≤ λ2(M) ≤ λ but for which we
cannot guarantee the shape M = W ⊗ Id.

Another way of verifying the exactness of the PEP bound
is to obtain the same worst-case value using an exact
PEP problem in which the network matrix W is fixed a
priori, with some guess of worst-case network matrix W ∗.
This technique allowed us to verified exactness of the PEP
bounds for different algorithms in our different experiments
[30], [31] and [32]. This is shown, for example, for 10
iterations of DGD in Fig. 4. The figure also shows the large
improvement achieved by the PEP bound with respect to
the theoretical bound from the literature for constant step-
size [29], especially for large values of λ, corresponding to
situations where the network is poorly connected.
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Fig. 4: This plot is is inspired from [30, Fig. 2] and shows the
evolution with λ of the worst-case performance of N = 10
iterations of DGD with A = 3 agents and α = 1√

N
. The

plot shows (i) the theoretical bound from [29] (in pink),
largely above (ii) the worst-case performance obtained with
PEP using constraints from Theorem 7 (in blue) and (iii) the
exact worst-case performance for the averaging matrix W (1)

(in green). The blue and green curves are matching, which
indicates the tightness of the spectral PEP bound for DGD.

VI. CONCLUSIONS

We have shown how choices made when translating con-
ceptual assumptions on functions, operators etc. into alge-
braic relations between quantities involved in an algorithm
could introduce significant conservatism in the derivation of
worst-case bounds on optimization algorithm, before even
beginning to combine these relations. This motivates the
study of interpolation constraints: algebraic relations that do
not introduce any degree of conservatism because they are
necessary and sufficient for the existence of a function or
operator consistent with the quantities analyzed.

We have reviewed the interpolation constraints for differ-
ent classes of functions and general operators, but also for
a spectral class of linear operators, that are used in many
methods designed to solve structured problems, and for a
spectral class of symmetric and stochastic matrices, that are
typically used in distributed optimization algorithms.

By definition, interpolation constraints allow in principle
obtaining tight bounds on the performance of any optimiza-
tion algorithm provided one can combine them in an appro-
priate, or optimal, manner. This is the goal of performance
estimation problems (PEP), which obtain bounds by solving
an optimization problem of which the algebraic descriptions
of the objects at stakes and the algorithmic description are
constraints, and which lead to (numerical) tight bounds if
interpolation constraints are used. PEPs motivated the study
of interpolation constraints, but we stress that their benefit are
also valid in classical analysis, for instance when analyzing
function classes or methods that are not PEP representable,
and advise therefore always using interpolation constraints
when they are available.
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There remain, however, several challenges. First, inter-
polation constraints are only available for a subset of the
interesting classes of functions and operators. To the best of
our knowledge, no interpolation constraint is known yet for
e.g. blockwise smooth functions [7], Holder smooth func-
tions [33], smooth functions satisfying a Polyak-Łojasiewicz
(PL) condition [34], or even functions that are smooth and
convex but only defined on a subset of Rd, and for which
condition (6) has been shown to be too strict [35]. Avail-
able interpolation constraints also concern mostly first-order
descriptions; there are no tractable interpolation constraints
combining information about first and second-order deriva-
tives, preventing their use in the analysis of second-order
methods. Second, we have no principled way of combining
interpolation constraints to tightly describe function classes
defined by several properties. Indeed, it is known that simply
juxtaposing the interpolation constraints for two classes of
functions, e.g. smooth and convex functions, does in general
not provide an interpolation constraint for the intersection
of these classes, e.g. smooth convex functions. Finally,
understanding the actual impact of using approximate (or
only necessary) interpolation constraints also remains an
open question.
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