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Abstract— First-order optimization methods have attracted
a lot of attention due to their practical success in many
applications, including in machine learning. Obtaining con-
vergence guarantees and worst-case performance certificates
for first-order methods have become crucial for understanding
ingredients underlying efficient methods and for developing
new ones. However, obtaining, verifying, and proving such
guarantees is often a tedious task. Therefore, a few approaches
were proposed for rendering this task more systematic, and
even partially automated. In addition to helping researchers
finding convergence proofs, these tools provide insights on the
general structures of such proofs. We aim at presenting those
structures, showing how to build convergence guarantees for
first-order optimization methods.

I. INTRODUCTION

In recent years, there has been a significant surge in
the interest surrounding first-order optimization methods,
primarily driven by their remarkable efficiency on a number of
applications, notably within the field of machine learning (see
e.g., [5]). Theoretical foundations for those methods played a
crucial role in this success, e.g., by enabling the development
of momentum-type methods (see e.g., [29], [26]). Formally,
we consider the optimization problem

x⋆ ≜ arg min
x∈Rd

f(x) (OPT)

where f belongs to a set F (often referred to as a “class of
functions”, e.g., the set of convex functions, the set of strongly-
convex and smooth functions, or the set of quadratic convex
functions, etc.). Classical first-order optimization methods
for solving this problem include gradient descent (GD) [7],
Nesterov accelerated gradient method (NAG) [26], and the
heavy-ball method (HB) [29].

In this context, a key question is to obtain a priori
performance guarantees for an iterative algorithm A (i.e., A is
a rule for generating sequences of approximations (xt)t⩽T to
the minimizers of a certain function f ) when the function f to
be minimized belongs to a set F . The most popular framework
for such analyses of optimization algorithms is that of worst-
case analyses, see, e.g., [26], [15], [6], [16], [8]. Given an
algorithm A, the worst-case analysis framework consists in
finding guarantees that hold for every function of the class.

In other words, we aim at evaluating the worst-case
accuracy of A over the functions of the class F after a
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given number of iterations T . For doing so, there are many
different possible notions of accuracy (or performance) which
we denote by P (f, (xt)t⩽T ) and that we aim at minimizing.
Letting xT be the output of an algorithm, common examples
of such metrics include the distance of the last iterate to
an optimum ∥xT − x⋆∥, the function value accuracy of the
last iterate f(xT )− f(x⋆), or its gradient norm ∥∇f(xT )∥.
Usually, xT can be arbitrarily bad just by choosing x0

arbitrarily far away from the optimizer x⋆. Therefore, we
usually need to assume x0 to be not too bad, such as
x0 ∈ N (x⋆) where N (x⋆) can be any fixed set (that we call
a “neighborhood” of the optimizer x⋆) and depends on x⋆.
Common examples of such neighborhood are balls around the
optimizer {x|∥x− x⋆∥ ⩽ R} or the set {x|f(x)− f⋆ ⩽ R}.

The smallest upper bound on P (f, (xt)t⩽T ) that holds for
any dimension d ⩾ 1, for any function f ∈ F , for any starting
point x0 ∈ N (x⋆) ⊂ Rd, and for any (xt)t⩽T generated by
A applied on f from x0, is the optimal value to the problem
of computing the worst-case:

∣∣∣∣∣∣∣∣∣
maximize
f∈F,d⩾1

(xt)t⩽T∈(Rd)
T+1

P (f, (xt)t⩽T )

subject to
{

x0 ∈ N (x⋆)
(xt)t⩽T = A(f, T, x0)

(P)

In the black-box model, iterative algorithms gather infor-
mation about f through so-called oracles, which we denote
by O(f). Classical oracles used in first-order optimization
are gradient evaluations O(f)(x) = ∇f(x) and approximate
gradients O(f)(x) ≈ ∇f(x) (e.g., stochastic gradients), but
also proximal operators (see, e.g. [9]), etc. At step t ∈ J1, T K,
A collects oracles on the previous iterates (O(f)(xs))s⩽t−1

and outputs xt based on those information through the update
function At as xt = At((xs,O(f)(xs))s<t).

Notation. For readability purposes, all notation used
throughout this paper are summarized as follows.

Notation Corresponding object

F Class of functions (generic form)
f Objective function
x⋆ Optimal point
x0 Initial iterate
O(f) Generic oracle applied on f
A Algorithm (generic form)
(xt)t⩽T Sequence of iterates generated by A, i.e. (xt)t⩽T = A(f, T, x0)
(At)1⩽t⩽T Update function of the algorithm A, i.e. ∀t, xt = At((xs,Of (xs))s<t)
T Total number of iterations
t Current iteration index
Fµ,L Class of L-smooth and µ-strongly-convex functions (0 ⩽ µ ⩽ L)
Qµ,L Class of L-smooth and µ-strongly convex quadratic functions (0 ⩽ µ ⩽ L)
(Vt)t Lyapunov sequence
F,G Linearization variables (after SDP lifting)
P (f, (xt)t⩽T ) Performance metric
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Outline. In Section II, we discuss two ways of characteriz-
ing classes of functions and detail the main cases for which we
can solve (P). In Section III, we discuss an alternative way of
describing the algorithm A simplifying the resolution of (P).
Section IV outlines a systematic approach for acquiring
proofs of worst-case performance certificates and delves into
their underlying structures. We further elaborate on how this
structure can be exploited for extending the applicability
range of the worst-case guarantees. Among others, we show
how the properties of these proofs allow building algorithms.
Finally, Section VI provides a natural approach for discovering
Lyapunov sequences.

II. FROM EXPLICIT TO IMPLICIT CLASSES OF FUNCTIONS

This section describes two ways of specifying a class
of functions as part of the worst-case analysis of a given
algorithm. We describe two different methods to approach
and solve (P) depending on the ways F is specified. More
specifically, we focus on two specific classes of functions
to illustrate our explanations, namely L-smooth µ-strongly
convex quadratic functions (notation Qµ,L) and L-smooth
µ-strongly convex functions (notation Fµ,L).

A. Convex quadratic optimization
First-order optimization methods were extensively studied

in the context of minimizing quadratic convex functions. Such
functions can be described explicitly as

f(x) ≜
1

2
(x− x⋆)

TH(x− x⋆) + f⋆, (1)

where H is the symmetric positive semi-definite Hessian of f ,
x⋆ its optimizer and f⋆ its minimal value. This expression
allows to explicitly compute the gradient ∇f(x) = H(x−
x⋆), and first-order optimization methods can be expressed
through polynomials due to the following property (e.g., [21,
Prop.4.1]).

Proposition 2.1: Let f ∈ Q0,∞ and x0 ∈ Rd. It holds
that

xt+1 ∈ x0 + span{∇f(x0), . . . ,∇f(xt)} , (2)

if and only if there exists a sequence of polynomials
(Pt)t∈N, each of degree at most 1 more than the highest
degree of all previous polynomials and P0 of degree 0
(hence the degree of Pt is at most t), such that

∀ t xt − x⋆ = Pt(H)(x0 − x⋆), Pt(0) = 1 . (3)

In this context, (P) can be solved by solving a polynomial
problem of the form maxH ∥Pt(H)∥ where H is a symmetric
matrix verifying some conditions (e.g. µI ⪯ H ⪯ LI when
f ∈ Qµ,L). This link between first-order algorithms and poly-
nomials has been used by [19] for discovering the Chebyshev
method and by [29] for the “heavy-ball” method, still used
nowadays far beyond quadratic optimization (e.g. in stochastic
optimization of neural networks [33]). This property has also
been exploited more recently for obtaining new algorithms
with provable guarantees on quadratic functions (see e.g., [17],
[30], [16], [28], [31], [4], [21], [23], [10]).

B. Infinite-dimensional spaces of functions

As opposed to previous sections, many classes of functions
are described implicitly as regions of infinite-dimensional
spaces of functions. In other words, such functions are
defined by sets of inequalities. This section deals with the
analyses of such classes. This is due to the fact the set
of all functions of the class are not described by a finite
number of parameters, but rather by constraints (inequalities).
Studying (P) for classes that are defined implicitly through
sets of constraints appears to be much less natural. In this
situation, (P) is often referred to as a performance estimation
problem (PEP) [14], [36], [34]. This tool primarily relies on
two crucial components: interpolation conditions and SDP
lifting.

Interpolation conditions. We remark that the description
of the algorithm and the objective of (P) both only depend on
the oracle values of f on the iterates (xt)t⩽T . We introduce
the variables (Ot)t⩽T . The constraint f ∈ F must be replaced
by the constraint that there exists at least one element f ∈
F such that (O(f)(xt))t⩽T = (Ot)t⩽T (Ot is a reachable
value for O(f)(xt), when f ∈ F). As an example, ft and
gt are potential values of respectively f(xt) and ∇f(xt).
Formally, we define the equivalence relation ∼(P) as f1 ∼(P)
f2 if and only if ∀t ∈ J0, T K ∪ {⋆},O(f1)(xt) = O(f2)(xt).
Since the only information A gathers on f is the oracle
outputs at the iterates xt, two functions coming from the
same equivalence class both produce feasible points of (P)
with the same objective value. In other words, those two
functions are undistinguishable using only the information
available to A. We can therefore rewrite (P) in terms of
(Ot)t⩽T ∈ F/ ∼(P) instead of f ∈ F , so that the set of
optimization variables now lives in finite dimension. This
constraint is referred to as interpolation conditions.

Example 2.2 (First-order algorithm on Fµ,L): Let
L ⩾ µ > 0 two positive real numbers. A function f is
L-smooth and µ-strongly-convex when f is continuously
differentiable and verifies the two inequalities:

f(x) ⩽ f(y) + ⟨∇f(y), x− y⟩+ L

2
∥x− y∥2, (4)

f(x) ⩾ f(y) + ⟨∇f(y), x− y⟩+ µ

2
∥x− y∥2, (5)

for all x, y and where ∇f denotes the gradient of f .
Studying a first-order algorithm (i.e. an algorithm

based on the oracle O(f) ≜ (∇f, f)) on the class
Fµ,L appears to be challenging at first sight due to
the infinite number of parameters needed for describing
Fµ,L. However, [36, Theorem 4] provides interpolation
conditions for the class Fµ,L of L-smooth µ-strongly-
convex functions and enables an exact study of the worst-
case of several algorithms on this class of functions:

∀i, j, fi ⩾fj + ⟨gj , xi − xj⟩+ 1
2L∥gi − gj∥2 (IC)

+ µ
2(1−µ/L)∥xi − 1

Lgi − xj +
1
Lgj∥

2.

Indeed, in this case, (P) can be written in finite
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dimension as∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
d⩾1,(xt)t⩽T∈(Rd)T+1,x⋆∈Rd,

(gt,ft)t⩽T∈(Rd×R)T+1

P ((xt, gt, ft)t⩽T )

s.t.


x0 ∈ N (x⋆)
∀t ⩽ T, xt = At((xs,Of (xs))s<t)
∀i, j, fi ⩾ fj + ⟨gj , xi − xj⟩+ 1

2L∥gi − gj∥2
+ µ

2(1−µ/L)∥xi − 1
Lgi − xj +

1
Lgj∥

2.

SDP lifting. In many cases (see, e.g, Example 2.2, and [34,
Theorem 3.5]), interpolation conditions are written in terms
of quadratic and bilinear expressions of xt and gt and linear
expressions of ft. Because of the quadratic dependency in
xt and gt, this problem is generally non-convex. SDP lifting
can convexify this problem if all other parts of this problem
also contain only quadratic expressions of xt and gt. For
example, classical choices for P (f, (xt)t⩽T ) are ∥xT −x⋆∥2,
f(xT )− f(x⋆), or ∥∇f(xT )∥2. Similarly, a classical choice
for x0 ∈ N (x⋆) is ∥x0 − x⋆∥2 ⩽ R2 for some radius R > 0.
Finally, the updates (At)t of the algorithm A are often of
the form

xt = At((xs,∇f(xs), f(xs))s⩽t−1) = x0−
t−1∑
s=0

γ(t)
s ∇f(xs)

(6)
for some sequence of scalars (γ

(t)
s )s∈J0,t−1K. Substituting xt

for t ⩾ 1 in the problem by their corresponding expressions
given by (6) preserves the above observation: the dependency
of (P) in (xt, gt)t⩽T is exclusively quadratic. Actually, in this
specific case, all occurrences of (xt)t⩾1 have been replaced by
linear combinations of x0 and (gt)t⩽T . SDP lifting consists
in introducing the Gram matrix G of (x0 − x⋆, (gt)t⩽T ).
This way, all quadratic expressions of (xt, gt)t⩽T are linear
combinations of the entries of G. We also introduce the vector
F storing the values (ft − f⋆)t⩽T .

Finally (P) is rewritten with linear objective and constraints
only as well as an SDP constraint G ⪰ 0.∣∣∣∣∣∣∣∣

maximize
F,G⪰0

⟨F, vP ⟩+ ⟨G,MP ⟩

subject to

{
⟨F, vI⟩+ ⟨G,MI⟩ ⩽ R2

∀k,
〈
F, v

(k)
F

〉
+
〈
G,M

(k)
F

〉
⩽ 0

Vectors (vP , vI , (v
(k)
F )k) and matrices (MP ,MI , (M

(k)
F )k)

are constants depending on the algorithm A, the class F ,
and the performance metric P under consideration. More
specifically, indices P , I and F respectively correspond to the
performance metric, the initialization constraint and the class
interpolation conditions. The algorithm is directly encoded in
the fact that G does not contain inner product with (xt)t⩾1.
As an example, to express ∥xT − x⋆∥2 in terms of G, one
needs to actually choose M with ⟨G,M⟩ = ∥x0 − x⋆ −∑T−1

s=0 γ
(T )
s ∇f(xs)∥2.

Key conditions. The above procedure generally works
under the following conditions:

• A is a first-order algorithm whose updates (At)t can be
expressed linearly in terms of observed gradients;

• The interpolation constraints of the class of functions F
are known and expressible linearly in F and G;

• The performance metric as well as the initial condition
are also expressible linearly in terms of F and G.

Many pairs of function class and algorithm meet the right
conditions and have been studied using the PEP framework.
Tools in Matlab [35] and Python [20] have been implemented
to automate this task and provide worst-case guarantees.
Many examples of usages are listed in the corresponding
documentations.

III. FROM EXPLICIT TO IMPLICIT ALGORITHMS

So far, we only considered explicit algorithms of the
form (6). Note that, just as for classes of functions, algorithms
can be expressed implicitly via sets of (in)equalities. This
is the case for line-search based algorithms. Indeed, the
step-size associated with line-search is not uniform over the
problem class, therefore algorithms containing line-search
update cannot be written as (6), and therefore do not meet
the key conditions mentioned in the previous section. A
relaxation of the gradient descent with exact line-search has
been proposed in [11]. Since this algorithm cannot be written
as (6) with pre-determined γ

(t)
s , we cannot specify (xt)t⩾1 in

terms of x0 and (gt)t⩽T . Therefore, all vectors (xt, gt)t⩽T

must be considered as linearly independent. For this problem,
G is the Gram matrix of all (xt, gt)t⩽T .

Therefore, the algorithm is not totally encoded in
vP ,MP , vI ,MI , vF and MF anymore and must be specified
by new constraints. In particular, the updates of gradient
descent with line-search verify that

⟨gt+1, gt⟩ = 0 (7)
⟨gt+1, xt+1 − xt⟩ = 0 (8)

As for all the other elements of (P), those constraints only
involve quadratic terms of (xt, gt)t⩽T and can therefore be
expressed linearly in terms of G, parametrized by the vectors
(v

(l)
A )l and matrices (M

(l)
A )l. This time, (P) writes∣∣∣∣∣∣∣∣∣∣∣

maximize
F,G⪰0

⟨F, vP ⟩+ ⟨G,MP ⟩

subject to


⟨F, vI⟩+ ⟨G,MI⟩ ⩽ R2

∀k,
〈
F, v

(k)
F

〉
+
〈
G,M

(k)
F

〉
⩽ 0

∀l,
〈
F, v

(l)
A

〉
+
〈
G,M

(l)
A

〉
⩽ 0

(PEP-primal)

IV. PROOF STRUCTURES IN FIRST-ORDER OPTIMIZATION

There is an extensive literature on first-order optimization,
offering a broad range of possibly advanced worst-case
guarantees and their associated proofs. In the previous
sections, we saw conditions under which the problem of
computing worst-case guarantees was tractable. In this section,
we detail how to obtain proofs from PEPs and what we can
conclude on the general structure of proofs in first-order
optimization.
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A. Obtaining proofs with PEPs

Thanks to interpolation conditions and SDP lifting, (P)
rewrites as a convex optimization problem. We consider the
dual of the problem. Let’s then introduce the Lagrangian
multipliers τ , (λ(k)

F )k, (λ(l)
A )l associated to the constraints

of (PEP-primal).∣∣∣∣∣∣∣∣∣∣∣

maximize
F,G⪰0

⟨F, vP ⟩+ ⟨G,MP ⟩

subject to


⟨F, vI⟩+ ⟨G,MI⟩ ⩽ R2 : τ

∀k,
〈
F, v

(k)
F

〉
+
〈
G,M

(k)
F

〉
⩽ 0 : λ

(k)
F

∀l,
〈
F, v

(l)
A

〉
+
〈
G,M

(l)
A

〉
⩽ 0 : λ

(l)
A

The Lagrangian then writes

L ≜ ⟨F, vP ⟩+ ⟨G,MP ⟩ − τ
[
⟨F, vI⟩+ ⟨G,MI⟩ −R2

]
−
∑
k

λ
(k)
F

[〈
F, v

(k)
F

〉
+
〈
G,M

(k)
F

〉]
−
∑
l

λ
(l)
A

[〈
F, v

(l)
A

〉
+
〈
G,M

(l)
A

〉]
=τR2 +

〈
F, vP − τvI −

∑
k

λ
(k)
F v

(k)
F −

∑
l

λ
(l)
A v

(l)
A

〉

+

〈
G,MP − τMI −

∑
k

λ
(k)
F M

(k)
F −

∑
l

λ
(l)
A M

(l)
A

〉
The dual is obtained by maximizing over the primal variables:∣∣∣∣∣∣∣∣

minimize
τ,λ

(k)
F ,λ

(l)
A ⩾0

τR2

s.t.

{
vP − τvI −

∑
k λ

(k)
F v

(k)
F −

∑
l λ

(l)
A v

(l)
A = 0

MP − τMI −
∑

k λ
(k)
F M

(k)
F −

∑
l λ

(l)
A M

(l)
A ⪯ 0
(PEP-dual)

For any feasible primal F,G and feasible dual
τ, (λ

(k)
F )k, (λ

(l)
A )l, we know the objective of the dual

is larger than the Lagrangian value, that is:

⟨F, vP ⟩+ ⟨G,MP ⟩︸ ︷︷ ︸
Performance metric

−τ [⟨F, vI⟩+ ⟨G,MI⟩]︸ ︷︷ ︸
Initialization

⩽
∑
k

λ
(k)
F

[〈
F, v

(k)
F

〉
+
〈
G,M

(k)
F

〉]
︸ ︷︷ ︸

Class constraint

+
∑
l

λ
(l)
A

[〈
F, v

(l)
A

〉
+
〈
G,M

(l)
A

〉]
︸ ︷︷ ︸

Algorithm constraint

⩽ 0. (Generic proof)

In words, the proof of a worst-case guarantee is obtained by
linearly combining all available constraints, with coefficients
that are the dual variables of the PEP. Indeed, the difference
between the performance metric and τ times the initialisation
measure of proximity to the optimizer is decomposed as the
sum of three terms. The two first ones respectively correspond
to the values that are enforced to be negative by the class
of functions and the algorithm. The third one is called the
residual and is the opposite of a sum of squares of iterates

and gradients. An example of full derivation of such a proof
is provided in Section V.

Remark 4.1 (No duality gap): There generally exists a
feasible point G,F with G ≻ 0, i.e. verifying the Slater’s
condition (see [32]), therefore guaranteeing strong duality of
the convex reformulation of (P). To ensure this, one needs to
carefully remove iterates xt from the basis of G when xt is
completely identified from other vectors. For instance, leaving
x1 in the basis of G with the constraint ∥x1−(x0−γg0)∥2 = 0
instead of replacing x1 by x0 − γg0 everywhere, creates an
empty interior and can break strong duality. Each time there is
no feasible G with G ≻ 0, we conclude that there is a linear
relationship between elements of the basis G is the Gram
matrix of. Therefore, maximally reducing the dimension of
G ensures strong duality.

B. Understanding proofs with PEPs

Obtaining dual feasible points provides valuable insights
into essential aspects pertaining to both the class of functions
under consideration and the algorithm employed to achieve
the associated worst-case guarantee.

Extension to broader sets of algorithms. [13] exploit
these insights to design worst-case optimal algorithms. The
authors’ key observation is that (Generic proof) does not
rely on all constraints to hold, but rather only on a linear
combination of them. Therefore, if instead of assuming that,
∀l,

〈
F, v

(l)
A

〉
+

〈
G,M

(l)
A

〉
⩽ 0, we can simply assume that∑

l λ
(l)
A

[〈
F, v

(l)
A

〉
+

〈
G,M

(l)
A

〉]
⩽ 0, therefore relaxing a

lot of assumptions about the algorithm and then generalizing
the proof to all the algorithms verifying the remaining assump-
tion. This was applied to the impractical algorithm (GFOM)
described as follow:

∀t, xt+1 = argmin
x∈x0+span{∇f(x0),··· ,∇f(xt)}

f(x), (GFOM)

greedily minimizing the objective value in the affine space of
all the observed directions. For some classes of functions, this
algorithm is worst-case optimal. This is the case, for instance,
for the class of quadratic convex functions on which (GFOM)
is equivalent to the so-called conjugate gradient method.
This is also the case for the class of L-smooth convex
functions, allowing to find a broad range of worst-case optimal
algorithms on this class, including the so-called optimized
gradient method (OGM) [12], [13]. Generating such worst-
case optimal algorithms works as follow:

1) We note that (GFOM) verifies the following orthogo-
nality constraints:

∀t,
{

∀s < t, ⟨gt, gs⟩ = 0,
∀s ⩽ t, ⟨gt, xs − x0⟩ = 0.

(9)

Note that following those constraints does not necessar-
ily imply that (PEP-primal)’s primal variables optimal
values describe (GFOM). Nevertheless, a sufficient
condition on the class F under consideration for that
to happen is that F is contraction-preserving (see [13,
Definition 3]), which happens to be the case for Fµ,L

for example.
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2) We call the corresponding dual variables (βt,s)s<t and
(γt,s)s⩽t and collect their optimal values (β⋆

t,s)s<t and
(γ⋆

t,s)s⩽t: it happens that those values can be obtained
in closed-form.

3) We group all the constraints as in (9), and conclude
that the worst-case guarantee of (GFOM), as well as
the corresponding proof, would hold if

∀t,

〈
gt,

t−1∑
s=0

βt,sgs +

t∑
s=0

γt,s(xs − x0)

〉
⩽ 0. (10)

4) When γt,t ̸= 0, we conclude that, in particular, the
algorithm described by the iteration

∀t, xt = x0 −
t−1∑
s=0

γt,s

γt,t
(xs − x0) +

βt,s

γt,t
gs (11)

annihilates the vector in the right-hand position of
the inner product. Therefore, the worst-case guarantee
of (GFOM) also applies to A, using the exact same
proof.

This method has more recently been used in [22, Th.2.4-
Cor.2.5] to derive the worst-case optimal algorithm

xt =
t

t+ 1
xt−1 +

1

t+ 1
x0 −

1

t+ 1

t−1∑
s=0

1

L
gs (HB)

under the class of convex and L-quadratically upper bounded
(L-QG+) functions.

Extension to broader classes of functions. Interestingly,
(HB) was studied several years ago in [18] on the class
F0,L of L-smooth convex functions, itself included in the
class of L-QG+ convex functions. On the other hand, the
obtained guarantee was not better on F0,L than the one
obtained on the class of L-QG+ convex functions. This
shows that the guarantee obtained on F0,L can be obtained
using only the interpolation constraints of the class of L-QG+

convex functions, which is a subset of the set of interpolation
constraints of F0,L. In general, for a given class and a given
algorithm, when λ

(k)
F = 0 in (Generic proof), we conclude

that the corresponding constraint has not been used. This
allows to discard all the useless constraints and the result
naturally holds on a larger class of functions.

Fewer class constraints allows new algorithms. Most
of the time, we study a family of classes of functions,
parametrized by some value L. A classical example of
this is the class of L-smooth convex functions F0,L.
The underlying interpolation constraints

〈
F, v

(k)
F (L)

〉
+〈

G,M
(k)
F (L)

〉
⩽ 0 then depend on L. We generally derive

and study an algorithm on F0,L, and obtain a guarantee
that holds for any L such that ⟨F, vP (L)⟩+ ⟨G,MP (L)⟩ −
τ(L) [⟨F, vI(L)⟩+ ⟨G,MI(L)⟩] ⩽ 0. The underlying algo-
rithm can (and usually does) therefore depend on this value
that is sometimes hard to access in practice. Using line-search
steps is a way to get rid of the dependence on L (there exists
for instance line-search version of OGM and (HB) that do
not involve L), but an exact line-search step is often not

available neither. On the other hand, backtracking line-search
have been proposed [1] to replace the class parameter L by
any surrogate value L̂ that validates all the inequalities that
are used. Indeed, we know that for any L,

⟨F, vP (L)⟩+ ⟨G,MP (L)⟩︸ ︷︷ ︸
Performance metric

−τ(L) [⟨F, vI(L)⟩+ ⟨G,MI(L)⟩]︸ ︷︷ ︸
Initialization

⩽
∑
j

λ(j)
[〈

F, v(j)(L)
〉
+
〈
G,M (j)(L)

〉]
︸ ︷︷ ︸

Constraint

⩽ 0 (12)

Therefore, even if we do not have access to L, being
able to find some L̂ in an online manner such that all
the surrogate constraints

〈
F, v

(k)
F (L̂)

〉
+

〈
G,M

(k)
F (L̂)

〉
⩽

0 hold, allows tuning the algorithm online with this L̂

and obtain the guarantee
〈
F, vP (L̂)

〉
+

〈
G,MP (L̂)

〉
−

τ(L̂)
[〈

F, vI(L̂)
〉
+

〈
G,MI(L̂)

〉]
⩽ 0. We would like to

apply bisection search to find such L̂, and all we need for
that is being able to verify the constraints

〈
F, v

(k)
F (L̂)

〉
+〈

G,M
(k)
F (L̂)

〉
⩽ 0 online. Note however that some con-

straints may involve the optimizer x⋆ or the minimal value
f⋆ and are then not verifiable. The authors of [16, Remark
4.9] and [27] discuss this issue. They note that we only need
to verify constraint that actually involve L and that the ones
that are problematic are the ones that involve both L and
an unknown value. They conclude that, if the dual values
associated with these problematic constraints are set to 0, they
are not used, and then we can proceed to backtracking line-
search. They also enforce it by removing those inequalities
(or lowering them) and searching for methods that holds on
this larger class of functions (verifying less inequalities) in
order to be able to apply backtracking line-search to get rid
of the requirement of knowledge of the parameter class.

V. EXAMPLE: GRADIENT DESCENT WITH EXACT
LINE-SEARCH

For sake of better comprehension of the formal reasoning
made in Sections II-B, III and IV, we detail in this section
the development of a proof of convergence guarantee of the
form (Generic proof) on an example: the gradient descent
method with exact line-search, defined as

∀t ∈ J1, T K, xt = argmin
x∈xt−1+span{∇f(xt−1)}

f(x). (GDLS)

More precisely, we chose to consider the function value as
performance metric, and therefore seek for a guarantee of
the form

f(x1)− f⋆ ⩽ τ(f0 − f⋆), (13)

with an appropriate τ . Note this problem has been solved
in [11, Theorem 1.2]. Here we detail how to find such a
guarantee and its proof in a very systematic way, relying on
the framework presented in the present tutorial.

The problem can therefore be summarized as follow:
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• The objective function belongs to the class Fµ,L of
L-smooth µ-strongly-convex functions, i.e. verifies the
interpolation constraints (IC),

• We have access to the oracle Of (x) verifying:
– Of (x) ∈ x+ span {∇f(x)},
–

〈
∇f

(
Of (x)

)
,∇f(x)

〉
= 0,

• The algorithm A we study iteratively computes the
update xt = At((xs,Of (xs))s<t) ≜ Of (xt−1),

• We study exactly one step of this algorithm. That is, we
want a guarantee on x1 given x0.

• The performance metric that we use is the function value
f(x1)− f⋆.

• The neighborhood N (x⋆) we assume x0 belongs
to is also define by the function value as{
x | f(x)− f⋆ ⩽ R2

}
for some positive R.

In summary, the problem (P) writes

∣∣∣∣∣∣∣∣∣
maximize
f∈Fµ,L,d⩾1

(x⋆,x0,x1)∈(Rd)
3

f(x1)− f⋆

subject to
{

f(x0)− f⋆ ⩽ R2

(xt)t⩽1 = GDLS(f, T = 1, x0)
(14)

GDLS’s update is defined through an optimization problem.
Implementing it into the PEP framework is not straightforward.
Instead, we replace the strict definition of the update by first
order optimality conditions of the line search procedure:

⟨∇f(x1),∇f(x0)⟩= 0,

⟨∇f(x1), x1 − x0⟩= 0.

Note the second one is verified because x1−x0 is colinear
with g0 and therefore those 2 conditions seem redundant.
However, removing the proper definition of (GDLS) makes
x1 − x0 and g0 non-necessarily colinear anymore, and the
two orthogonality conditions are complementary.

Note furthermore that, replacing the actual definition
of (GDLS) by some conditions the latter verifies leads to a
guarantee that holds over all the algorithms that verify those
conditions. This is therefore possibly a relaxation, but the
result still holds. Moreover, in this special case, and because
we used the two orthogonality conditions and not just one,
replacing the definition of (GDLS) by those conditions is
tight. This technical assertion is based on the fact the class
Fµ,L is contraction-preserving. This reasoning is detailed
in [13].

Expressing the constraints of the algorithm and the class,
we obtain∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
d⩾1,(x⋆,x0,x1))∈(Rd)3,

(g0,g1)∈(Rd)2, (f⋆,f0,f1)∈R3

f(x1)− f⋆

s.t.


f(x0)− f⋆ ⩽ R2

⟨∇f(x1),∇f(x0)⟩ = 0,
⟨∇f(x1), x1 − x0⟩ = 0.
∀i, j, fi ⩾ fj + ⟨gj , xi − xj⟩+ 1

2L∥gi − gj∥2
+ µ

2(1−µ/L)∥xi − 1
Lgi − xj +

1
Lgj∥

2.

Using SDP lifting, we can formulate this problem as a
semi-definite program of the form (PEP-primal) using the
variables

F = (f⋆, f0, f1)
⊤

G = (x⋆, x0, g0, x1, g1)
⊤(x⋆, x0, g0, x1, g1).

We therefore set the parameters of (Generic proof) to the
following values:

vP = (−1, 0, 1)
⊤
, MP = 05,

vI = (−1, 1, 0)
⊤
, MI = 05,

v
(⋆,0)
F =

−1
1
0

 , M
(⋆,0)
F =

1

2(1 − κ)


µ −µ 1 0 0
−µ µ −1 0 0
1 −1 1

L 0 0
0 0 0 0 0
0 0 0 0 0

 ,

v
(⋆,1)
F =

−1
0
1

 , M
(⋆,1)
F =

1

2(1 − κ)


µ 0 0 −µ 1
0 0 0 0 0
0 0 0 0 0

−µ 0 0 µ −1
1 0 0 −1 1

L

 ,

v
(0,⋆)
F =

 1
−1
0

 , M
(0,⋆)
F =

1

2(1 − κ)


µ −µ κ 0 0
−µ µ −κ 0 0
κ −κ 1

L 0 0
0 0 0 0 0
0 0 0 0 0

 ,

v
(0,1)
F =

 0
−1
1

 , M
(0,1)
F =

1

2(1 − κ)


0 0 0 0 0
0 µ −κ −µ 1
0 −κ 1

L κ − 1
L

0 −µ κ µ −1
0 1 − 1

L −1 1
L

 ,

v
(1,⋆)
F =

 1
0
−1

 , M
(1,⋆)
F =

1

2(1 − κ)


µ 0 0 −µ κ
0 0 0 0 0
0 0 0 0 0

−µ 0 0 µ −κ
κ 0 0 −κ 1

L

 ,

v
(1,0)
F =

 0
1
−1

 , M
(1,0)
F =

1

2(1 − κ)


0 0 0 0 0
0 µ −1 −µ κ
0 −1 1

L 1 − 1
L

0 −µ 1 µ −κ
0 κ − 1

L −κ 1
L

 ,

v
(1)
A =

0
0
0

 , M
(1)
A =

1

2


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 1 0 0

 ,

v
(2)
A =

0
0
0

 , M
(2)
A =

1

2


0 0 0 0 0
0 0 0 0 −1
0 0 0 0 0
0 0 0 0 1
0 −1 0 1 0

 .

Solving this SDP, we find the rate τ =
(

L−µ
L+µ

)2

.
Moreover, the corresponding dual values are

λ⋆,0
F = 2µ(L−µ)

(L+µ)2 , λ⋆,1
F = 2µ

L+µ ,

λ0,⋆
F = 0, λ0,1

F = L−µ
L+µ ,

λ1,⋆
F = 0, λ1,0

F = 0,

λ1
A = 2

L+µ , λ2
A = 1.

Plugging those values in (Generic proof) builds a proof
of convergence of (GDLS) with the guarantee f(x1)− f⋆ ⩽(

L−µ
L+µ

)2

(f0 − f⋆).
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f(x1)− f⋆ −
(
L− µ

L+ µ

)2

(f(x0)− f⋆)

⩽

2µ(L−µ)

(L+µ)2

(
f(x0)− f⋆ + ⟨∇f(x0), x⋆ − x0⟩+ 1

2L
∥∇f(x0)∥2 + µ

2(1−µ/L)
∥x⋆ − x0 +

1
L
∇f(x0)∥2

)
+ 2µ

L+µ

(
f(x1)− f⋆ + ⟨∇f(x1), x⋆ − x1⟩+ 1

2L
∥∇f(x1)∥2 + µ

2(1−µ/L)
∥x⋆ − x1 +

1
L
∇f(x1)∥2

)
+L−µ

L+µ

(
f(x1)− f(x0) + ⟨∇f(x1), x0 − x1⟩+ 1

2L
∥∇f(x0)−∇f(x1)∥2 + µ

2(1−µ/L)
∥x0 − 1

L
∇f(x0)− x1 +

1
L
∇f(x1)∥2

)
+ 2

L+µ
⟨∇f(x1),∇f(x0)⟩

+ ⟨∇f(x1), x1 − x0⟩

⩽ 0.

The first inequality holds independently on the chosen class.
It simply results from terms rearrangement. By subtracting the
LHS from the RHS, one would find a semi-definite positive
quadratic form of the variables x0, x1,∇f(x0) and ∇f(x1).
The second inequality precisely uses the (in)equalities that
are specific to the chosen class and algorithm. Note that the
two algorithm constraints can be replaced by the sole con-
straint

〈
∇f(x1), x1 − x0 +

2
L+µ∇f(x0)

〉
= 0, immediately

showing that this guarantee also holds on the gradient descent
method with fixed steps-size 2

L+µ .

VI. LYAPUNOV WITH PEPS

We saw in Section IV-A that worst-case proofs essentially
writes as (Generic proof):

⟨F, vP ⟩+ ⟨G,MP ⟩︸ ︷︷ ︸
Performance metric

−τ [⟨F, vI⟩+ ⟨G,MI⟩]︸ ︷︷ ︸
Initialization

⩽
∑
j

λ(j)
[〈

F, v(j)
〉
+
〈
G,M (j)

〉]
︸ ︷︷ ︸

Constraint

⩽ 0. (15)

Namely, the right linear combination of the available con-
straints upper bounds the difference between the performance
metric and τ times the initial value. Sometimes those proofs
can be relatively complicated and a simpler one can be
desirable. In particular, this is the case when the algorithm
under consideration is run for a few iterations. Lyapunov
analyses typically allows reducing the worst-case analyses
of T iterations to that of a single iteration, and therefore
reducing the complexity of the proof.

For example, for (NAG), described as follow

λt+1 = 1
2 +

√
1
4 + λ2

t

yt = xt +
λt−1
λt+1

(xt − xt−1),

xt+1 = yt − 1
L∇f(yt).

(NAG)

on F0,L, we often use the sequence

Vt = λ2
t (ft − f⋆)+

L

2
∥λt(xt −x⋆)+ (1−λt)(xt−1 −x⋆)∥2

(16)

providing a worst-case convergence guarantee f(xT )− f⋆ =
O(1/T 2). In general, a direct way to find such a sequence
is to consider

Vt = [⟨F, vI⟩+ ⟨G,MI⟩]︸ ︷︷ ︸
Initialization

+
∑

j | only involves
values observed

before step t

λ(j)
[〈

F, v(j)
〉
+

〈
G,M (j)

〉]
︸ ︷︷ ︸

Constraint

. (17)

Applying this method on (NAG) provides the sequence of
complete potential functions

Vt = λ2
t (ft − f⋆) +

L

2
∥λt(xt − x⋆) + (1− λt)(xt−1 − x⋆)∥2

+
1

2L

t−1∑
s=1

[λ2
s+1∥∇f(xs+1)∥2 + λs+1∥∇f(ys)∥

+ λ2
s∥∇f(ys)−∇f(xs)∥2]

that allows for free (using the same inequalities as for
proving that (16) is decreasing) to also conclude that
mint⩽T ∥∇f(xt)∥2 = O(1/T 3), as shown in [25, Theorem
5.2.d] and experimentally evidenced using PEPs in [36, Table
4].

Note that the cumulatively summed up constraints involve
both class constraints and algorithm constraints. Therefore,
this technique can be applied directly on (GFOM) while
looking for an optimal algorithm, its rate, the corresponding
proof and a sequence of potential functions at the same time.

VII. CONCLUSION

a) Summary: not only is the performance estimation
problem (PEP) framework a powerful tool to automate the
search of guarantees, but also it allows exhibiting general
structure of proofs. Understanding this structure enables to
generalize results onto larger class of functions or onto a class
of methods, but also to find new optimization methods and
study their convergence properties. Finally, it also enables to
understand how to build a Lyapunov sequence of functions.
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b) Open research directions: all this framework relies
on two major assumptions: the class constraints are known
and homogeneous in ∥x∥2 and ∥∇f(x)∥2 and f , and the
method’s update is a linear combination of previous iterates
and observed oracle calls. Therefore, two interesting questions
arise: can we automate the search of the interpolation
conditions? And, how can we generalize this framework
to non homogeneous class of functions or to non linear
methods such as adaptive step-size based methods? A few
works already investigate this direction for some specific
methods. In particular, [3] studies a variant of the Heavy-ball
method [29] using Polyak step-sizes, also discussed in [2,
Chapter 4]. On the other hand, [24] uses PEP techniques
to provide worst-case guarantees on several variants of non-
linear conjugate gradient methods.
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