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Abstract— Online feedback optimization (OFO) is an emerg-
ing control methodology for real-time optimal steady-state con-
trol of complex dynamical systems. This tutorial focuses on the
application of OFO for the autonomous operation of large-scale
transmission grids, with a specific goal of minimizing renewable
generation curtailment and losses while satisfying voltage and
current limits. When this control methodology is applied to
multi-area transmission grids, where each area independently
manages its congestion while being dynamically interconnected
with the rest of the grid, a non-cooperative game arises. In
this context, OFO must be interpreted as an online feedback
equilibrium seeking (FES) scheme. Our analysis incorporates
technical tools from game theory and monotone operator theory
to evaluate the stability and performance of multi-area grid
operation. Through numerical simulations, we illustrate the
key challenge of this non-cooperative setting: on the one hand,
independent multi-area decisions are suboptimal compared to
a centralized control scheme; on the other hand, some areas
are heavily penalized by the centralized decision, which may
discourage participation in the coordination mechanism.

I. INTRODUCTION

To achieve climate goals and enhance energy indepen-
dence, an increasing amount of renewable power is being
integrated into the grid [1], [2] and is replacing traditional
form of generation. This renewable generation is typically
dispersed across the grid or located where the primary
energy source (wind, solar) is mostly available. Moreover,
generation from renewable sources follows temporal patterns
that are not fully predictable and depend as well on the
generation technology. These temporal and spatial variabil-
ity of generation, together with the increasing demand for
electricity (also driven by the electrification of road trans-
portation) poses unprecedented challenges on the operation
of power transmission grids: as the network reaches its
limits, renewable power often needs to be curtailed to avoid
congestion issues such as overloaded lines and over-voltages.

Manual or semi-automated mechanisms for congestion
control in power transmission grids are unsuited for these
new tasks, for two main reasons:

• with sampling times in the order of minutes, they cannot
for safely respond to generation variability;

• they do not scale to the complexity presented by the
huge number of small-size renewable generators.
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Consequently, there is a growing need to enhance real-
time automation and implement control actions at shorter
intervals, ideally every few seconds. The French operator
RTE estimates savings of billions of Euros over a decade if
real-time control of power flows can prevent the construction
or reinforcement of power lines [3]. In the US, the connection
of more that 2000 GW of renewable generation is currently
being delayed because of grid capacity constraints [4].

Online feedback optimization (OFO) has been proposed as
an effective approach to design real-time congestion control
mechanisms for the electric power grid [5, Section IV].
OFO lies at the intersection of feedback control design and
nonlinear optimization: its goal is to design a control policy
that makes the optimal steady state of the system (i.e., the
uncongested operation of the grid) an attractive equilibrium
point for the closed-loop dynamics. This approach has been
studied in more general settings (not limited to power grids)
in a number of recent papers [6]–[11].

In the domain of power distribution grids, these methods
have been proposed in multiple variations (see the review in
[5, §IV.D]), specialized to Volt/VAr regulation [12]–[14] or
more general optimality criteria [15], tested experimentally
[16], and even deployed in the real world [17], [18].

The application to congestion control in the transmission
grid has been explored less. For example, [19] focuses
on the voltage control problem, while [20] considers both
voltage and power flow control, and introduces a novel sub-
transmission benchmark model that represents a real French
grid. We will review the main findings of this last work in
the numerical experiments of Section II.

In these works, the transmission grid is a single “plant”
and the objective of the proposed OFO controllers is to
drive it to an operating point that minimizes a single global
cost function. In reality, however, modern transmission grids
consist of different interconnected areas that are locally
managed by different transmission systems operators (TSOs)
but physically interconnected. This is the case, for example,
of national and sub-national networks in continental Europe
and of Independent System Operators in North America.
In such multi-area setting, a global OFO controller is not
practical, as such scheme would requires a coordination and
exchange of sensitive information between the areas, and
may be not incentive-compatible. Local OFO controllers,
however, would be readily deployable on the different areas,
since their implementation only requires local measurements,
the ability of controlling local generators, and a rough
estimate of the static model of the local part of the grid. A
natural question in this more realistic scenario is whether we
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can expect the overall multi-area transmission grid, resulting
from the interconnection of the locally-controlled areas, to
retain any stability and efficiency property.

Game theory, which studies dynamics of conflict and
cooperation between self-interested rational decision makers,
offers a powerful framework to approach this question.
The development of game-theoretic controllers for economic
steady-state regulation of complex systems has been recently
studied in different works [21]–[24]. All these works focus
on the design of game-theoretic feedback controllers, but the
technical tools therein can be also used for analysis purposes.

In this tutorial, we present a game-theoretic analysis of au-
tonomous real-time control of multi-area transmission grids,
in which each area selfishly regulates its congestion using
online feedback optimization while being dynamically inter-
connected with the rest of the grid. In the first part, we show
how to design various feedback controllers for a single area
of the transmission grid using the OFO framework. Further,
we present realistic simulations based on the newly proposed
benchmark in [20] which demonstrate their effectiveness in
regulating the grid to optimal and safe operating points. In
the second part, we investigate the behaviour of a multi-
area transmission grid, where the sub-areas independently
manage congestion using OFO while remaining dynamically
connected through the transmission grid. We use tools from
game theory and monotone operators to establish conditions
for stability of the closed-loop dynamics of the grid. Finally,
we present some numerical simulations on the on the IEEE
30 bus power flow test case to corroborate the theory and
study the performance of the multi-area OFO control design.

We conclude the tutorial by discussing how multi-area
congestion control in a competitive setting yields some
intrinsic inefficiency, and how this defines a future research
endeavour: the design of suitable incentives that ensure that
the decision of multiple independent grid operators remains
aligned with global efficiency and sustainability goals.

A. Notation

Given a positive definite matrix P = P⊤, ∥x∥P =√
xTPx. The largest (smallest) eigenvalue of P is denoted

by λmax (P ), (λmin (P )). Given N vectors x1, . . . , xN , we
denote by col(x1, . . . , xN ) = [x⊤

1 . . . x⊤
N ]⊤ their vertical

concatenation. Given N scalar y1, . . . , yN , we denote by
diag(y1, . . . , yN ) the diagonal matrix with y1, . . . , yN on the
main diagonal. Given a closed convex set Ω ⊆ Rn, ιΩ :
Rn → {0,∞} denotes its indicator function, NΩ(x) : Ω →
Rn denotes its normal cone operator, and projΩ : Rn → Ω
is the Euclidean projection onto Ω. A set-valued mapping
B : Rn ⇒ Rn is monotone if it satisfies (u−v)⊤(x−y) ≥ 0
for all vectors x, y ∈ Rn, u ∈ B(x), and v ∈ B(y). A
single-valued mapping F : Rn → Rn is cocoercive, with
parameter µ > 0, if it satisfies (F (x) − F (y))⊤(x − y) ≥
µ∥F (u)− F (y)∥2 for all vectors x, y ∈ Rn.

II. SINGLE-AREA TRANSMISSION GRID CONTROL

The problem of real-time control of a transmission grid us-
ing online feedback optimization (OFO), which is schemat-

ically represented in Figure 1, is characterized by
• a set of inputs that can be actuated, e.g., the curtailment

of active power generation from renewable sources,
voltage set-points for voltage-controlled generators, and
reactive power set-points of inverter-based generators;

• a set of outputs that can be measured on the system,
including both line and bus measurements; for simplic-
ity, we will assume that the full state of the grid (or a
dynamic estimation, see [25]) is available.

In the remainder of the paper, we denote by u this multidi-
mensional input and by y this multidimensional output.

These signals are related to each other by the algebraic
model (i.e., the input-out model of the transmission grid)

y = h(u;w), (1)

where w is a set of exogenous disturbances, e.g., uncontrol-
lable nodal power injections (demand and generation).

Feedback
optimization

Physical plant

h(u;w)

u ∈ U

y ∈ Y

w
φ(u, y)

minimize

nonlinear steady-state map

exogenous input

Power grid

power demand
uncontrollable
generators

power flow equationsgenerator
set-points

line and bus
measurements

operation
cost

Fig. 1: The feedback structure of Online Feedback Optimiza-
tion of a single-area transmission grid.

The function h represents an input-output representation of
the power flow equations. These are usually given in implicit
form, as they are often derived from Kirchhoff’s and Ohm’s
laws and from algebraic models for loads and generators.
In their implicit form, they determine a manifold of power
flow solutions which are compatible with the physics of
the system (see [26] for details on this interpretation of
the power flow equations). By assuming the existence of an
input-output map h, we are also assuming that a chart for
this manifold exists, at least in the area of interest, and that
this local coordinate map is uniformly not degenerate in the
input coordinates. The technical requirement can be traced
back to standard implicit-function-theorem conditions, which
effectively corresponds to assuming voltage stability of the
grid (invertibility of the power flow Jacobian [27, Ch. 7]).

An alternative, but compatible, interpretation is that y =
h(u;w) is the steady-state map of a stable dynamical system
that represents the dynamics of power lines, generators,
and loads. The analysis of online feedback optimization in
the presence of plant dynamics goes beyond the scope of
this tutorial (see for example [9], [28], [29] and the other
approaches reviewed in [6, Section 4.2]).

Remark 1. The disturbance w also contains the power flows
from/to different neighboring parts of the grid. This modeling
choice automatically assumes that the behavior of the rest
of the grid is exogenous, i.e., it does not respond to the
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decisions taken by the controller that we are designing. We
will see in Section III that this assumption is critical and
needs to be revisited in the case of a multi-area setting.

Finally, specifications for the real-time congestion control
problem are given in the form of:

• A set U := {u | Au ≤ b} of feasible control inputs,
corresponding for example to the feasible region of the
different actuators;

• A set Y := {y | Cy ≤ d} of feasible outputs, encoding
for example voltage and line current limits;

• A continuously differentiable cost function φ(u, y) that
represents the resulting operating cost of the grid;
for example, the cost of active power curtailment of
renewable generators, power losses, etc.

The resulting static optimization problem reads as

minimize
u,y

φ(u, y) (2a)

subject to y = h(u;w) (2b)
u ∈ U (2c)
y ∈ Y. (2d)

In general, this problem is non-convex due to the equality
constraint (2b). In the remainder of the paper, we work under
the assumption that the problem is feasible, namely, a valid
power flow solution exists.

Following the principle of online feedback optimization,
we aim at designing an iterative update law that solves (2),
i.e., that drives the decision variables u, y to a local solution
of (2). To be compatible with the implementation in closed
loop with the physical system, the algebraic constraint (2b)
needs to be satisfied at all iterations. While this requirement
reduces the degrees of freedom in the design, it is also
a crucial source of robustness of the OFO approach: the
availability of y as a measurement allows to “outsource” the
evaluation of the function h to the physical system, reducing
the reliance on model information in a substantial way.

Notice that this online setting reduces the design problem
to the choice of the update iteration for the controlled deci-
sion variable u, while the decision variable y is completely
and automatically determined by (2b). This setup is to be
interpreted as the interconnection of the input iteration and
the algebraic plant, and the design goal is to ensure that the
local solution of (2) are asymptotically stable equilibria for
the closed-loop systems. See [30] for a formal discussion
of the connection between local convexity properties of the
problem and stability properties of the closed-loop intercon-
nection, although for continuous-time dynamics.

Multiple iterations (mostly inspired by iterative algorithms
in nonlinear optimization) serve this purpose, including

• (projected) gradient iterations [6], [31]
• primal-dual saddle-point dynamics [6], [9], [32]
• safe gradient flows [33]
• regularized primal-dual iterations [10]
• quasi-Newton flows [34]
• sequential convex programming [22]
• and others.

We refer to [22], for a general framework encompassing
most of the algorithms listed above. An important difference
between these iterations is how they handle the constraints
of the problem, and in particular the output constraints (2d).
To illustrate this point, we quickly review a few alternatives.

a) Penalty function and gradient descent iteration: A
penalty function p(y) can be used as a proxy for the output
constraint (2d), yielding the approximate problem

minimize
u,y

:=J(u,y)︷ ︸︸ ︷
φ(u, y) + p(y) (3a)

subject to y = h(u;w) (3b)
u ∈ U . (3c)

When the penalty term p is chosen continuously differen-
tiable, after substituting (3b) within (3a), a projected gradient
descent iteration for this problem takes the form

uk+1 = projU
[
uk − α∇uJ(u

k, yk)

− α∇uh(u
k;w)⊤∇yJ(u

k, yk)
]
, (4)

where α is a tunable gain/step size. Convergence of this itera-
tion to the set of local minimizers can be guaranteed without
convexity assumption (see [6] and [22] for a continuous-time
and a sampled-data stability analyses, respectively).

b) Projected gradient descent iteration: Alternatively,
we can maintain the original output constraint y ∈ Y in (2)
and perform a projected steepest-descent iteration. Following
the derivation in [31], the resulting update for the decision
variable u takes the form

uk+1 = uk + ασ(uk, w, yk) (5)

where
σ(u,w, y) =

argmin
δu

∥δu+∇uφ(u, y) +∇uh(u;w)
⊤∇yφ(u, y)∥2

subject to A(u+ δu) ≤ b

C(y +∇uh(u;w)δu) ≤ c.
(6)

Also in this case, convergence to the set of local minima
can be guaranteed without convexity assumptions: Theorem
3 in [31] states that under weak technical assumptions on the
problem and with sufficiently small (but not vanishing) gain
α, the closed loop system is guaranteed to converge to the
set of first-order optimal points of (2), and aysmptotically
stable equilibria are strict local minima.

c) Primal-dual iteration: By dualizing the output con-
straints and by substituting y = h(u;w), we obtain a
Lagrangian for (2) that takes the form

L(u, λ) = φ(u, h(u;w)) + λ⊤ (Cy − d) .

A saddle points of L can be determined by the primal-dual
iteration

uk+1 = projU
[
uk − α∇uφ(u

k, yk)

− α∇uh(u
k;w)⊤

(
∇yφ(u

k, yk) + C⊤λk
) ]

λk+1 = projR≥0

[
λk + β

(
Cyk − d

) ]
.
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90 kV

Fig. 2: Schematic of the transmission grid in the area of
Blocaux, France (31 buses, 58 branches), which constituted
the benchmark for OFO controllers in [20]. The dashed lines
represent connections to neighboring parts of the grid.

The conditions for convergence are not equally weak in
this case: convexity conditions are needed both to connect
saddle-points of the Lagrangian to the minima of the original
problem, and to prove convergence of the iteration [6].

A common feature of all these iterations is that the only
piece of model information that is needed is ∇uh(u,w),
namely, the sensitivity of the output y with respect to the
input u. In the application at hand, this corresponds to the
sensitivity of the solution of the state of the power grid with
respect to the controllable set-points of the generators. From
a modeling perspective, these sensitivities are directly related
to the first-order linearization of the power flow equations,
i.e., the local coordinate chart of the power flow manifold
(see [26] for a closed-form expression). In practice, this is a
well-known quantity in power flow analysis and a generaliza-
tion of the concept of Power Transfer Distribution Factors.
These sensitivities are often available to the operators as
byproduct of their grid state-estimation and planning.

We stress that none of these iterations require to evaluate
the plant model y = h(u;w) numerically, as they rely on
directed measurements of y, which dramatically increase
the robustness of these approaches to model uncertainty, as
observed both in numerical simulations [20] and in real-
world experiments [16], [18]. Some formal guarantees of
such robustness have been derived, based on different models
of the uncertainty in [35], [36].

A. Numerical experiments: Subtransmission grid control

We quickly review the results in [20], where the OFO
strategy was tested via numerical experiements on a bench-
mark model of the theal French subtransmission grid. The
entire grid consists of 7019 buses, 9657 branches, and 1465
generators. The task in the benchmark is to minimize the
losses and active power curtailment in the Blocaux area
(schematically represented in Figure 2). The area hosts
42 wind farms with power ratings between 0.5 MW and
102 MW, and a total installed wind power of 1274 MW.
The real-time controller decides active power curtailment
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Fig. 3: Performance of the feedback-optimization controller
on the single-area UNICORN benchmark in the Blocaux area
in France. We refer to the full simulation study in [20] for
the details, which include the reactive power set-points and
the resulting regulation of bus voltages to the desired range.

and reactive power injection of the individual wind farms.1

While doing so, the controller was required to satisfy voltage
magnitude limits at the buses and power flow limits on the
lines. It is assumed that the rest of the generators in the grid
(both inside and outside the Blocaux area) maintain their
set-point constants in the meanwhile.

A projected gradient descent controller as that in (5) has
been adopted for its ability to guarantee steady-state satis-
faction of the constraints and better transient performances.

Exemplary results of a simulation can be seen in Figure 3,
where the response to a fast variation of available wind power

1The controller tested in [20] is also capable to control the position of
tap changer transformers, a discrete input that we excluded from this paper.
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is reported. It can be seen that the controller successfully
tracks the optimal curtailment (which is a combination of
multiple small curtail actions at each individual wind gen-
erator). Note that the curtailment action is only used when
line congestion constraints become active, and successfully
prevents the overload of the lines. We refer to [20] for
a complete analysis of the performance of OFO on this
benchmark transmission grid and for a discussion on the
tuning of the proposed real-time control law.

III. MULTI-AREA TRASMISSION GRID CONTROL

In this section, we investigate the behaviour of multi-area
transmission grids in which the areas selfishly regulate their
congestion using OFO controllers, while being dynamically
interconnected with each other, as shown in Figure 4.

We consider a transmission grid consisting of N intercon-
nected areas, labelled by i ∈ I := {1, . . . , N}. Each area
i ∈ I controls its local inputs ui, namely, active and reactive
power setpoints of local generators, and measures its local
outputs yi, namely, voltage and current on the local lines. We
assume that current magnitudes of lines that interconnect two
areas are output measurements for both areas. With a game-
theoretic notation, we use u = col(u1, . . . , uN ) to denote
the stacked vector of control inputs of all areas, u−i =
col(u1, . . . , ui−1, ui−1, . . . , uN ) to denote the stacked vector
of control inputs of all areas but area i, and (ui, u−i) = u.

In this multi-area setting, the state of each area i depends
not only on the local control ui, but also on the control
inputs of the other areas, u−i, since the areas are dynamically
interconnected via the grid. Formally, the control inputs
(ui, u−i) and the local output yi is related by mapping

yi = hi(u;w) = hi((ui, u−i);w). (7)

In practice, each area i ∈ I aims at selfishly minimizing
local operational costs (i.e., renewable generation curtailment
of local generators, losses, etc.) while ensuring voltage and
current safety limits on the local lines, yielding

∀i ∈ I : min
ui∈Ui

{
Ji(ui, yi) | yi = hi((ui, u−i);w)

}
, (8)

where we used the penalty same penalty-based formulation
described in (3), where the output constraints yi ∈ Yi is
replaced with a penalty functions pi that is part of the cost
functions Ji, i.e., Ji(ui, yi) = φi(ui, yi) + pi(yi).

Note that these optimization problems are inter-dependent,
i.e., the optimal control input of area i depends on the control
inputs of the other areas, and thus constitute a noncooperative
game. Here, we assume that each area i ∈ I approaches its
correspondent congestion control problem problem using the
OFO controller in (4). This yields the dynamic feedback law

uk+1
i = projUi

[
uk
i − γiFi(u

k, yki )
]
, (9)

where the mapping Fi is defined as

Fi(u, yi) = ∇uiJi(ui, yi) +∇uihi(u;w)
⊤∇yiJi(ui, yi).

(10)

Intuitively, Fi is the partial gradient of the cost func-
tion Ji(ui, h((ui, u−i);w)) with respect to ui, and

OFO 
Controller

OFO 
Controller

OFO
Controller

OFO
Controller

OFO
Controller

Fig. 4: An example of a 5-area partition over the IEEE 118
bus test case (from [37]). Each area has access to voltage
and current measurements on the local lines, and regulates
its congestions using Online Feedback Optimization.

∇ui
hi((ui, u−i);w) is the Jacobian of the local steady-state

mapping (7) also with respect to the local decision variable ui

only. The latter corresponds to the sensitivity of the solution
of the state of the local area of the grid with respect to the
controllable set-points of the local generators.

A natural question in this multi-area setting is whether
the dynamics of the closed-loop transmission grid-OFO
controllers interconnection is stable or not. In the rest of this
section, we show that, under some regularity conditions on
the primitives of the game (8) and appropriate design choices
for the gains γi, the multi-area OFO controllers (9) indeeed
stabilize the transmission grid to a competitive equilibrium.

Definition 1. A feasible control profile u∗ is a Nash equi-
librium of the game in (8) if, for all i ∈ I,

Ji(u
∗
i , h(u

∗;w)) ≤ Ji(ui, h((ui, u
∗
i );w)), ∀ui ∈ Ui.

(11)

Before presenting the main stability result, we introduce
some preliminary technical assumptions.

Assumption 1. For all i ∈ I, Ji(ui, h(u;w)) is con-
vex with respect to ui and continuously differentiable.
The pseudo-gradient F of the game (8), defined as
F(u) := col(F1(u1, h1(u;w)), . . . , FN (uN , hN (u;w))), is
µ-cocoercive, i.e., ∀u, u′ ∈ U

⟨F(u)− F(u′), u− u′⟩ ≥ µ∥F(u)− F(u′)∥2. (12)

This assumption is quite standard in the literature of game
theory [38] and is one of the weakest under which existence
of a Nash equilibrium can be proven.

Assumption 2. For all i ∈ I, γi ∈ (0, 2µ).

This assumption on the local gains γi limits the aggres-
siveness of the local OFO controllers and, consequently, its
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Fig. 5: Composition and topology of the IEEE 30 bus power
flow test case. The dashed lines represent the division of the
grid into three areas.

tracking performance in a time-varying setting. With these
assumptions in place, we are ready to prove stability.

Theorem 1. Under Assumptions 1 and 2, the sequence of
output {yk}k∈N generated by (9) converges to some y∗ =
h(u∗;w), where u∗ is a Nash equilibrium of the game (8).

Proof. The proof is given in the appendix.

A. Simulations on the IEEE 30 bus power flow test case

In this section, we study the properties of the multi-area
OFO controllers in (9) via numerical simulations on the IEEE
30 bus power flow test case. This benchmark grid consists
of 41 lines and 30 buses with the following elements: 5 PV
generators, 3 PQ generators, 20 loads, and 1 external grid
(slack bus). Further, we assume that the grid is divided in
three areas I := {1, 2, 3}, locally controlled but physically
coupled. An illustration of the composition, topology, and
partition of the grid is shown in Figure 5. In all simulations,
we used Pandapower [39], an AC power flow solver, to
compute the output y of the power flow, i.e., h(u;w).

1) Stability of multi-area OFO control: In this first case
study, we show that the multi-area OFO controllers in (9)
indeed stabilize the transmission grid to a competitive steady-
state equilibrium. We simulate 134 minutes of closed-loop
grid operation, with a 10 seconds delay between sensing
and actuation. Namely, every 10 seconds, the controllers
receive field measurements yi of the grid state, computes
the local gradients as in (10), and update the set points of
the controllable generators ui for the next iteration. Figures 6
and 7 show the resulting evolution of the grid current and
voltage magnitudes, respectively. We see that after a quick
transitory, both voltage and magnitude stabilize to a steady-
state, which corresponds to a Nash equilibrium of the game
(8), by Theorem 1. We also note that such competitive
steady-state satisfies the output constraints. In particular, we
observed that the multi-area OFO controllers quickly drive

Fig. 6: Evolution of the line currents (solid lines) of the IEEE
30 bus grid in Figure 5 under the multi-area OFO controllers
(9). The dashed lines represents the correspondent line limits.

Fig. 7: Evolution of the line voltages of the IEEE 30 bus
grid in Figure 5 under the multi-area OFO controllers (9).

the current of line 9, which is initialized in an overloaded
state, within the safe limits, as shown Figures 6.

2) Multi-area OFO versus centralized OFO control: In
this case study, we compare the operation and the economic
performance of the multi-area OFO controllers in (9) against
the centralized OFO controller, obtained by applying the
iteration (4) to the grid as a single area. Under appropriate
choices of the control gains α and γi’s, both control designs
are able to stabilize the grid to feasible operating points,
as predicted by the theory. However, while the centralized
OFO controller stabilizes the grid to a social optimal state,
multi-area OFO control stabilizes the grid to a competitive
(Nash) state. The resulting total active power curtailment and
the correspondent curtailment cost for each area at the two
different operating points are plotted in Figure 9. Note that
while the total active power curtailed is comparable (∼138
MW in both cases), the cumulative curtailment cost of the
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Fig. 8: Evolution of the active power injections of the PQ
generators in the different areas of the grid in Fig. 5 under the
multi-area OFO controllers (solid lines) and the centralized
OFO controller (dot-dashed lines), respectively.
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Fig. 9: Active power curtailment (left) and correspondent
curtailment cost (right), namely, the purely monetary part
of the cost functions Ji, for the different areas in Fig. 5 at
the steady-state operation obtained by the multi-area OFO
controllers in (9) and the centralized OFO controller.

multi-area case is 81% larger than the centralized case. This
is not surprising as the centralized OFO controller is specif-
ically designed to minimize the social cost at steady-state.
On the other, the resulting steady-state is not strategically
stable, namely, some areas may unilaterally decrease their
local costs by changing their control inputs.

IV. CONCLUSION AND OUTLOOK

Online Feedback Optimization is an attracting control
methodology for real-time operation of large scale trans-
mission grids, as it is requires minimal information on
the grid model and it is robust to exogenous disturbances
affecting the grid (e.g., uncontrollable loads and variable
generation). In multi-area transmission grids, where the
sub-areas autonomously regulate their congestion via local
OFO controllers, the resulting closed-loop dynamics can be
studied using tools form game theory and monotone operator
theory. We showed that, under some technical conditions on
the parameters of the local OFO controllers, the multi-area
transmission grid stabilizes to a competitive equilibrium. We

show via numerical simulations that such equilibria are glob-
ally inefficient, compared to a centralized socially-optimal
steady state. On the other hand, socially-optimal steady-state
are not strategically stable nor incentive compatible, meaning
that some areas may be heavily penalized by participating
in a centralized control design. Hierarchical game theory
offers a solution to this inherent trade off in the form of
incentives that need to be properly designed in order to make
the socially optimal state strategically stable. The design of
these incentives for real-time operation of modern multi-area
transmission grids is largely unexplored.

APPENDIX

PROOF OF THEOREM 1
We start by proving existence of A Nash equilibrium

of (8). By [40, Corollary 3.4], the Nash equilibria of (8)
correspond to the solution of the following generalized
equation (GE), or variational inequality, 0 ∈ NU (u) + F(u),
where NU is the normal cone operator of the Cartesian set
U =

∏
i∈I Ui. Moreover, by [41, Proposition 23.36], this

GE admits at least one solution since the Ui are bounded
and F is cocoercive (hence, also maximally monotone [41,
Example 20.31]) by Assumption 1. It follows that at least
a the Nash equilibria of (8) exists. Next, we show that the
closed-loop discrete-time dynamics in (9) globally converge
to a Nash equilibrium. First, we note that by stacking up (9),
we can re-write them more compactly as

uk+1 = projU (u− ΓF(u)) (13)

= (Id + ΓNU )
−1 (u− ΓF(u)) , (14)

where Γ = diag(γ1, . . . , γN ) is a diagonal matrix with the
control gains γi on the main diagonal. The iteration (13)
corresponds to a forward-backward splitting algorithm [41,
§ 26.5], which converges to a zero of ΓF + ΓNU under
the conditions of [41, Theorem 26.14]. Namely, cocoercivity
of ΓF, maximal monotonicity of ΓNU , and existence of a
solution. The first condition holds in the weighted norm
∥ · ∥Γ−1 , with parameter 1/2, since for all u, u′ ∈ U

⟨F(u)− F(u′), u− u′⟩Γ−1 ≥ µ∥F(u)− F(u′)∥2,
≥ µ/(max

i∈I
γi) ∥F(u)− F(u′)∥2Γ−1 ,

> 1/2 ∥F(u)− F(u′)∥2Γ−1 ,

where the first inequality follows from the cocoercivity of F
(Assumption (1)), the second since ∥ ·∥2Γ−1 ≥ λmin

(
Γ−1

)
∥ ·

∥2 with λmin

(
Γ−1

)
= (maxi∈I γi)

−1, and the third since
γi ∈ (0, 2µ) by Assumption 2. The second condition, namely
maximal monotonicity of ΓNU , holds in the same norm,
∥ · ∥Γ−1 by [41, Example 20.26, Proposition 20.24] since
Γ is a diagonal positive matrix. Finally, we note that 0 ∈
Γ(F(u) +NU (u)) if and only if 0 ∈ F(u) +NU (u)). Note
that the latter GE characterizes the set of Nash equilibria of
(8), which is nonempty by the first part of the proof. Now, we
can finally invoke [41, Theorem 26.14] to prove convergence
of the sequence {uk}k∈N generated by (13) to some u∗ such
that 0 ∈ zer(F(u∗) +NU (u

∗)), which is a Nash equilibrate
of (8), and conclude the proof. □
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