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Abstract— Solving power flow is perhaps the most funda-
mental calculation related to the steady state behavior of
alternating-current (AC) power systems. The normally radial
(tree) topology of a distribution network induces a spatially
recursive structure in power flow equations, which enables
a class of efficient solution methods called backward/forward
sweep (BFS). In this paper, we revisit BFS from a new per-
spective, focusing on its convergence. Specifically, we describe
a general formulation of BFS, interpret it as a special Gauss-
Seidel algorithm, and then illustrate it in a single-phase power
flow model. We prove a sufficient condition under which
the BFS is a contraction mapping on a closed set of safe
voltages and thus converges geometrically to a unique power
flow solution. We verify the convergence condition, as well as
the accuracy and computational efficiency of BFS, through
numerical experiments in IEEE test systems.

I. INTRODUCTION

The steady state of an alternating-current (AC) power
system is described by power flow equations. Given the
values of some variables (e.g., nodal power injections) in
power flow equations, a power flow (or load flow) problem
is one that solves for other variables (e.g., nodal voltages).

Solving power flow fast and accurately, as the foundation
of power system analysis and decision making, has been
the focus of extensive studies e.g. [1]. The Newton-Raphson
(NR) algorithm for power flow, first proposed in [2] and
implemented in [3], works for general networks with cycles.
However, it needs to compute Jacobian or solve a linear
system in each iteration, a significant computational burden
for large networks. The fast decoupled algorithm proposed in
[4] is an approximate and greatly simplified version of NR.
It works well when line power losses are small, which is a
reasonable assumption for high-voltage transmission systems
but not for distribution systems.

In the original paper [5] of the single-phase dist-flow
model, the solution approach used one-time backward sweep
to express all variables in terms of power injections at
the feeder head and all branch points, followed by an NR
algorithm to solve for these injections. The existence and
uniqueness of the solution were studied in [6]. By exploiting
the approximate sparsity of the Jacobian matrix in [5], fast
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decoupled methods were developed and their convergence
properties were analyzed in [7]. The fast decoupled methods
were extended to three-phase radial networks in [8]. The
existence and uniqueness of the solution for three-phase
radial networks were analyzed in [9].

A distribution network under normal operation features
a radial (tree) topology that induces a spatially recursive
structure in power flow equations. This structure can be
leveraged to design a class of efficient solution methods
called backward/forward sweep (BFS), first proposed in [10]
for three-phase distribution systems. It was also called the
ladder iterative technique [11, Chapter 10]. A BFS algorithm
for a single-phase network was presented in [12] where
nodal voltages and line currents are computed iteratively. It
was extended in [13] to allow P-V buses (i.e., buses with
fixed active power injections and voltage magnitudes) by
computing line power flows instead of currents. Both algo-
rithms [12], [13], after modification, are applicable to weakly
meshed (transmission) networks as well as radial networks.
Another variant of BFS, proposed in [14], calculates voltages
in both forward and backward iterations in linear feeders with
voltage-dependent loads.

The BFS algorithm in [12] was extended in [15] from
single-phase to three-phase networks, and in [16] to four-wire
neutral-grounded networks. In [17], three-phase voltages and
line currents are calculated with generalized line models
that incorporate transformers and constant impedance loads.
Transformers of different configurations have been included
in BFS through modified augmented nodal analysis [18].

The deployment of distributed generation requires power
flow methods to be adapted accordingly. For microgrids with
droop-controlled generators, [19] proposes a complex power
compensation approach to solve power flows in islanded
mode; [20] modifies the BFS method to calculate voltages
and line currents; and [21] further incorporates voltage and
frequency-dependent loads in BFS. Distributed generators
with constant voltage control, modeled as P-V buses, are
handled in BFS for three-phase networks, via a detailed
modeling of voltage-dependent reactive power control [22], a
P-V injection sensitivity matrix [23], a loop analysis method
[24], or an NR process to correct the power mismatch at P-V
buses and loop breakpoints [25].

In contrast to the design and testing of BFS algorithms,
their convergence properties have received little attention. An
exception is [26], which proves convergence in a network
of constant impedance loads, under a sufficient condition
on network structure and parameters. The key facilitating
factor of the proof is that the constant impedance loads
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make BFS equivalent to a linear iterative update of voltages.
However, for constant power loads (or injections) that are
more common in power flow problems, the voltage update
functions become nonlinear, to which the analysis in [26] is
not applicable.

This paper studies the convergence of BFS with con-
stant power injections, filling the gap mentioned above. We
describe a general formulation of BFS, interpret it as a
special Gauss-Seidel algorithm, and then illustrate it in a
single-phase distribution network. We then prove a sufficient
condition for a BFS algorithm to converge to a unique
solution within voltage limits. This condition, related to
the constant power injections, the network topology and
parameters, and the voltage limits, guarantees that BFS is
a contraction mapping. We illustrate the BFS algorithm and
its convergence condition in a small network. We compare
BFS and NR methods (the latter implemented in Matpower)
via numerical experiments, in single-phase networks adapted
from IEEE 13, 37, 123-bus and 8,500-node distribution test
systems. The results verify the convergence condition we
found, as well as the accuracy and computational efficiency
of BFS.

The rest of the paper is organized as follows. Section
II interprets the general BFS method as a Gauss-Seidel
algorithm. Section III illustrates BFS in a single-phase dis-
tribution network and proves its convergence. Section IV
presents numerical results. Section V concludes the paper.
We omit proofs in this tutorial paper.

II. GENERAL BACKWARD/FORWARD SWEEP

In this section we interpret the general BFS method as a
special Gauss-Seidel algorithm. The power flow variables are
partitioned into two vectors x ∈ An1

1 and y ∈ An2
2 , where A1,

A2 can be the field of real numbers R, complex numbers C,
or tuples. By choosing the variables and their partition (x, y)
appropriately, the power flow equations can be written in a
fixed-point form:

(x, y) = (f(x, y), g(x, y)) (1)

where f : An1
1 ×An2

2 → An1
1 and g : An1

1 ×An2
2 → An2

2 are
vector-valued continuous mappings with components:

xj = fj(x, y), ∀j = n1, . . . , 1, (2a)
yj = gj(x, y), ∀j = 1, . . . , n2. (2b)

In (2a), we arrange index j for xj in a descending order for a
reason that will be clear later. A Gauss-Seidel (GS) algorithm
is an iterative algorithm to find a fixed point (x, y) of (1).
In each iteration t, it updates components of (x, y) in turn,
using the latest available component values:

xj(t) = fj
(
xn1(t), . . . , xj+1(t), xj(t− 1),

. . . , x1(t− 1), y(t− 1)
)
, ∀j = n1, . . . , 1, (3a)

yj(t) = gj
(
x(t), y1(t), . . . , yj−1(t), yj(t− 1),

. . . , yn2
(t− 1)

)
, ∀j = 1, . . . , n2. (3b)

In a tree network, the power flow equations (2) have a
spatially recursive structure as follows. Let N denote both

(a) Backward sweep. (b) Forward sweep.

Fig. 1. General backward/forward sweep.

the set and the number of buses (i.e., nodes) in the network,1

excluding the root as bus 0. With N = n1 = n2, we label the
buses by index j, starting from j = 1 which is the first child
of the root, propagating towards the leaves in a breadth-first
search. Each variable (xj , yj) is associated with bus j; if xj

or yj is a line variable (e.g. line current), then bus j is the
end of the line that is farther away from the root.

Let T◦
j denote the set of buses in the subtree rooted at bus

j, excluding j. We have T◦
j ⊆ {N, ..., j + 1} due to the order

in which the buses are labeled. Define xT◦
j
:=

(
xk,∀k ∈ T◦

j

)
.

We say that x in (2a) satisfies a spatially recursive structure
if, given y, each xj depends on x only through xT◦

j
:

xj = fj(xT◦
j
, y), ∀j ∈ N. (4)

The boundary condition for (4) is that, if j is a leaf bus, then
T◦
j = ∅ and xj = fj (∅, y) =: fj(y). This relation starts (4)

as a backward sweep to recursively update x, working from
the leaves towards the root, as illustrated in Figure 1(a).

Let P◦
j denote the set of buses in the unique path from

bus 0 to bus j, including neither 0 nor j. We have P◦
j ⊆

{1, ..., j − 1}. Define yP◦
j
:=

(
yk,∀k ∈ P◦

j

)
. We say that the

variable y in (2b) satisfies a spatially recursive structure if
given x, each yj depends on y only through yP◦

j
:

yj = gj(x, yP◦
j
), ∀j ∈ N. (5)

The boundary condition for (5) is that, if j is a child of the
root bus 0, then P◦

j = ∅ and yj = gj(x, ∅) =: gj(x). It is
often the case that yj also depends on y0 at bus 0, which is a
given constant instead of a variable and thus does not appear
as input to function gj . This relation starts (5) as a forward
sweep to recursively update y, working from the root towards
the leaves, as illustrated in Figure 1(b).

If (x, y) in (2) satisfies the spatially recursive structure, the
general BFS algorithm, Algorithm 1, is essentially a special
GS algorithm to compute a fixed point of (1), equivalently
(4) and (5). In particular, the GS algorithm (3) is reduced to
lines 2-b) and 2-c) of Algorithm 1, since xj depends only
on xT◦

j
(given y) and yj only on yP◦

j
(given x).

Under the general BFS framework, different algorithms
may differ in their choices of variables (x, y) and the associ-
ated power flow equations, based in part on what information
is given in a power flow problem. These choices are not
unique and may result in different convergence properties.

1We slightly abuse notation for convenience when no confusion is caused.
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Algorithm 1: General backward/forward sweep
Input: (fj , gj ,T◦

j ,P
◦
j , ∀j ∈ N), and

(y0, y(0)) ∈ AN+1
2 with y(0) = (yj(0),∀j ∈ N).

Output: a solution (x, y) of (4) and (5).
1) Initialization:

• T◦
j = ∅ for all leaf buses j;

• P◦
j = ∅ for all children j of the root;

• t = 0.
2) while stopping criterion is not met do

a) t← t+ 1;
b) Backward sweep: for j from the leaves

towards the root do

xj(t)← fj(xT◦
j
(t), y(t− 1)), ∀j ∈ N ;

c) Forward sweep: for j from the root
towards the leaves do

yj(t)← gj(x(t), yP◦
j
(t)), ∀j ∈ N.

3) Return: x = x(t), y = y(t).

Fig. 2. Π-equivalent circuit of a distribution line.

Usually the voltage at the substation bus (the root of the
tree) is specified as y0 and the line currents or powers
downstream of the leaves are zero. These two boundary
conditions determine that most BFS algorithms compute line
currents or powers as x in the backward sweep and bus
voltages as y in the forward sweep. Next, we will look at
such an example and analyze its convergence properties.

III. BFS IN SINGLE-PHASE DISTRIBUTION NETWORKS

We now present the BFS algorithm of [12] and analyze
its convergence.

A. Network model and BFS algorithm

In a single-phase radial distribution network, suppose the
complex voltage V0 at the root bus 0 and complex power
injections (sj ,∀j ∈ N) at all non-root buses are given. The
network is considered as a directed tree graph, where every
line points away from the root. A line j → k is modeled by
the Π-equivalent circuit in Figure 2, where nonzero constant
parameter ysjk = yskj is the series admittance,2 with its
reciprocal zsjk = zskj := (ysjk)

−1 the series impedance, and
ymjk and ymkj are the shunt admittances of the line at buses j

2Here we use y as admittance by convention, which is different from y
as a variable in the general BFS method.

and k, respectively. Let Ijk denote the sending-end current
from buses j to k and Isjk the current across the series
admittance ysjk, i.e., Ijk = Isjk + ymjkVj where Vj is the
complex voltage at bus j. For each non-root bus j ∈ N , let
l := l(j) denote its unique parent bus between bus 0 and
bus j. In this way, currents Islj across all lines l → j are
identified by j ∈ N .

We will compute currents Is := (Islj ,∀j ∈ N) and
voltages V := (Vj ,∀j ∈ N). All other variables, such
as sending-end currents Ilj and powers Slj , can then be
determined. Taking Is as x and V as y, the recursive
structure (4)(5) is the power flow equations in [12]:

Islj =
∑

k:j→k

Isjk −
(
sj
Vj

)∗

+ ymjjVj , ∀j ∈ N, (6a)

Vj = Vl − zsljI
s
lj , ∀j ∈ N (6b)

where ymjj := ymjl +
∑

k:j→k y
m
jk is the total shunt admittance

incident on bus j. Equation (6a) is the Kirchhoff’s current
law, i.e., the sum of currents flowing into a bus equals that
flowing out. In particular, the power injection sj = VjI

∗
j ,

where Ij is the complex current injection to bus j and I∗j is
its conjugate. Equation (6b) is the Ohm’s law.

Add iteration indices to (6), by changing Islj , Isjk to Islj(t),
Isjk(t) and Vj to Vj(t− 1) in (6a), and changing Vj , Vl, Islj
to Vj(t), Vl(t), Islj(t) in (6b). This specifies the general BFS,
Algorithm 1, as a BFS algorithm in the single-phase radial
distribution network. The boundary conditions are:

• Isjk(t) = 0 for all leaf buses j and all t ≥ 1;
• V0 at the root bus 0 is given and fixed;
• V (0) = (Vj(0),∀j ∈ N) is given, e.g., all as V0.

A stopping criterion can be based on the discrepancy between
the given power injections sj and the injections sj(t) implied
by Is(t) and V (t) at the end of iteration t. Specifically let

sj(t) := Vj(t)

 ∑
k:j→k

Isjk(t)− Islj(t)

∗

+
(
ymjj

)∗ |Vj(t)|2

for all j ∈ N and t ≥ 1, and a stopping criterion can be:

∥s(t)− s∥2 :=

√∑
j∈N

|sj(t)− sj |2 < δ

for a given tolerance δ > 0.

B. Convergence analysis
The BFS update functions (6) can be represented

compactly using the bus-by-line incidence matrix C ∈
{−1, 0, 1}(N+1)×N of the radial network, defined by:

Cje =


1 if e = j → k for some bus k,

−1 if e = l→ j for some bus l,

0 otherwise.

The matrix C is of rank N and singular. Decompose C into
the N ×N non-singular reduced incidence matrix Ĉ and its
first row cT0 corresponding to the root bus 0:

C =

[
cT0
Ĉ

]
.
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Define N ×N diagonal matrices:

ŝ := diag (sj ,∀j ∈ N) , ŷm := diag
(
ymjj ,∀j ∈ N

)
,

ŷs := diag
(
yslj ,∀j ∈ N

)
.

The BFS algorithm (6) (with appropriate iteration index t and
(t−1) as explained) is equivalent to the following nonlinear
dynamical system:

ĈIs(t) = ŝ∗V −∗(t− 1)− ŷmV (t− 1), (7a)
c0V0 + ĈTV (t) = (ŷs)

−1
Is(t) (7b)

where the j-th element of ĈIs is
∑

k:j→k I
s
jk − Islj , i.e., the

net current flowing out of bus j ∈ N ; column vector V −∗ :=
(1/V ∗

j ,∀j ∈ N); and ŝ∗ takes the element-wise conjugate
of diagonal matrix ŝ. The j-th element of (c0V0 + ĈTV ) is
the voltage difference (Vl−Vj) across line l→ j. Eliminate
ĈIs(t) in (7) to get a dynamical system in terms of V only:

V (t) = L̂−1
[
ŝ∗V −∗(t−1)− ŷmV (t−1)− Ĉŷsc0V0

]
=: F (V (t− 1)) (8)

where the invertible, reduced Laplacian matrix L̂ := ĈŷsĈT

encodes the network topology and series admittances.
We focus on the compact form (8) of BFS to prove its

convergence. Without loss of generality, use the per unit
system with the nominal voltage 1 per unit (pu). Consider
the following set of voltages that satisfy the safety limit:

V :=
{
V ∈ CN | 1− ϵ ≤ |Vj | ≤ 1 + ϵ, ∀j ∈ N

}
(9)

with a given constant ϵ ∈ (0, 1), e.g., ϵ = 0.05. The
following lemma provides a sufficient condition to make (8)
a mapping from V onto V. This kind of condition, which was
missing in previous work such as [1], not only facilitates our
convergence proof of BFS, but also guarantees voltage safety
of the obtained solution.

Lemma 1. Suppose |V0| = 1 for easy exposition. Define
column vectors of nonnegative real numbers:

|s| := [|s1|, . . . , |sN |]T , |ym| := [|ym11|, . . . , |ymNN |]
T
,

|I| := |s|
1− ϵ

+ (1 + ϵ)|ym|

and N ×N real matrices:

|ŷs| := diag
(
|yslj |,∀j ∈ N

)
, |L̂| := Ĉ|ŷs|ĈT.

Suppose the following condition is satisfied:

1

ϵ

∥∥∥|L̂|−1|I|
∥∥∥
∞
≤ 1 (10)

where ∥u∥∞ := maxi |ui|. If V ∈ V then F (V ) ∈ V.

The following result provides a sufficient condition for the
convergence of the BFS algorithm (8), by proving F to be
a contraction mapping from V onto V.

Theorem 1. Suppose |V0| = 1 and (10) in Lemma 1 are
satisfied, and

ρ :=
1

(1− ϵ)2

∥∥∥L̂−1ŝ∗
∥∥∥
2
+
∥∥∥L̂−1ŷm

∥∥∥
2

< 1 (11)

𝒔𝟐 = −𝟎. 𝟒𝟓𝒆𝐣
𝝅
𝟔

𝒔𝟑 = −𝟎. 𝟒𝟓𝒆𝐣
𝝅
𝟔

𝑽𝟎 = 𝟏𝒆𝐣𝟎

𝑧01
𝑠 = 0.05𝑒j

𝜋
6

𝑧12
𝑠 = 0.1𝑒j

𝜋
6

𝑧13
𝑠 = 0.1𝑒j

𝜋
6

𝒔𝟏 = 𝟎

Fig. 3. A small example of power flow. Network parameters and input
variables are given in per unit. All shunt admittances are set as zero.

where ∥ · ∥2 takes the spectral norm of a complex square
matrix. Then, on the set V:

1) There is a unique fixed point (i.e., power flow solution)
V of (8);

2) Starting from any V (0) ∈ V, the sequence (V (t),∀t ≥
1) produced by (8) converges geometrically to the fixed
point V , i.e., ∥V (t)− V ∥2 ≤ ρt∥V (0)− V ∥2.

The proofs of Lemma 1 and Theorem 1 are skipped.
We remark on the conditions in Theorem 1. Parameter ϵ
that controls the voltage limits in V determines a trade-off
between satisfying the condition (10) in Lemma 1 for voltage
limits and (11) in Theorem 1 on the rate ρ of contraction.
Specifically, condition (10) contains two factors 1

ϵ(1−ϵ) and
1
ϵ on its left-hand side, both of which increase as ϵ decreases
within (0, 0.5], making it harder to satisfy (10), i.e., harder
to enforce self-mapping on a smaller set V. Meanwhile, the
modulus ρ of mapping F in (11) decreases as ϵ decreases,
making it easier to be a contraction mapping on a smaller set
V. Other factors that may help satisfy (10) and (11) include:

• Smaller bus current injections that come from power
injections sj and/or shunt admittances ymjj , depending
on whether their currents reinforce or cancel each other;

• Smaller elements of matrices |L̂|−1 and L̂−1, which
may be realized by larger series admittances yslj and
shorter common paths between pairs of buses to the
root; the latter is often easier for smaller-depth trees.

We also remark that conditions (10) and (11) are sufficient
for the convergence of BFS (8) (equivalently (6)), but may
not be necessary. They may be conservative as the numerical
experiments below will show.

C. Illustration in a small network

We illustrate the BFS algorithm and its convergence
condition using the small example in Figure 3. The line
series impedances, root bus voltage, and non-root bus power
injections are given in the figure, all in per unit. All shunt
admittances are set as zero. Initialized as Vj(0) = V0,
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Fig. 4. The magnitudes of bus voltages and line currents over the BFS
iterations to solve the case in Figure 3.

j = 1, 2, 3, the BFS algorithm (6) for iterations t ≥ 1 is:

Backward sweep: Is12(t) = − s∗2
V ∗
2 (t− 1)

Is13(t) = − s∗3
V ∗
3 (t− 1)

Is01(t) = Is12(t) + Is13(t)

Forward sweep: V1(t) = V0 − zs01I
s
01(t)

V2(t) = V1(t)− zs12I
s
12(t)

V3(t) = V1(t)− zs13I
s
13(t).

This BFS process can be expressed in the compact form (8),
with yslj = (zslj)

−1 for all lines l→ j and incidence matrix:

C =

[
cT0
Ĉ

]
, c0 =

10
0

 , Ĉ =

−1 1 1
0 −1 0
0 0 −1


to construct the reduced Laplacian matrix L̂ = ĈŷsĈT.

Figure 4 shows the magnitudes of bus voltages V =
(V1, V2, V3) and line currents Is = (Is01, I

s
12, I

s
13) across

the BFS iterations. The plots for V2 and V3 overlap, so do
those for Is12 and Is13, due to the symmetry of the network
structure and parameters. The BFS converges quickly to the
actual power flow solution V = (0.95, 0.9, 0.9)ej0 whose
angles happen to be all zero. Using ϵ = 0.1 pu, the left-
hand side of condition (10) for Lemma 1 is exactly 1, which
barely guarantees safe voltages at/above 0.9 pu. The rate of
contraction in condition (11) for Theorem 1 is ρ = 0.12,
sufficiently small to lead to the quick convergence.

IV. NUMERICAL EXPERIMENTS

We program the presented BFS algorithm in MATLAB
(R2021b) and compare it with the Newton-Raphson (NR)
algorithm implemented in Matpower, to verify convergence
and performance of BFS. The programs are run on a desk-
top computer with 11th Gen Intel(R) Core(TM) i7-11700
processors at 2.50 GHz and 16GB RAM.

We use the programs to solve AC power flow in single-
phase radial network models modified from the originally

TABLE I
CONVERGENCE CONDITION AND SOLUTION ERROR OF BFS

Test case (10) (11) Max (pu) RMSE (pu)

13-bus 0.34 0.08 1.6× 10−5 1.2× 10−5

37-bus 0.61 0.28 2.5× 10−7 1.5× 10−7

123-bus 1.83 1.20 2.3× 10−6 1.6× 10−6

8,500-node- 1
3

1.44 6.11 4.8× 10−7 3.5× 10−7

8,500-node 4.32 18.32 - -

TABLE II
COMPUTATIONAL EFFICIENCY OF BFS AND MATPOWER NR

Test case
Iterations Convergence time (sec)

BFS Matpower BFS Matpower

13-bus 3 3 5.3× 10−5 1.5× 10−3

37-bus 4 3 1.7× 10−4 1.7× 10−3

123-bus 5 4 7.6× 10−4 3.3× 10−3

8,500-node- 1
3

6 3 3.9× 10−1 2.0× 10−2

three-phase IEEE 13, 37, 123-bus and 8,500-node distri-
bution test systems. Single-phase constant power loads (or
injections) and line parameters are obtained by averaging
three phases of the original IEEE data. In particular, we
remove all capacitors and split-phase transformers from the
8,500-node system (that has 4, 876 buses, each with 1, 2,
or 3 phases, where a phase is a node). The 2, 354 buses
on the secondary side of the split-phase transformers are
consolidated into the primary side, thus reducing the system
to 2, 522 buses. We also experiment on a light-load version of
the modified 8,500-node system, referred to as 8,500-node-
1
3 , by decreasing the active and reactive power loads at all
buses to 1/3 of the original values.

We set ϵ = 0.1 pu to calculate the left-hand side of
condition (10) for Lemma 1 and (11) for Theorem 1, as
shown in Table I. For all test cases except the 8,500-node
system, the BFS algorithm converged, i.e., our stopping
criterion: maxj∈N |Vj(t)−Vj(t−1)| < 10−4 pu was met in
these cases. Not all the convergent cases, however, satisfied
conditions (10) and (11). This means that the sufficient
condition in Theorem 1 is generally conservative. For the
8,500-node system, conditions (10) and (11) were violated
so much that BFS did not converge. Indeed, for this case the
Matpower NR algorithm also failed to converge.

For the test cases in which the BFS algorithm converged,
we compare its voltage solution to that obtained by the
Matpower NR algorithm, and show in Table I the maximum
error (Max) and root-mean-square error (RMSE) between
them across all buses. We observe that BFS is quite accurate
in solving power flow, if we take Matpower as a well
accepted benchmark. As shown in Table II, the computational
efficiency of BFS is comparable with, sometimes better than,
the Matpower NR algorithm, in terms of the number of
iterations and time taken until convergence.
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V. CONCLUSION

We have interpreted a general BFS method as a special
Gauss-Seidel algorithm, and illustrated it in single-phase
radial distribution networks. We have proved a sufficient
condition for the BFS algorithm of [12] to be a contraction
mapping, hence guaranteeing its convergence to a unique
power flow solution over the set that satisfies voltage limits.
We discussed the implication of the convergence condition
in terms of bus power injections, network topology and
parameters, and the size of the voltage limits. Numerical
experiments in multiple IEEE test cases showed that the
BFS algorithm achieves satisfactory convergence, solution
accuracy, and computational efficiency, comparable with or
better than the Newton-Raphson algorithm in Matpower.
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