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Abstract

We consider the distributed optimization problem for a
multi-agent system. Here, multiple agents cooperatively
optimize an objective by sharing information through a
communication network and performing computations.
In this tutorial, we provide an overview of the problem,
describe the structure of its algorithms, and use simula-
tions to illustrate some algorithmic properties based on
this structure.

1 Introduction

Consider a group of agents that are connected together in
a communication network, where each agent is capable of
communicating with other agents using the network and
performing local computations. For instance, each agent
may be a computing node, robot, or mobile sensor.

As an illustrative example, consider the problem of large-
scale machine learning. Here, each agent is a computing
unit with access to a set of data, and the agents seek
to cooperatively build a global model that fits all of the
data [1, 2]. Let n denote the number of agents, and let
fi and yi denote the loss function and model parameters
associated with agent i ∈ {1, . . . , n}. To construct a
cohesive global model, we can minimize the total loss over
all agents subject to the agents agreeing on the model.
This can be formulated as the optimization problem

minimize

n∑
i=1

fi(yi) (1a)

subject to y1 = y2 = . . . = yn. (1b)

One approach to solve this problem is for all agents to
send their data to a central server and have the server
solve the problem to build the model. Some issues with
this centralized approach are that i) the computations on
the server scale with the number of agents, ii) the system
is fragile in that failure of the central server causes the
entire system to fail, and iii) data must be transmitted
directly over the network and is therefore not private.
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Figure 1: Decomposition of a distributed algorithm into
an optimization method Gopt and second-order consen-
sus estimator Gcon.

Instead, we seek a distributed solution to this problem
in which each agent i updates its model yi using its own
loss function fi and variables that are communicated with
neighboring agents. Such algorithms can be made scal-
able to a large number of agents, robust to failures of
individual agents [3], and private from other agents [4].

Beyond large-scale machine learning, the distributed op-
timization problem has many other applications, such as
multi-agent formation control [5], distributed spectrum
sensing [6], and distributed allocation of resources [7, 8].

In this tutorial, our main objectives are as follows:

1. Provide an overview of the distributed optimization
problem for a multi-agent system.

2. Describe the structure of algorithms to solve this
problem including how they decompose into opti-
mization and consensus components as in Figure 1.

3. Use simulations to illustrate some algorithmic prop-
erties based on this structural decomposition.

We setup the basic structure of distributed optimization
algorithms in Section 2 and show how they decompose
into optimization and consensus components in Section 3.
We then use simulations to illustrate convergence prop-
erties in terms of this decomposition in Section 4.

Throughout the paper, subscripts index the agent and
superscripts denote the iteration; for instance, yki is the
variable y on agent i at iteration k. For a linear time-
invariant system G, we denote its transfer function as
Ĝ(z). We use bold symbols to denote quantities that are
aggregated over all agents, such as

y =

y1...
yn

 and G =

G1

. . .

Gn

 . (2)
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2 Problem setup

In this section, we describe distributed algorithms for (1)
in which agents compute their local gradient and share
information through a communication network.

2.1 Communication network

We describe the communication network among the
agents as a weighted directed graph, such as in Figure 2.
Each vertex in the graph corresponds to an agent in the
network and is represented by a circle. Edges in the graph
are represented by arrows and indicate the flow of infor-
mation from one agent to another. The weight of an edge
is the amount by which the information is weighted.
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Figure 2: A weighted directed graph that represents the
communication network among a group of agents.

Suppose that each agent i has a scalar variable zi. One
way for an agent to fuse its information with that of its
neighbors is to compute a weighted average of the dif-
ference between its variable and those of its neighbors.
The weight aij that agent i places on information from
agent j is the weight of the edge from node i to node j
in the graph. This is a linear operation over the concate-
nated vector z = (z1, . . . , zn) ∈ Rn that is represented by
multiplication with the Laplacian matrix L ∈ Rn×n. In
particular, the ith component of the product is

(Lz)i =

n∑
j=1

aij (zi − zj). (3)

The weight aij is nonzero only when agent j is able
to send information to agent i, so agent i can compute
this quantity using the communication network. For the
graph in Figure 2, the Laplacian matrix is

L =


1 − 1

2 0 0 − 1
2

0 3
4 0 − 3

4 0

0 − 1
4

1
2 − 1

4 0

− 1
2 0 − 1

2
3
2 − 1

2

− 1
2 0 0 − 1

2 1

 .

This graph is balanced in that, for each node, the sum of
the weights of all incoming edges is equal to that of the
outgoing edges [9]. In terms of the Laplacian matrix, this
means that each row and column sums to one. Balanced
graphs preserve averages since

∑n
i=1(Lz)i =

∑n
i=1 zi.

2.2 Distributed algorithms

We now describe the structure of distributed algorithms.
Each agent i maintains an estimate yi of the optimal so-
lution to (1) and can evaluate its local gradient to obtain
the quantity

ui = ∇fi(yi). (4a)

Agent i can also communicate some quantity zi with its
local neighbors and fuse the information using the graph
Laplacian to obtain

vi =

n∑
j=1

aij (zi − zj). (4b)

And finally, the algorithm must determine how to choose
the point yi at which to evaluate the gradient and the
point zi to communicate with neighboring agents in the
network. We assume each agent uses the same algorithm
and represent this operation as[

yi
zi

]
= H

[
ui

vi

]
. (4c)

We focus on algorithms for which H is causal and linear
time-invariant (LTI), although some algorithms in the lit-
erature are nonlinear and/or time-varying [10]. Together,
equations (4a)–(4c) represent the algorithm on agent i.

We can represent distributed algorithms compactly using
the concatenated vectors u, v, y, and z as in (2). In terms
of these concatenated vectors, (4a) becomes

u = ∇f(y) where ∇f = diag(∇f1, . . . ,∇fn). (5a)

Likewise, using the Kronecker product ⊗, equation (4b)
can be represented as

v = Lz where L = L⊗ Im (5b)

with m the dimension of the communicated variable zi.
And finally, (4c) becomes[

y
z

]
= H

[
u
v

]
where H =

[
In ⊗H11 In ⊗H12

In ⊗H21 In ⊗H22

]
. (5c)

These relationships are summarized by the block diagram
in Figure 3, where the system H is in feedback with the
gradient ∇f and Laplacian L.
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Figure 3: Structure of a general distributed algorithm.
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3 Algorithm structure

The previous section describes the basic structure of a
distributed algorithm as a system H in feedback with
the gradient of the objective functions and the Laplacian
matrix. It does not, however, provide any insight into
how properties of the algorithm depend on H, or even
what choices of H lead to sensible algorithms1.

Intuitively, the optimization problem (1) is a combination
of optimization (minimizing the sum of the functions)
and consensus (having the agents agree on the solution).
In this section, we first review algorithms for optimiza-
tion and consensus separately, and then describe how any
distributed algorithm of the form in Sec. 2.2 decomposes
into these two components.

3.1 Consensus estimators

We now describe the problem of consensus. Suppose each
agent i observes a (potentially time-varying) signal wk

i .
A consensus estimator is an iterative procedure for each
agent to estimate the average signal wk

avg = 1
n

∑n
i=1 w

k
i

by sharing information with its local neighbors [11].

The block diagram of one particular consensus estimator
is shown in Figure 4.

1

z − 1
I L

w

−
y

Figure 4: The proportional (P) estimator.

Let xi denote the state of the estimator on agent i. Then
the proportional estimator is described by the recursion

yki = wk
i − xk

i (6a)

xk+1
i = xk

i +
n∑

j=1

aij
(
yki − ykj

)
(6b)

where the state is initialized such that
∑n

i=1 x
0
i = 0.

In general, each agent i has an input signal wi for which
the agents seek to compute the average, an output signal
yi that estimates the average of the inputs, a signal zi
that the agent communicates with neighbors, and a signal
vi that is the result of applying the Laplacian matrix
to the communicated variables. The block diagram of
a general consensus estimator with these components is
shown in Figure 5.

For example, the transfer function of the P estimator is

Ĝcon(z) =

[
1 −1

z−1

1 −1
z−1

]
. (7)

1For instance, a desireable property is for all fixed points of the
algorithm to correspond to optimal solutions of (1).

Gcon

L

z v

y w
[
yi
zi

]
= Gcon

[
wi

vi

]

vi =

n∑
j=1

aij (zi − zj)

Figure 5: General form of a consensus estimator.

When the input signal is constant, the output of the P
estimator converges asymptotically to the average of the
input signal, that is, it has zero steady-state error [11].
Such estimators are called first-order estimators. Like-
wise, a second-order estimator asymptotically tracks the
average of signals whose deviations from their average are
ramps. One way to construct a second-order estimator
is by combining two first-order estimators in series.

3.2 Optimization methods

Now consider a single agent i that seeks to optimize its
own objective function fi (as opposed to the sum of all
the functions). To do so, the agent may use a gradient-
based optimization method [12] that sequentially queries
its gradient ∇fi.
A particular optimization method is the gradient method,
which is described by the recursion

yk+1
i = yki − α∇fi(yki ) (8)

where α > 0 is the stepsize. In general, an optimization
method applies a discrete-time dynamical system Gopt to
the signal of gradient values ui to choose the point yi at
which to evaluate the next gradient. The block diagram
of a general optimization method is shown in Figure 6.

Gopt

∇fi

yi ui
yi = Gopt ui

ui = ∇fi(yi)

Figure 6: General form of an optimization method.

For example, the transfer function of the gradient method
is

Ĝopt(z) =
−α

z − 1
.

For the optimization method to have a fixed point that
satisfies the first-order optimality conditions (that is, the
gradient is zero), the transfer function must have a pole
at z = 1. The gradient method uses the minimal number
of states to satisfy this requirement, but there are also
accelerated methods that use additional states to achieve
faster convergence [13].
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3.3 Structural decomposition

Since optimization [12] and consensus [11] have been well-
studied in the literature, we seek to represent distributed
algorithms as a combination of these two components. It
turns out that this is possible: we can combine a valid op-
timization method and second-order consensus estimator
using Figure 1 to form a valid distributed algorithm [14,
Theorem 2]. Conversely, any valid distributed algorithm
decomposes in this way [14, Theorem 1].

While quite general, these results hold for algorithms in
which Gopt, Gcon, and H are causal LTI systems that
satisfy certain properties to be valid. The notion of a
valid algorithm varies depending on the type, but roughly
means that the algorithm behaves as desired in the sim-
plest scenario. A valid optimization method, for instance,
must converge to the optimal solution when applied to
the quadratic function y 7→ ε

2∥y − y⋆∥2 for all y⋆ and all
ε > 0 sufficiently small; see [14] for additional details.

4 Simulations

We now use simulations to illustrate some properties of
distributed algorithms based on the decomposition in
Figure 1. We first setup the problem and then describe
each of the various properties.

Consider a set of n = 5 agents that are connected in a
communication network as shown in Figure 2. Suppose
the agents cooperate to solve a machine learning prob-
lem in which the loss function is quadratic in the model
parameters. That is, the agents solve a distributed linear
least squares problem. The objective function on agent i
is the quadratic

fi(y) =
1
2y

TAiy − bTi y

parameterized by the symmetric matrix Ai ∈ Rd×d and
the vector bi ∈ Rd. The gradient is the linear function

∇fi(y) = Aiy − bi.

To generate the data, we sample the matrix Ai such that
its eigenvalues are evenly spaced in the interval [ 1

10 , 1],
and we sample each element of the vector bi from a stan-
dard normal distribution.

The dimension of the model parameters is d = 3. Since
the results depends on the problem data which is random,
we simulate 1000 trials for each scenario.

4.1 Optimization and consensus errors

At each iteration, the error is a measure of the distance
between the iterates of all the agents and the optimal
solution to the distributed optimization problem (1). To
define the error, we use the first-order optimality condi-
tions which are as follows:

• Optimality: the sum of the gradients is zero

n∑
i=1

∇fi(yi) = 0 (9a)

• Consensus: the agents agree on the optimizer

y1 = y2 = . . . = yn (9b)

We characterize the error of the iterates in terms of their
distance from satisfying these conditions. This consists
of two components: the size of the average gradient (the
optimization error) and the amount of disagreement (the
consensus error). For iterates yk1 , . . . , y

k
n, we define the

optimization and consensus errors as follows:

ekopt =

∥∥∥∥ n∑
i=1

∇f(yki )
∥∥∥∥ and ekcon =

n∑
i=1

∥∥∥∥yki − 1

n

n∑
j=1

ykj

∥∥∥∥.
We take the total error as the maximum of the optimiza-
tion and consensus errors, ek = max{ekopt, ekcon}, which
is zero if and only if the first-order optimality conditions
are satisfied.

Figure 7 shows the optimization and consensus errors for
each trial (thin) as well as the mean (thick) as a function
of the number of iterations. Here, we use the distributed
optimization algorithm in Figure 1 in which Gcon is two
P estimators connected in series and Gopt is the gradient
method with stepsize α = 0.25.

Figure 7: Optimization and consensus errors.

4.2 Factored form

Suppose that we iterate the algorithm for a long time.
From the first-order optimality condition (9a), the aver-
age gradient must be zero at the optimal solution. The
gradient of each individual agent, however, is nonzero in
general2. Recall that the optimization method must have
a pole at z = 1. The nonzero constant gradient resonates
with this pole which causes wi to grow as a ramp. As
this signal grows without bound, the error also grow over
time as shown in Figure 8 (blue).

We can fix this issue, however, if the consensus estimator
factors into two first-order estimators as shown in Fig. 9.

2If the gradient of each agent were zero at the optimal solution,
then there would be no need to cooperate since each agent could
solve the global problem by minimizing its local function!
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Figure 8: The factored form is numerically stable while
the general form is not.

GoptGcon1 Gcon2

L L

∇f

Figure 9: Factored form, where the second-order consen-
sus estimator factors into two first-order estimators.

In this case, the nonzero gradient on each agent is first
averaged by the estimator before being applied to the
optimization method. Since the average gradient is zero,
the input to the optimization method is now zero at the
optimizer, so the signals no longer grow over time. This
is illustrated in Figure 8 (red), where the error remains
at the numerical precision of the computer over time. In
this case, both consensus estimators are the P estimator.

4.3 Accelerated convergence

The decomposition in Figure 1 provides an intuitive pro-
cedure to accelerate the convergence of the algorithm. To
accelerate the convergence, we can replace the consensus
estimator with the accelerated version in Figure 10 that
uses additional dynamics to (potentially) accelerate the
rate of convergence.

kI z

(z − ζ)(z − 1)
I L

w

−
y

Figure 10: Accelerated consensus estimator.

Similarly, we can replace the gradient method with an
accelerated optimization method. Many common first-

order methods have the transfer function

Ĝopt(z) =
−α (z + γ (z − 1))

(z − β)(z − 1)
.

As our intuition suggests, using the accelerated consensus
estimator and optimization method improves the conver-
gence rate as shown in Figure 11 (red), where we use pa-
rameters (α, β, η) = (0.1, 0.8, 0) and (ζ, kI) = (0.1, 1.1).

Figure 11: Combining an accelerated consensus estima-
tor and accelerated optimization method may lead to
faster convergence.

4.4 Robustness

Now suppose agent 1 leaves the network; the agent may
have malfunctioned, ran out of power, or been hijacked
by an adversary. The modified graph is shown in Fig. 12,
where agent 1 and all of its connected edges are opaque
to symbolize that it no longer affects the computation3.
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Figure 12: The modified graph after agent 1 leaves the
communication network.

The proportional consensus estimator requires specific
initialization in that the average state must be zero. This
average is invariant in that it does not change over time.

3To maintain a balanced graph, the other agents update their
weights so that the sum of the incoming weights is equal to
that of the outgoing weights. While agent 4 is still capable of
sending information to agent 3, the corresponding weight is zero
indicating that the information is unused.
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From (6a), we observe that the average state xi must be
zero for the average output yi to equal the average of wi.
While we initially set the average state to be zero, it is in
general nonzero once the network changes. This results
in a systemic error as shown in Figure 13 (blue).

Figure 13: Agent 1 leaves the communication network at
iteration k = 200. Using a robust consensus estimator
enables the algorithm to recover from such changes.

An algorithm is robust to changes in the communication
network if it does not require a specific initialization, in
which case it eventually recovers from such changes. To
obtain an algorithm that is robust, we can simply replace
the consensus estimator Gcon2 in Fig. 8 with an estimator
that is robust. One such estimator is the PI estimator
whose block diagram is shown in Figure 14.

kp
z − ζ

I L

kI
z − 1

I L

w

−
y

Figure 14: The proportional–integral (PI) estimator,
which is robust to changes in the network.

Using this estimator, the error has a transient after the
change in the communication network but then converges
to zero as shown in Figure 13 (red). Here, we use the
parameters (kp, kI , ζ) = (1, 0.5, 0.95).

5 Conclusion

In this tutorial, we studied distributed optimization for
a multi-agent system. We described the structure of al-
gorithms in terms of optimization methods and consen-
sus estimators, and we illustrated some of the properties
through simulations on a machine learning problem.

We focused on algorithms that consist of a linear time-
invariant system in feedback with the gradient and the

Laplacian; however, other types of algorithms may be
needed depending on the class of objective functions to
be optimized. We also focused on certain properties that
depend on the algorithm structure, but we did not de-
scribe how to systematically analyze the convergence rate
to the optimal solution; such analysis can be done using
the techniques in [15–17].
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