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Abstract— We have all heard that there is growing need to
secure resources to obtain supply-demand balance in a power
grid facing increasing volatility from renewable sources of energy.
There are mandates for utility scale battery systems in regions
all over the world, and there is a growing science of “demand
dispatch” to obtain virtual energy storage from flexible electric
loads such as water heaters, air conditioning, and pumps for
irrigation.

The question addressed in this tutorial is how to manage
a large number of assets for balancing the grid. The focus is
on variants of the economic dispatch problem, which may be
regarded as the “feed-forward” component in an overall control
architecture.

1) The resource allocation problem is identical to a finite
horizon optimal control problem with degenerate cost—so called
“cheap control”. This implies a form of state space collapse,
whose form is identified: the marginal cost for each load class
evolves in a two-dimensional subspace, spanned by a scalar
co-state process and its derivative.

2) The implication to distributed control is remarkable. Once
the co-state process is synthesized, this common signal may
be broadcast to each asset for optimal control. However, the
optimal solution is extremely fragile, in a sense made clear
through results from numerical studies.

3) Several remedies are proposed to address fragility. One
is described through “robust training” in a particular Q-
learning architecture (one approach to reinforcement learning).
In numerical studies it is found that specialized training leads
to more robust control solutions.

I. CONTROLLING THE POWER GRID

This tutorial concerns control of a balancing area, with
consideration of three classes of agents: 1. consumers of
electricity, both residential and commercial, 2. generators
of various types, 3. a balancing authority (BA) that has
some authority over all agents, whose mandate is to ensure
reliability within its territory. In some regions of the US
such as Florida, a utility company may serve roles 2 and
3. A resource aggregator may serve to facilitate interaction
between the BA and consumers.

In the past the BA has been concerned largely with
reliability and cost. Our goal, and increasingly the goal of
policy makers, is to address the need for balancing services
in a power grid with large amounts of energy from the wind
and sun, ultimately resulting in lower emissions.
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An example of a BA is CAISO (California Independent
System Operator). Fig. 1 provides an illustration of the
challenges they face. The demand at 2pm was just under
20 GW, while the net-demand (demand minus generation
from renewables; also called net-load) was less than 5 GW.
This good news is offset by the tremendous ramps in net-
demand observed between 5pm and 8pm, coinciding with
the setting sun. Generators must be ready in advance of this
surge, and ramp up their production to ensure supply meets
demand at all times.
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Fig. 1: Demand and net-demand at CAISO on Monday, May 8, 2023,
as shown on their website the following day. The net-demand shows
some volatility on time scales of minutes. The massive afternoon
ramp is the largest challenge to CAISO on this day.

It is commonly proposed that net-demand can be flattened
with a big enough battery. On this day, the required size for
entirely flat net-demand (in particular, compensating for the
18GW ramp) would be approximately 10 GW in terms of
power, and 40 GWh in terms of energy. The largest battery
in the world today is about 0.35 GW / 1.5 GWh, taking up
100 acres of public land1.

The reader is likely aware that flexible loads may be
aggregated to provide services similar to a large battery
system, without impacting consumer quality of service. High
quality service requires a sensible control strategy: The term
demand dispatch was introduced in [3] to convey control
of flexible loads for the creation of virtual energy storage
(VES). The priority-stack approach of [10] is ideal for fully
centralized control, in which the aggregator can observe in
real time the state of each load under its control. A distributed
control solution for building HVAC systems is introduced
in [9]. Approaches for on-off loads are typically based on a
mean field model. Examples include feedback linearization
[21], [25], requiring estimates of the histogram of states; load-
level control techniques to enable control of the aggregate
through scalar broadcast from the BA or aggregator (see [6],

1https://www.blm.gov/press-release/blm-announces-completion-crimson-
energy-storage-project
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[16], [17] for history), and feedforward control techniques
[7], [2], [4].

A large collection of flexible loads in a given class (e.g., one
million residential water heaters) will be called a distributed
energy resource (DER). The same term will be used for a
battery system that is engaged with the BA.

Each approach to demand dispatch is designed to provide
grid balancing and regulation service while also imposing
constraints on consumer-side quality of service (QoS). Con-
sequently, while any DER is expensive to acquire in terms
of installation cost, the operating costs are essentially zero.
This has implications to control, and this zero marginal cost
aspect of grid services also has significant implications to
economics. In particular, it is demonstrated in [1], [12] that
the deferrable nature of the loads considered here and in prior
research implies that aggregate power consumption does not
vary smoothly with small changes in price.
Contributions and organization. The remainder of this
tutorial is organized in two sections, followed by the conclu-
sions.

Section II contains a full description of the resource
allocation problem considered. It is a formulated as a finite
horizon optimal control problem, for which the cost is
degenerate—so called “cheap control”. This implies a form
of state space collapse, whose form is identified: the marginal
cost for each load class evolves in a two-dimensional subspace,
spanned by a scalar co-state process and its derivative.

The implication to distributed control is remarkable: the
scalar co-state signal may be broadcast to each asset to achieve
the optimal control solution.

However, the optimal solution is extremely fragile, in a
sense made clear through results from numerical studies. Sev-
eral remedies are proposed to address fragility in Section III.
One is described through “robust training” in a particular Q-
learning architecture (one approach to reinforcement learning).
In numerical studies it is found that specialized training leads
to more robust control solutions.

II. BLESSINGS FROM MISMATCHED NEEDS

Let’s consider the needs of each agent: 1. residential con-
sumers want hot water, a cold refrigerator, and a comfortable
home (the needs of commercial consumers vary widely); 2.
each generation company wants to maximize profits; and as
stated previously 3. the BA engages with all the agents to
ensure a reliable grid.

The mismatch between residential consumers and the BA
is massive. For example, if every standard water heater (not
tankless) is turned off for one hour, a consumer will likely
suffer no loss of QoS, because temperature changes very
slowly without usage. One person taking a 30 minute shower
may notice a change in temperature. On the other hand, if
all of these loads are shut off simultaneously, this represents
a massive shock to the grid in terms of a downward ramp
in demand; perhaps one GW in the case of several million
water heaters.

With thoughtful design, this mismatch is a great blessing.
Power consumption can be varied wildly without imposing

cost to the consumer. This is why virtual energy storage is a
resource of enormous untapped potential.
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Fig. 2: Distributed control of distributed energy resources.

A. Control model

The control problem centers on the interaction between
the three entities. The BA is regarded as the leading agent
that optimizes generation and aggregate demand based on
forecasts of nominal net-demand.

Fig. 2 shows an idealized control architecture, ignoring
complications from engagements with resource aggregators.
The BA must ensure that QoS constraints are satisfied for
each load in its territory, and ensure that it will provide
desired grid services, such as addressing the ramp shown in
Fig. 1. In addition, generation is scheduled so as to minimize
cost (including the costs associated with ramping).

Each of M ≥ 2 DERs is modeled as a scalar linear state
space model:

d
dtx

i
t = −αix

i
t − zit, 1 ≤ i ≤M , (1)

in which xit is the state of charge (SoC) of the ith DER, and
−zit is power deviation at time t. The coefficient αi ≥ 0
models leakage for a battery system, and has a similar
interpretation for a TCL (thermostatically controlled loads,
such as a water heater). Justification of this model may be
found in [11] for TCLs, and a similar construction was
proposed as an approximation for pool cleaning (as well
as irrigation) in [23].

The state space model for control will be the 2M -
dimensional process xat = {xa i

t := (xit; z
i
t) : 1 ≤ i ≤ M},

with input ut = d
dtz

i
t . We find that this state augmentation is a

convenient way to incorporate the cost of ramping generation
in the optimization problems surveyed here.

With forecast net-demand at time t denoted ℓt, the realized
load is ℓt − zσt , in which the superscript denotes summation,
zσt =

∑
i z

i
t; it is interpreted as the virtual discharge rate of

the aggregate when positive. With g denoting total generation
from traditional sources (e.g., fossil-based, nuclear, and hydro
power plants), balancing supply and demand requires gt =
ℓt − zσt for all t.

The economic dispatch problem is posed in continuous
time as the finite horizon optimal control problem, with time-
horizon [0, T ]: with (x0, z0) = xa = (x, u) ∈ R2M given,
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J⋆(xa) is the value of

minimize
g, γ, x

∫ T

0

[
cg(gt) + cd(γt) + cX(xt)

]
dt (2a)

subject to ℓt = gt + zσt , (2b)
d
dtgt = γt , (2c)
d
dtx

i
t = −αix

i
t − zit , (2d)

d
dtz

i
t = uit, i ∈ {1, ...,M} , (2e)

in which (2b) is the supply-demand constraint, and (2c) is
a notational convention. The cost functions are defined as
follows: cg is generation cost, cd is the cost of ramping
generation, and cX is a penalty or barrier function designed
to impose QoS bounds. We take

cX(x) =

M∑
i=1

ci(x
i) , x ∈ RM , (3)

in which each ci is strongly convex. Given desired capacity
bounds |xit| ≤ Ci for each i, a typical choice for barrier
function is ci(xi) = −δ log(1− [xi/Ci]

2) with δ > 0 a small
scalar.

The zero marginal cost assumption for balancing services
implies this optimization problem falls in the category of
“cheap optimal control” [8], [24]. This is seen through
elimination of variables g and γ via the equality constraints
(2b) and (2e) to obtain the following alternative expression
for the cost at time t (the integrand in (2a)):

c(xat , ut, t) := cg(ℓt − zσt ) + cd(
d
dtℓt − uσt ) + cX(xt)

The cost is a function of uσt , and hence cannot be coercive
in the M -dimensional input ut.

B. State space collapse

Subject to smoothness assumptions on the cost functions
and the nominal net-demand ℓ, the following conclusions are
obtained in [19], [20]:

1 J⋆ is convex in xa and finite-valued. Moreover, there is a
function K⋆ : R2 → R such that J⋆(x, z) = K⋆(xσ, zσ) for
each x, z ∈ RM .

2 The optimal SoC evolves on a two-dimensional manifold
and can be computed based on a scalar dual variable λ⋆ and
its derivative:

c′i
(
xi⋆t

)
= αiλ

⋆
t − d

dtλ
⋆
t . (4)

with c′i the derivative of ci, i.e. marginal cost. Under strong
convexity the inverse Fi = (c′i)

−1 exists, giving

xi⋆t = Fi

(
αiλ

⋆
t − d

dtλ
⋆
t

)
(5)

A similar conclusion is reached in [5], but in an entirely
different context.

The scalar signal λ⋆ represents the Lagrange multiplier
for the supply-demand constraint (2b), and satisfies λ⋆T = 0.
Consequently, if xi⋆ is known for just one i, then the Lagrange
multiplier can be obtained by solving a first order differential
equation, and from this x⋆j can be recovered for each j.

Fig. 3 is based on numerical results from [19]. In this
experiment, λ⋆t and d

dtλ
⋆
t are treated as independent variables.

Given two optimal SoC trajectories these values can be
computed, and then any other optimal SoC trajectories are
obtained. In this case, the SoC trajectory of pool pumps is
recovered using the trajectories of ACs and residential water
heaters via (5) combined with[

λ⋆t
d
dtλ

⋆
t

]
=

[
αac −1
αrwh −1

]−1 [
c′i(x

⋆
ac(t))

c′i(x
⋆
rwh(t))

]
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Fig. 3: SoC for pool pumps recovered using those of ACs and WHs.

Price discovery. One might assume that λ⋆ represents a
price, since prices are typically interpreted as a Lagrange
multiplier for a supply-demand constraint. It is argued in
[19], [20] that this interpretation cannot be useful in practice.
For one, there is no possibility of price discovery in this real-
time setting. And remember, this is a finite horizon optimal
control problem performed by the BA based on forecast net-
demand. This information is not available to all of the other
participants, and as forecasts change the BA may decide
unilaterally to re-solve the optimization problem as part of
an MPC (model predictive control) control architecture.

C. Solutions from reinforcement learning

In the recent work [14], [15] (see also the dissertation
of Fan Lu [13]) the solution to the BA’s optimization is
approximated using techniques from reinforcement learning
(RL).

An explanation of this approach requires a few more words
on optimal control. First, recall that the cost-to-go is defined
for each T0 ∈ [0, T ) by

J⋆(xa, T0) := min
uT
T0

∫ T

T0

c(xat , ut, t) dt , xaT0
= xa

This is used in Bellman’s principle of optimality, expressed
as the family of fixed point equations: for τ ∈ [0, T ) and
with initial condition xa0 = xa,

J⋆(xa) = min
uτ
0

{∫ τ

0

c(xat , ut, t) dt+ J⋆(xaτ, τ)
}

(6)

This is one step in a proof of the Hamilton-Jacobi-Bellman
(HJB) equation.

An important implication is described here—a cousin to the
Minimum Principle. Consider any solution {(xat , ut) : t ≥ 0}
to the state equations, and denote

Q⋆(xat , ut, t) = c(xat , ut, t) +
d
dtJ

⋆(xat , t) , t ≥ 0 (7)

We have Q⋆(xat , ut, t) ≥ 0 for all 0 ≤ t ≤ T , and this lower
bound is achieved along an optimal solution. Following the
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treatment of the infinite horizon problem considered in [22],
take σ > 0 and consider

H⋆(xa, u, t) :=−σJ⋆(xa, t) +Q⋆(xa, u, t) (8)

If we manage to compute Q⋆ or H⋆, then the optimal input
is obtained via state feedback ut = ϕ⋆(xat , t) with

ϕ⋆(xa, t) = argmin
u

H⋆(xa, u, t)

= argmin
u

Q⋆(xa, u, t)
(9)

Writing H(xa, t) = minuH(xa, u, t) for any function
of (xa, u, t), we have H⋆(xa, t) = −σJ⋆(xa, t). Further
manipulations in [14], [15] lead to the ODE,

d
dtH

⋆(xat , t) = σH⋆(xat , t)

+ σ
[
c(xat , ut, t)−H⋆(xat , ut, t)

] (10)

The boundary condition H⋆(xaT , T ) = 0 then gives the filtered
Bellman equation: for any input-state trajectory and t ∈ [0, T ],

H⋆(xat , t) = −
∫ T

t

σeσ(r−t)[cr −H⋆
r ] dr (11)

with cr = c(xr, ur, r) and H⋆
r = H⋆(xr, ur, r). It is worth

emphasizing that (11) holds for any input-state pair {xar , ur :
0 ≤ r ≤ T }.

Sample path representations of a Bellman equation are a
starting point of many approaches to RL, such as Watkins’
Q-learning algorithm.
Q learning: Given a family of approximations {Hθ : θ ∈
Rd}, obtain θ∗ so that (11) is approximately solved using
training data {(xkt , zkt , ukt ) : 0 ≤ t ≤ T , 1 ≤ k ≤ N} where
N ≥ 1 denotes the number of independent runs. For any
parameter θ, the policy ϕθ is defined in analogy with (9):

ϕθ(xa, t) = argmin
u

Hθ(xa, u, t) (12)

This is of course a vague definition of an algorithm. A
version of convex Q-learning is considered in [14], [15], in
which the approximation is defined via a convex program.

Challenges with the optimal control solution are discussed
in the next section, along with a remedy based on RL.

III. FRAGILITY OF CHEAP CONTROL

Fig. 3 may raise concern about the optimal control solution.
The goal in the experiments leading to this figure was to
flatten net-demand, with ℓ not nearly as volatile as the net-
demand shown in Fig. 1. We see in Fig. 3 that the ACs
and residential water heaters are roughly aligned in power
deviation, but the downward ramp in power consumption
from the ACs in the afternoon occurs at nearly the same time
as an upward ramp in power consumption by the pools.

Fig. 4 shows results from other experiments surveyed in
[18], [16]. The sum zσ ⋆ of the power deviations is smooth,
and serves to flatten nominal net-demand. The massive
volatility of individual DERs might present problems, say, at
the distribution level. Moreover, these experiments suggest
very high sensitivity to model parameters. If the values of
{αi} in (1) are off by a few percent, we can expect massive
changes in the optimizer z⋆.

24 hours

AC Res WH Comm WH RFG PP

GW

-3
-2
-1
0
1
2
3

Fig. 4: Optimal trajectories {zi⋆t } based on five classes of loads
to create five DERs: residential air-conditioning (AC), residential
water heaters, commercial water heaters, residential refrigeration,
and pool pumps for cleaning.

A. Addressing volatility
Two potential solutions might be considered in future

research, each based on a modification of the objective
function:
Cost on DER ramping. If the objective function is modified
to include a penalty, such as

∑
i

(
d
dtz

i⋆
t

)2
then we can expect

a smoother optimal solution.
Cost to encourage consensus. This might involve adding to
the objective the term

M∑
i=1

∫ T

0

[
zi⋆t −M−1zσ ⋆

t

]2
dt

The first approach addresses volatility directly. However,
we lose state space collapse since the control cost is no longer
“cheap”: recall that d

dtz
i = ui.

State space collapse is preserved in the second approach,
which deserves further study.

These approaches do not directly address model uncertainty,
a topic considered only in very recent research based on
techniques from reinforcement learning.

24 hours
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Fig. 5: Deviations {zit} from a convex Q-learning approximation.

B. Robust training for convex Q-learning
Without space for details on the Q-learning algorithm

considered, we describe here an approach to marry MPC
and Q-learning for policy synthesis. Suppose that Hθ∗

is
an approximation of H⋆, and let Jθ∗

= −Hθ∗
/σ be the

corresponding approximation for the family of cost to go
functions. For a given time-horizon τ ∈ (0, T ], Bellman’s
principle (6) suggests the following feedback policy:
MPC-Q The policy is obtained through the following steps.
For t ≤ T − τ, obtain

uθ
∗

[t,t+τ] = argmin
ut+τ
t

{∫ t+τ

t

c(xar , ur, r) dr+J
θ∗
(xat+τ, t+τ)

}
(13)
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and then set ϕMPC-Q(xat , t) := uθ
∗

t .
That is, the input at time t for MPC-Q is defined by

ut = ϕMPC-Q(xat , t). Of course, in any practical implementation
the integral in (13) is replaced by a sum in an Euler
approximation.

Note that MPC is not usually proposed as state feedback,
but it does allow this interpretation.

In the experiments that follow the horizon τ is chosen far
smaller than the total horizon T . In addition the objective
(2a) was modified to include a terminal cost,∫ T

0

[
cg(gt) + cd(γt) + cX(xt)

]
dt+ J0(x

a
T )

The terminal cost J0 was set to zero in the foregoing to
simplify exposition. The significant change in Section II-C is
that H⋆(xaT , T ) = J0(x

a
T ) is the boundary condition for the

ODE (10).

Theory-informed function class. It is reasonable to take into
consideration both the model and theory in the construction
of a function class.

The construction of [15] begins with an affine function
class for the value function:

Jθ(xa, t) = J0(x
a) + θ⊺ψ(xσ,a, t) , θ ∈ Rd , (14)

with ψ : R2 × R+ → Rd. A typical basis function was taken
of the form ψi(x

σ, zσ, t) = qi(x
σ, zσ)pi(t) in which qi is

quadratic in its two-dimensional argument, and pi a mixture
of Fourier basis elements and polynomials. To match the
boundary condition Jθ(xa, T ) = J0(x

a), these functions
were constructed so that pi(T ) = 0 for each i.

The representation (8) then motivates

Hθ(xa, u, t) :=−σJθ(xa, t) +Qθ(xa, u, t)

Qθ(xa, u, t) := c(xa, u, t)

+ Jθ
x(x

a, t)·F (xa, u, t) + Jθ
t (x

a, t)

(15)

with F the dynamics in the state space model, d
dtxt =

F (xt, ut, t), defined by eqs. (2d) and (2e). The subscripts
represent partial derivatives with respect to x and t.

Figs. 3 to 6 were generated under similar settings: five
classes of loads, viz., air conditioning (ACs), residential water
heating (res-WH), commercial water heating (comm-WH),
refrigeration (RFG), and pool pumping (pp) are deployed
in addition to traditional generation to balance the net load
based on California’s “duck curve” for a single day in March,
2020 (this data is obtained from CAISO). The parameters
for the linear models are obtained from table I of [5]. The
controlled vector field F appearing in (15) was based on the
data from this table.

The data used for training the RL algorithm was obtained
using perturbed dynamics:

Robust training. The approximation Hθ∗
was obtained

based on training data from a diverse collection of loads.
In particular, during training the {αi} vary widely, and
disturbances were included in the load simulations. Details
may be found in [15].

An example of numerical results. Fig. 5 shows results
using MPC-Q (definition below (13)), with τ = 20 mins. and
T = 24 hrs. The main conclusions:

1. A comparison of Figs. 4 and 5 shows that our primary
goals has been achieved: the evolution of power deviations
are far smoother and harmonious.

2. The policy obtained by setting Jθ∗ ≡ 0 results in the
basic MPC algorithm. It is found that performance of this
policy was not acceptable in this example using τ ≤ 40 [15].

3. It was found that robust training typically improved
performance even on the nominal model. Fig. 6 shows a
comparison, taken from [14].

2 3 4 5 6 7 14Time Horizon/(20mins)
1

1.2

1.4

1.6

1.8

2

Q nominal training
Q = 0

Q robust training
x MPC performance

Fig. 6: Performance of MPC and MPC-Q on the nominal model.

IV. CONCLUSIONS

The optimal control problem (2) can be reduced to just
two dimensions, regardless of the number of assets M .
The solution can be represented as a distributed control
architecture in which a common scalar command signal λ⋆

is broadcast to asset class (an aggregate of loads or a battery
system).

We hope it is clear that the low marginal cost of balancing
services from flexible loads and batteries comes with both
blessings and potential curses. We have emphasized here the
fragility of optimal control solutions, and surveyed potential
approaches to mitigate this risk. The best way to avoid
“spaghetti” outcomes, such as illustrated in Fig. 4, remains a
topic for future research.

We are most excited about the potential for approaches
based on reinforcement learning, building on what was briefly
surveyed here. Theory is needed to better understand the
benefits and risks when using robust training.
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