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Abstract— In this paper, the sampled-data stabilization prob-
lem of nonlinear asynchronous switched systems is studied.
In particular, a new methodology for the design of sampled-
data controllers is provided for fully nonlinear asynchronous
switched systems (i.e. not necessarily affine in the control inputs)
described by locally Lipschitz functions. Firstly, the new notion
of Steepest Descent Switching Feedback (SDSF) is introduced.
Then, it is proved the existence of a suitably fast sampling
such that the digital implementation of SDSFs (continuous or
not) ensures the semi-global practical stability property with
arbitrarily small final target ball of the related sampled-data
closed-loop system under any kind of switching with arbitrarily
pre-fixed dwell time. The stabilization in the sample-and-hold
sense theory is used as a tool to prove the results. Possible
discontinuities in the function describing the controller at hand
are also managed. The case of aperiodic sampling is included
in the theory here developed. The proposed theoretical results
are validated through a numerical example.

I. INTRODUCTION

In the last decades, switching control systems have re-
ceived a great attention by the researchers due to their
wide applications in mechanical and chemical engineering,
industrial electronics, networked control systems, and so on
[1]-[4]. Switching systems consist of a finite number of
subsystems (which are also called system modes) and a
switching signal that orchestrates switching between these
subsystems. Nowadays, due to the growing utilization of
digital technologies in many practical engineering appli-
cations, a crucial aspect to take into account when we
are dealing with the design of controllers is the unavoid-
able presence of sampling in the devices implementing the
proposed control strategy [5]. In the context of switched
systems, sampled-data controllers have been proposed in the
literature by assuming the perfect matching of the system
and controller modes (see, for instance, [6], [7]). On the
other hand, in many practical applications, the assumption
that the controller updating is synchronized with the system
switching is unfeasible. The asynchronicity phenomenon
leads to a mismatch of the system and controller modes
widely increasing the difficulties in analysis and synthesis
of sampled-data control systems. Many approaches have
been proposed in the literature concerning the sampled-data
control of nonlinear asynchronous switched systems [8]-
[11]. On the other hand, all the existing results address
only particular classes of nonlinear switched systems (mainly
in control-affine form) not considering, moreover: (i) an
arbitrary dwell time between switchings; (ii) time-varying
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sampling periods; (iii) possible discontinuities in the function
describing the controller at hand. To our best knowledge,
results concerning the sampled-data stabilization of nonlinear
asynchronous switched systems, not necessarily in control
affine form and described by locally Lipschitz functions,
allowing for aperiodic sampling and possible discontinuities
in the function describing the controller, have never been
provided in the literature.
In this paper, we fill this gap by providing a new methodol-
ogy for the design of sampled-data stabilizers for fully non-
linear asynchronous switched systems (i.e., not necessarily
affine in the control input) described by locally Lipschitz
functions and taking also into account arbitrary dwell times
between switchings, time-varying sampling periods and pos-
sible discontinuities in the function describing the controller.
The proposed design procedure is based on the Artstein’s
approach (see, for instance, [12]-[18]), here exploited, for the
first time in the literature, in the context of the sampled-data
stabilization of fully nonlinear asynchronous switched sys-
tems. Firstly, inspired by the well-known notion of steepest
descent feedback [13], the new notion of Steepest Descent
Switching Feedback (SDSF), continuous or not, is introduced
for the design of the proposed sampled-data controller. Then,
the stabilization in the sample-and-hold sense theory [13]-
[15], [19], [20] is used to prove the existence of a suitably
fast sampling such that the digital implementation of SDSFs
(continuous or not) guarantees the semi-global practical
stability property of the related sampled-data closed-loop
system under any kind of asynchronous switching with arbi-
trarily pre-fixed dwell time. The case of aperiodic sampling is
included in the theory here developed. A numerical example
is proposed for the validation of the provided theoretical
results.
Notations. Z+ is the set of nonnegative integer numbers, R
denotes the set of real numbers, R⋆ denotes the extended
real line [−∞,∞], R+ denotes the set of nonnegative reals
[0,∞). The symbol ∥ · ∥ stands for any (1, 2, · · · ,∞)
norm of a real vector. For a given positive integer n and
a given positive real h, the symbol Bn

h denotes the subset
{x ∈ Rn | ∥x∥ ≤ h}. Let us here recall that a continuous
function γ : R+ → R+ is: of class K if γ(0) = 0,
γ(s) > 0, s > 0, and it is strictly increasing; of class K∞
if it is of class K and unbounded. For a locally Lipschitz
function fs : Rn × Rm → Rn and for a locally Lipschitz
function V : Rn → R+, the upper right-hand Dini directional
derivative D+Vs : Rn×Rm → R⋆, of the functional V with
respect to the function fs, is defined, for x ∈ Rn, u ∈ Rm

and h ∈ (0, 1), as D+Vs(x, u) = lim suph→0+
V (xh,u)−V (x)

h

where xh,u = x+ hfs(x, u).
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II. DESIGN OF SAMPLED-DATA SWITCHED
CONTROLLERS

Let us consider a nonlinear switched system described by

ẋ(t) = fσ(t)(x(t), u(t)) (1)
where: x(t) ∈ Rn is the state; u(t) ∈ Rm is the input;
n,m are positive integer; σ : R+ → S = {1, · · · , p} is a
right-continuous, piece-wise constant function characterizing
the switching signal with an arbitrary dwell time ∆ > 0;
fs : Rn ×Rm → Rn, s ∈ S, are locally Lipschitz functions,
with fs(0, 0) = 0. In the following, a new methodology
for the design of sampled-data stabilizers for the system (1)
is presented. In particular, the proposed design procedure
relies on the classical Artstein’s approach (see, for instance,
[12]-[18]), where candidate Lyapunov functions are used for
the design of stabilizers. Such an approach will be here
extended, for the first time in the literature, to the context
of the sampled-data stabilization of nonlinear asynchronous
switched systems with arbitrarily pre-fixed dwell time. To
this aim, let V be the set of candidate common Lyapunov
functions V : Rn → R+:
(a) admitting locally Lipschitz first-order partial derivatives;
(b) for which there exist functions αi ∈ K∞, i = 1, 2, such

that for any x ∈ Rn, the following inequalities hold

α1(|x|) ≤ V (x) ≤ α2(|x|). (2)
In the following, the notion of SDSF, induced by candidate
common Lyapunov functions, is introduced. Such a notion
is inspired by the well–known notion of steepest descent
feedback [13], [15] here suitably adapted and modified in
order to provide a new methodology, based on the Artstein’s
strategy [12], for the design of sampled-data stabilizers for
nonlinear asynchronous switched systems.

Definition 1: Let V ∈ V . A set of locally bounded
functions Ks : Rn → Rm, s = 1, · · · , p, (continuous or
not) is said to be a SDSF for the system described by (1),
induced by V , if there exists a function α3 ∈ K, such that
for any x ∈ Rn, the following inequality holds

sup
s∈S

D+Vs(x,Ks(x)) ≤ −α3(|x|). (3)
Assumption 1: There exists a SDSF for the system de-

scribed by (1) (see Definition 1).
Remark 1: Notice that, as in the classical approaches

based on the notion of steepest descent feedbacks (see, for
instance, [13]-[15] and [20]), in the design methodology here
proposed, no kind of stabilization property is required to
be known, whether holding or not, for the SDSF at hand,
when possibly applied in a continuous-time basis. Since
discontinuities in the functions Ks, s ∈ S, are allowed (see
Definition 1 and Assumption 1), the Filippov solutions envi-
ronment (see [21]) and the related Lyapunov theory should
be considered for studying the eventual stabilization property
in the continuous-time basis. Here this analysis with Filippov
solutions is not required. Notice that, there exist systems for
which neither a continuous feedback, nor a discontinuous
one, exists such that the continuous-time implementation
(if possible) yields the closed-loop system to be asymp-
totically stable in the classic or in the Filippov solutions,

respectively. This is because the Brockett’s condition fails
for those systems (the reader is referred to [23] and, for the
case of Filippov’s solutions, to [24]). See, for instance, the
nonholonomic integrator system deeply discussed in [13]. On
the other hand, the nonholonomic integrator system admits a
discontinuous feedback by which stabilization in the sample-
and-hold sense [13] is guaranteed. As well, in [22], an
example is shown for which no continuous stabilizing feed-
back exists when implemented in continuous time. Again,
for that system a discontinuous feedback which guarantees
the stabilization in the sample-and-hold sense exists (see
[13], [20], [22]). Therefore, the possibility of allowing for
discontinuities in the feedback, together with unnecessary
stability properties in the Filippov’s framework, enlarges the
chances of successful designing sampled-data stabilizers. In
Section IV, a switched system, where subsystems are as the
one proposed in [22] (see also [13], [20]), is studied.
In order to introduce the proposed sampled-data controller,
we recall the notion of partition of [0,+∞) [13], [15].

Definition 2: A partition π = {ti, i = 0, 1, · · · } of R+ =
[0,∞) is a countable, strictly increasing sequence ti, with
t0 = 0, such that ti → ∞ as i → ∞. The diameter diam(π)
of π is defined as supi≥0(ti+1−ti). The dwell time dwell(π)
of π is defined as infi≥0 ti+1 − ti. For any positive reals
a ∈ (0, 1] and δ > 0, πa,δ denotes any partition π with
aδ ≤ dwell(π) ≤ diam(π) ≤ δ.
Under Assumption 1, for a given partition πa,δ , the proposed
sampled-data controller for the system (1) is described by

u(t) = Kσ(tj)(x(tj)), tj ≤ t < tj+1, j ∈ Z+, (4)
where Ks, s ∈ S, are the functions in Definition 1.

III. MAIN RESULTS

In this section, the main results of the paper are provided.
In particular, it is shown that there exists a suitably fast
sampling δ such that the sampled-data closed-loop system
described by (1)-(4) is semi-globally practically stable with
arbitrarily small final target ball of the origin.

Theorem 1: Let Assumption 1 hold. Let a be an arbitrary
real in (0, 1]. Let ∆ > 0 be any positive real. Then, for
any positive reals R, r ∈ (0, R), there exist positive reals δ,
T , E, such that, for any partition πa,δ = {tj , j ∈ Z+} of
[0,∞), for any switching signal σ : R+ → S = {1, · · · , p}
with dwell time ∆, for any initial condition x0 ∈ Bn

R, the
corresponding unique locally absolutely continuous solution
x(t), of the sampled–data closed–loop system (1)-(4), exists
for all t ≥ 0 and satisfies the inequalities

|x(t)| ≤ E, ∀ t ≥ 0, |x(t)| ≤ r, ∀ t ≥ T.
Proof of Theorem 1. The following proof is based on the
stabilization in the sample-and-hold sense approach (see, for
instance, [13]-[15], [19], [20]). We highlight here that, the
reasoning in [13]-[15], [19], [20] concerning the stabilization
in the sample-and-hold sense theory cannot be directly
applied in the context of nonlinear asynchronous switching
systems and many non-trivial new developments are required
in order to simultaneously cope with time-varying sampling
periods and the presence of possible switching between two
consecutive sampling instants. See, for instance, steps 1)-7),
(10)-(14) and the subsequent reasoning which is completely



reformulated with respect to the ones in [13]-[15], [19], [20].
The proof is organized as follows: (I) it is shown that the
solution of the closed-loop system (1)-(4) does not blow
up in the interval [0, t1] and, furthermore, belongs to Bn

E

(see (7)); (II) by the use of the result in point (I) and
steps 1)-7), it is shown that suitably inequalities hold for
the function V evaluated on the solution of (1)-(4) in the
generic interval [tj , tj+1], j = 0, 1, ..., jmax−1, where: jmax

is the maximal positive integer such that tjmax ≤ l and l is
the maximum positive real such that x(t) ∈ Bn

E , 0 ≤ t ≤ l
(see the reasoning in (8)-(9), for the first sampling interval
[0, t1] and, (10)-(14) for the generic interval [tj , tj+1], j =
0, 1, ..., jmax−1); (III) by the use of the inequalities proved in
point (II) and by introducing a preliminary result (see Claim
1), in Claim 2, it is shown that the solution of (1)-(4) exists
in [0,+∞) and, moreover, x(t) ∈ Bn

E , ∀ t ≥ 0 (i.e., l = +∞
and jmax = +∞); (IV) by the use of the inequalities proved
in point (II), of Claim 2 and by proving a suitable inequality
(see Claim 3), it shown that x(t) ∈ Bn

r , ∀ t ≥ T , with T
provided in step 7).
Let: 1) r, R be any positive reals, 0 < r < R; 2) a ∈ (0, 1]
and ∆ > 0 be arbitrarily fixed; 3) e1, e2, E be positive reals
satisfying: 0 < e2 < e1 < r < R < E, α1(r) > α2(e1),
α1(E) > α2(R); 4) U > sups∈S, x∈Bn

E
|Ks(x)|; 5) LV ,

LD and M be positive reals such that, for all x1,x2 ∈Bn
E ,

u1,u2∈Bm
U , s ∈ S the following inequalities hold

|D+Vs(x1, u1)−D+Vs(x2, u2)| ≤ LD(|x1 − x2|+|u1 − u2|),
sup
s∈S

|fs(x1, u1)| ≤ M, |V (x1)− V (x2)| ≤ LV |x1 − x2|; (5)

6) β = α3(e2) and n̄ =
[
6LV M

βa
+ 2

a

]
+ 1;

7) T = (n̄+ 1)
( 2α2(R)

LV M + 1
)

and δ be such that
0 < δ ≤ 1, β > 3LDMδ, e2 + δM < e1,

R+ δM < E, α1(r) > α2(e1) +
4
3
βδ + 2LV Mδ,

(n̄+ 2)δ < ∆, LV Mδ ≤ α2(R)− α2(e1).

(6)

Let σ(t) be any switching signal with dwell time ∆. Let
x0 ∈ Bn

R. Let us consider a partition πa,δ of R+. Let x(t) be
the solution of the closed-loop system (1)-(4), in a maximal
time interval [0, b), 0 < b ≤ +∞. Notice that, ∆ > (n̄+ 2)δ.
It follows that in the first interval [0, t1] no switching occurs.
We show first that the solution exists in [0, t1]. Otherwise,
by contradiction, if the solution blows up, there exists a time
τ ∈ [0, t1) such that |x(t)| < E, t ∈ [0, τ), and |x(τ)| = E.
But, from (5), (6), for t ∈ [0, τ ], the inequalities hold:

|x(t)| ≤ |x0|+
∫ t

0
|fσ(0)(x(τ),Kσ(0)(x(0)))|dτ ≤ R+ δM < E.

(7)
Thus, for t = τ , the absurd inequality arises E < E. There-
fore, x(t) ∈ Bn

E for t ∈ [0, t1]. Let us define W (t) =
V (x(t)), t ∈ [0, t1]. Using the mean value theorem for
integrals with some t⋆ ∈ [0, t] and taking into account (3),
(5), the following holds for any fixed t ∈ (0, t1]

W (t)−W (0) = t
(
1
t

∫ t

0
D+Vσ(0)(x(τ),Kσ(0)(x(0)))dτ

)
= tD+Vσ(0)(x(t

⋆),Kσ(0)(x(0)))− tD+Vσ(0)(x(0),Kσ(0)(x(0)))

+ tD+Vσ(0)(x(0),Kσ(0)(x(0))) ≤ tLDMδ − tα3(|x(0)|)
(8)

where the inequality: |x(t⋆) − x(0)| ≤ Mδ has been used.
From (8) and taking into account (6), one gets W (t) −

W (0) ≤ −tα3(|x(0)|) + β
3 t. Following [13], in the case

|x0| > e2, taking into account β in step 6), one has W (t) ≤
W (0) − 2

3βt, ∀ t ∈ [0, t1]. On the other hand, in the case
|x0| ≤ e2, using the first inequality of (7) and taking into
account (5), (6), |x(t)| ≤ e2 + δM < e1, ∀ t ∈ [0, t1]. Then,
taking into account (2), W (t) = V (x(t)) ≤ α2(|x(t)|) <
α2(e1), t ∈ [0, t1]. These two cases can be written as
W (t) ≤

(
W (0)− 2

3
βt

)
H(|x0| − e2) + α2(e1)H0(e2 − |x0|), (9)

t ∈ [0, t1], where H0, H are the Heaviside functions, defined

as H0(c) =

{
1 c ≥ 0

0 c < 0
H(c) =

{
1 c > 0

0 c ≤ 0
with c ∈ R. Let l

be the maximal positive real such that, for the solution x(t) of
the closed-loop system (1)-(4), the relation x(t) ∈ Bn

E , 0 ≤
t ≤ l, holds. We allow l to be +∞. Let W (t) = V (x(t)),
0 ≤ t ≤ l. Let jmax be the maximal positive integer such
that tjmax

≤ l. We allow jmax and tjmax
to be +∞ (when l is

+∞). Then, in any interval [tj , tj+1], j = 0, 1, ..., jmax − 1,
we can have two possible cases:
(a) no switching occurs in the sampling interval [tj , tj+1)
or the switching time is equal to the sampling instant tj ;
(b) a switching occurs in the sampling interval [tj , tj+1)
and the switching time t∗ ∈ (tj , tj+1). In the case (a), by
the same reasoning used in the interval [0, t1] (see (8)-(9)),
for t ∈ [tj , tj+1],

W (t) ≤
(
W (tj)− 2

3
β(t− tj)

)
H(|x(tj)| − e2)

+ α2(e1)H0(e2 − |x(tj)|).
(10)

In particular, for t = tj+1,
W (tj+1) ≤

(
W (tj)− 2

3
β(tj+1 − tj)

)
H(|x(tj)| − e2)

+ α2(e1)H0(e2 − |x(tj)|).
(11)

In the case (b), two possible cases can occur: (b.1) |x(tj)| ≤
e2; (b.2) |x(tj)| > e2. In the case (b.1), by repeating the
same reasoning in (7) and taking into account (2), (5), (6),
W (t) ≤ α2(e1). In the case (b.2), taking into account (5),
for t ∈ [tj , tj+1], we have that

W (t)−W (tj) ≤ |W (t)−W (tj)| = |V (x(t))− V (x(tj))|
≤ LV

∫ t

tj
|fσ(τ)(x(τ),Kσ(tj)(x(tj)))|dτ ≤ LV Mδ.

(12)

Let t∗1, t
∗
2, · · · be the sequence of switching times in [0,+∞).

Notice that this sequence is allowed to be bounded or
unbounded. If it is bounded, no switching will occur from a
certain time on. In the following, for j = 0, 1, · · · jmax − 1,
we will denote with ij the sequence defined recursively as
i0 = 1 and, for j ≥ 0, ij+1 = ij , if tj+1 < t∗ij and
ij+1 = ij + 1 otherwise. Taking into account both cases
(a) and (b), for j = 0, 1, ..., jmax − 1, for t ∈ [tj , tj+1],

W (t) ≤
(
W (tj)− 2

3
β(t− tj)

)
H(|x(tj)| − e2)

+ α2(e1)H0(e2 − |x(tj)|) + ( 2
3
β(t− tj)

+ LV Mδ)H(|x(tj)| − e2)H(tj+1 − t∗ij )H(t∗ij − tj).

(13)

In particular, for j = 0, 1, ..., jmax − 1,
W (tj+1) ≤

(
W (tj)− 2

3
β(tj+1 − tj)

)
H(|x(tj)| − e2)

+ α2(e1)H0(e2 − |x(tj)|) + ( 2
3
β(tj+1 − tj)

+ LV Mδ)H(|x(tj)| − e2)H(tj+1 − t∗ij )H(t∗ij − tj).

(14)

Notice that, in the case tjmax < l < +∞, the inequality (13)
holds also for t ∈ [tjmax

, l]. Let us now introduce and prove
the following claim.



Claim 1: For any j = 0, 1, ..., jmax, the inequality
W (tj) ≤ α2(R) holds.
Proof. Claim 1 follows by an induction reasoning from (14)
and taking into account that the time elapsed between two
consecutive switching is greater than (n̄+ 2)δ, (see (6)). □
In the following, it is proved that l = +∞.

Claim 2: The solution x(t) of the closed–loop system (1)-
(4) exists in [0,+∞) and, moreover, x(t) ∈ Bn

E , ∀ t ≥ 0.
Proof. By contradiction, let l < +∞. Let τ ∈ [t1, l] be
the first time such that |x(t)| = E (recall that |x(t)| = E
cannot hold for t ∈ [0, t1]). Then, we have W (τ) ≥ α1(E).
Let i be the largest positive integer such that ti ≤ τ .
For j = 0, 1, ..., i − 1, from Claim 1, W (tj) ≤ α2(R)
holds for j = 0, 1, ..., i. In particular, the inequality holds
W (ti) ≤ α2(R). Now, for t ∈ [ti, τ ], the inequality (13)
holds (recall that τ ≤ l). Therefore, taking into account
step 3) and (13), from the same reasoning used in the proof
of Claim 1, the inequalities hold, for t ∈ [ti, τ ], W (t) ≤
α2(R) < α1(E), and, in particular, the inequalities hold
W (τ) ≤ α2(R) < α1(E). Then, taking into account step 3),
we obtain E = |x(τ)| ≤ α−1

1 (α2(R)) < α−1
1 (α1(E)) = E.

The absurd inequality arises E < E. We conclude that Claim
2 is true. □
Since Claim 2 holds true (i.e., l = +∞), let W (t) =
V (x(t)), t ∈ R+. Let, for j = 0, 1, ...,

χ(j) = max{W (tj), α2(e1)} > 0, j ∈ Z+. (15)

From (11), one works out
χ(j + 1) ≤ max

{
χ(j)− 2

3
β(tj+1 − tj), α2(e1)

}
H(|x(tj)| − e2)

+ χ(j)H0(e2 − |x(tj)|) + ( 2
3
β(tj+1 − tj) + LV Mδ)×

H(|x(tj)| − e2)H(tj+1 − t∗ij )H(t∗ij − tj)
(16)

Claim 3: If j1 ∈ Z+ is the first nonnegative integer such
that χ(j1) ≤ α2(e1) +

2
3βδ + LV Mδ, (we allow that j1 =

+∞) then for all j ≥ j1, χ(j+1) ≤ α2(e1)+
4
3βδ+2LV Mδ.

Proof. Let j1 ∈ Z+ be the first nonnegative integer such
that χ(j1) ≤ α2(e1) +

2
3βδ + LV Mδ. We have two cases:

(a) no switching occurs for t ≥ tj1 (i.e., the next switching
instant t∗ij1

= +∞); (b) switching occur for t ≥ tj1 (i.e.,
the next switching instant t∗ij1 ̸= +∞). In the case (a), from
(16), it follows that for all j ≥ j1, χ(j + 1) ≤ α2(e1) +
2
3βδ +LV Mδ. In the case (b), we have two subcases: (b.1)
H(tj1+1− t∗ij1 )H(t∗ij1 − tj1) = 0; (b.2) H(tj1+1− t∗ij1 )H(t∗ij1 −
tj1) = 1. In the case (b.1), from (16),

χ(j1 + 1) ≤ max
{
χ(j1)− 2

3β(tj1+1 − tj1),

α2(e1)
}
≤ α2(e1) +

2
3βδ + LV Mδ.

(17)

From (17), we can re-start, iteratively, the reasoning from (b)
by taking j1+1 = j1. In the case (b.2), if |x(tj1)| ≤ e2, from
(16), it follows that χ(j1+1) ≤ α2(e1)+

2
3βδ+LV Mδ. On

the other hand, if |x(tj1)| > e2, from (16),

χ(j1 + 1) ≤ max
{
χ(j1)− 2

3β(tj1+1 − tj1), α2(e1)
}

+ 2
3β(tj+1 − tj) + LV Mδ ≤ α2(e1) +

4
3βδ + 2LV Mδ.

(18)
Now, if no switching occurs for t ≥ tj1+1, then, from (16),
for any j ≥ j1+1, χ(j+1) ≤ α2(e1)+

4
3βδ+2LV Mδ. On

the other hand, if a new switch occurs for t ≥ tj1+1, taking
into account that ∆ > (n̄+ 2)δ, let j̄ be the positive integer

such that t∗ij1+1
∈ [tj̄ , tj̄+1] (i.e., the interval in which is

situated the new switching instant after t∗ij1 ). Two cases can
occur: (b.2.1) There exists an integer k ∈ [j1+1, j̄], such that
|x(tk)| ≤ e2; (b.2.2) an integer k ≥ 0, such that |x(tk)| ≤ e2,
does not exist in [j1 + 1, j̄]. In the case (b.2.1), taking into
account (18), we have that for j ∈ [j1 + 1, k − 1], χ(j) ≤
χ(j1+1)− 2

3

∑j−1
i=j1+1 βaδ ≤ α2(e1)+

4
3βδ+2LV Mδ, and

for j ∈ [k, j̄], χ(j) ≤ α2(e1). In the case (b.2.2), taking into
account (18), we have that for j ∈ [j1 + 1, j̄ − 1], χ(j) ≤
χ(j1 + 1) − 2

3

∑j−1
i=j1+1 βaδ ≤ α2(e1) +

4
3βδ + 2LV Mδ,

and for j ∈ [k, j̄], taking into account (18) and step 6),
χ(j̄) ≤ χ(j1+1)− 2

3 n̄βaδ ≤ α2(e1)−2LV Mδ ≤ α2(e1)+
2
3βδ + LV Mδ. Then, taking into account both cases (b.2.1)
and (b.2.2), we can repeat iteratively the same reasoning re-
starting from (b.2) taking j1 = j̄. Thus, Claim 3 is true. □
Let k̄ = [ 2α2(R)

LV Mδ ] + 1. Let j2 = (n̄+1)k̄. Notice that, taking
into account step 6), 7), in the interval [0, tj2 ], a maximum
of k̄ switchings can occur. Indeed: tj2 ≤ j2δ ≤ (n̄+1)k̄δ ≤
k̄∆. Moreover, in the interval [0, tj2 ], we have maximum of
k̄ sampling intervals in which a switching has occurred and
at least (n̄ + 1)k̄ − k̄ = n̄k̄ sampling intervals in which no
switching occurs. We claim j1 ≤ j2. By contradiction, if
j1 > j2 then two cases can occur

i. There exists an integer ℓ ∈ [0, j2], so that |x(tℓ)| ≤ e2;
ii. an integer ℓ ≥ 0, such that |x(tℓ)| ≤ e2, does not exist

in [0, j2].
In case (ii), for any integer ℓ ∈ [0, j2], we have |x(tℓ)| >
e2. Thus, by (15), (16), taking into account step 6), we obtain

χ(j2) ≤ χ(0)− 2
3
n̄k̄βaδ + k̄( 2

3
βδ + LV Mδ) ≤

≤ α2(R)− k̄LV Mδ ≤ −α2(R) < 0,
(19)

which is absurd, since χ(j) is nonnegative for any j ∈
Z+. Therefore, the above ℓ must exist in [0, j2]. Then, we
have |x(tℓ)| ≤ e2, and W̄ (ℓ) ≤ α2(e1). This is still absurd,
because ℓ ≤ j2, and j1 > j2 was supposed to be the first
nonnegative integer such that χ(j1) ≤ α2(e1) + 2

3βδ +
LV Mδ. Therefore, it must hold j1 ≤ j2. We conclude that,
for any integer j ≥ j2, from Claim 3, χ(j) ≤ α2(e1)+

4
3βδ+

2LV Mδ, which implies W (t) ≤ α2(e1) +
4
3βδ + 2LV Mδ,

t ≥ tj2 . Taking into account steps 6) and 7), T ≥ tj2 . Then,
for t ≥ T , from (3), we obtain α1(|x(t)|) ≤ W (t) ≤
α2(e1) +

4
3βδ + 2LV Mδ. Then, from (6), we have |x(t)| ≤

α−1
1 (α2(e1)+

4
3βδ+2LV Mδ) < α−1

1 (α1(r)) = r. It follows
that, x(t) ∈ Bn

r for any t ≥ T . The proof is complete. □
Remark 2: We highlight here that, the results provided

in Theorem 1 still hold in the case of suitably small ac-
tuation disturbances affecting the sampled-data controller
(4). Moreover, if the SDSF at hand is described by locally
Lipschitz functions, then the results provided in Theorem 1
still hold in the case of suitably small measurement noises
which can be properly reduced to the case of actuation
disturbances. This feature is inherited by the robustness
property of stabilizers in the sample-and-hold sense (see,
[13], for a detailed discussion in the case of no switching
systems). On the other hand, at this stage, in the case of
discontinuous feedbacks, it is not known whether the pro-
posed technique is robust with respect to measurement errors,



even if suitably small. The robustification of sampled-data
controllers (continuous or not) for nonlinear asynchronous
switched systems with respect to any bounded actuation
disturbances and any bounded observation errors is a very
interesting topic which is left for future investigations (see,
for instance, [27] for the case without switching).

Remark 3: As common in the control strategies based on
the Arstein’s approach [12], the methodology here proposed
for the design of sampled-data switched controllers can be
summarized as follows: (i) choose a candidate Lyapunov
function belonging to V; (ii) exploit the Lyapunov function
in point (i) in order to try and find functions Ks, s ∈ S,
satisfying the condition in (3) (i.e., try and find a SDSF);
(iii) implement the SDSF in point (ii) according to (4).
In the following, we show an example on how the well-
known Sontag’s universal formula [17], [18] can be exploited
to find SDSFs for nonlinear asynchronous switched systems
in control-affine form by means of candidate Lyapunov
functions and according to Definition 1. Let us consider a
nonlinear switched system described by

ẋ(t) = fσ(t)(x(t)) + gσ(t)(x(t))u(t) (20)
where: x(t) ∈ Rn is the state; u(t) ∈ Rm is the input; n,m
are positive integer; σ : R+ → S (see (1)); fs : Rn → Rn

and gs : Rn → Rn×m, s ∈ S, are locally Lipschitz functions.
Let V ∈ V . Let as : Rn → R and bs : Rn → Rm, s ∈ S, be
the functions defined, for x ∈ Rn, as

as(x) =
∂V (x)
∂x fs(x), bs(x) =

∂V (x)
∂x gs(x). (21)

Let Ks : Rn → Rm, s ∈ S, be the functions defined, for
x ∈ Rn, as (see [17], [18])

Ks(x) =

{
−as(x)+

√
a2
s(x)+|bs(x)|4

|bs(x)|2
bTs (x), bs(x) ̸= 0,

0, bs(x) = 0.
(22)

Proposition 1: Assume that for any x ∈ Rn and s ∈ S,
the following implication holds

bs(x) = 0 ⇒ as(x) < 0. (23)
Moreover, assume that there exists a function α3 of class
K such that

√
a2s(x) + |bs(x)|4 ≥ α3(|x|), ∀x ∈ Rn and

s ∈ S. Then, the functions Ks, s ∈ S, defined in (22) are a
SDSF for the system (20).
Proof of Proposition 1. The proof readily follows from the
reasoning in [17], [18] applied to each mode s ∈ S. □
We highlight that, here the well-known small control prop-
erty of the feedback Ks in (22) (see, for instance, [17],
[18]) is not required because discontinuities in the functions
describing the SDSF at hand are allowed (see Definition 1
and Remark 1).

Remark 4: Notice that, in Theorem 1, any sequence of
switching times, which we denote here with {t∗1, t∗2, · · · },
is allowed provided that, t∗1 ≥ ∆ and t∗i+1 − t∗i ≥ ∆,
i = 1, 2, · · · , with ∆ > 0 an arbitrarily fixed positive
real. Moreover, the sequence of switching times are not
necessarily synchronized with the sampling instants. Which
means that the sequence of switching times {t∗1, t∗2, · · · } are
not necessarily a subset of the partition πa,δ .
In the following corollary, it is shown that if a continuous-
time global stabilizer (see, for instance, [25], [26]) is avail-
able for the system described by (1), then there exists a

suitably fast sampling δ such that: the digital implementation
of the continuous-time stabilizer at hand ensures the semi-
global practical stability property of the related sampled-data
closed-loop system.

Corollary 1: Assume that there exist locally Lipschitz
functions K̃s : Rn → Rm, s = 1, · · · , p, such that the related
continuous-time closed-loop system

ẋ(t) = fσ(t)(x(t), K̃σ(t)(x(t))), (24)
is globally asymptotically stable. Let a be an arbitrary real
in (0, 1]. Let ∆ > 0 be any positive real. Then, for any
positive reals R, r ∈ (0, R), there exist positive reals δ,
T , E, such that, for any partition πa,δ = {tj , j ∈ Z+} of
[0,∞), for any switching signal σ : R+ → S = {1, · · · , p}
with dwell time ∆, for any initial condition x0 ∈ Bn

R, the
corresponding unique locally absolutely continuous solution
x(t), of the sampled–data closed–loop system (1) with
u(t) = K̃σ(tj)(x(tj)), tj ≤ t < tj+1, j ∈ Z+, exists for
all t ≥ 0 and satisfies the inequalities

|x(t)| ≤ E, ∀ t ≥ 0, |x(t)| ≤ r, ∀ t ≥ T.
Proof of Corollary 1. Taking into account the global
asymptotic stability property of the system (24), the proof
follows from the converse Lyapunov theorems for nonlinear
switched systems [2], [28], and the results in Theorem 1. □

IV. NUMERICAL EXAMPLE

Inspired by the examples proposed in [13], [20], [22],
in order to show the advantages of the proposed design
methodology, let us consider the nonlinear switched system
(1) where S = {1, 2} and the functions fs : R3 ×R3 → R3,
s = 1, 2, are defined for x ∈ R3 and u ∈ R3 as follows:

f1(x, u) =
[
u1u2 u2u3 u1u3

]T
,

f2(x, u) =
[
u1u3 u1u2 u2u3

]T
.

(25)

Notice that, in [20], [22], it is shown that no continu-
ous feedback exists for the system described by ẋ(t) =
f1(x(t), u(t)), such that global asymptotic stability is guar-
anteed for a related classical solution because Brockett’s
covering condition fails (see Remark 1). In the following,
by exploiting the results in Theorem 1, it is shown that
the sampled-data stabilization of the nonlinear asynchronous
switched system described by (1)-(25) is possible by dis-
continuous feedbacks. According to the proposed design
methodology, let V : R3 → R+ be the candidate common
Lyapunov function defined for x ∈ R3 as V (x) = x2

1 +
x2
2 + x2

3. Notice that, V ∈ V . Taking into account (25), let
Ks : R3 → R3, s = 1, 2, be any functions such that, for any
x ∈ R3,

K1(x) ∈ argmini,v,w∈{−1,0,1}
[
iv vw iw

]
x

K2(x) ∈ argmini,v,w∈{−1,0,1}
[
iw iv vw

]
x.

(26)

Notice that, according to Definition 1, the functions Ks in
(26) is a SDSF for the system (1), (25) with α3(s) =

2√
3
s.

Indeed, taking into account (25), (26), for any x ∈ R3,
with entries xk ∈ R, k = 1, 2, 3, the following equal-
ity/inequalities hold (see [20], [22])

D+Vs(x,Ks(x)) ≤ −2maxk=1,2,3{|xk|} ≤ − 2√
3
|x|. (27)

Then, Assumption 1 is here satisfied. From an implemen-
tation point of view, at each sampling time, by exploiting



the sampled-data measurement x(tj), it is just required to
evaluate 27 possible cases in order to find the input points
i, v, w ∈ {−1, 0, 1} at which the function output value[
iv vw iw

]
x(tj) (or

[
iw iv vw

]
x(tj)) is minimized.

Notice that, an algorithm providing only one input (in the
case of multiple minimizers), for any x ∈ Rn, can easily
be used. In the performed simulations: the initial state of
the system (1), (25) has been chosen equal to [1 2 3]T ; the
dwell time of switching ∆ equal to 0.05[s]; suitably small
random actuation disturbances with amplitudes not greater
than 10−3 have been considered (see Remark 3). In Fig.
1, simulations are reported in the case of uniform sampling
period δ = 0.02. In particular, Fig. 1 shows the evolutions
of the system state variables xi(t), i = 1, 2, 3, of the control
inputs ui(t), i = 1, 2, 3 and of switching signal σ(t). From
Fig. 1, the good and robust performances of the proposed
controller can be assessed.
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Fig. 1. Panel 1) - Evolution of the system variables x(t). Panel 2) - Input
signal u(t). Panel 3) - Switching signal σ(t).

V. CONCLUSIONS

In this paper, a methodology for the design of sampled-
data stabilizers has been provided for nonlinear asynchronous
switched systems. By properly revising the well-known no-
tion of Steepest Descent Feedback, the new notion of SDSF
has been introduced. Then, the stabilization in the sample-
and-hold sense theory has been used as tool to prove the
existence of a suitably fast sampling such that the digital
implementation of SDSF ensures the semi-global practical
stability property with arbitrarily small final target ball of
the related sampled-data closed-loop system under any kind
of switching with arbitrarily pre-fixed dwell time. Possible
discontinuities in the functions describing the controller
at hand have been also managed. The case of aperiodic
sampling has been taken into account. A numerical example
has been presented in order to validate the results.
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