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Abstract— This paper investigates the importance of integrat-
ing the coherency knowledge for designing controllers to dampen
sustained oscillations in wide-area power networks with signif-
icant penetration of inverter-interfaced resources. Coherency
is a fundamental property of power systems, where time-scale
separation in frequency dynamics leads to clustered behavior
among generators of different groups. Large-scale penetration
of inverter-driven low inertia resources replacing conventional
synchronous generators (SGs) can lead to perturbation in the
coherent partitioning; hence, integrating such information is of
utmost importance for oscillation control designs. We present the
coherency-aware design of a distributed output feedback-based
reinforcement learning method that additionally incorporates
risk constraints to capture the uncertainties related to net-load
fluctuations. The use of domain-aware coherency information
has produced improved training and oscillation performance
than the coherency-agnostic control design, hence proving to be
effective in controller design. Finally, we validated the proposed
method with numerical experiments on the benchmark IEEE
68-bus test system.

Index Terms— Distributed Control, Power System Coherency,
Reinforcement Learning, Risk Constraints.

I. INTRODUCTION

The need for integrating renewable energy sources to
cope with global climate-related issues results in a larger
penetration of inverter-interfaced resources in modern power
grids. The current state-of-the-art inverter technology includes
predominantly two types of control, namely grid-following
(GFL) and grid-forming (GFM) [1], [2]. GFLs act as a current
source, and on the contrary, GFMs behave as a voltage source,
allowing regulations of system voltages and frequency like
synchronous generators (SGs). This SG-like characteristics
helped GFM technologies to receive major attention in recent
times and proved to be effective solutions for integrating
utility-scale renewable resources [3].

In conventional power systems, replacing high-inertia
synchronous generators (SGs) by low-inertia grid-forming
machines (GFMs) presents numerous challenges. One sig-
nificant issue is low-frequency sustained oscillations among
coherent areas of power grids, prompting the design of wide-
area damping controllers. Slow coherency, a fundamental
characteristic [4], stems from the time-scale separation in
synchronous machine dynamics. It involves strongly coupled
machines oscillating together, synchronizing rapidly to form
coherent groups. Conversely, these groups oscillate against
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each other and synchronize over a slower time scale due to
weaker coupling. Works such as [5]–[8] have demonstrated
the utility of grid-forming machines (GFMs) in transmission
planning, dynamic equivalencing, controlled islanding, and
oscillation damping control. The significant penetration of
GFM-interfaced utility-scale distributed energy resources
(DERs) affects the intrinsic dynamic behavior of power
systems. Therefore, it’s crucial to theorize how these resources
impact the coupled oscillation structures of the grid at low
frequencies. Designing wide-area controls would benefit from
understanding the grid’s underlying clustering structure with
GFM-based renewable resources. We address this gap by first
capturing the modified coherency structure of the grid due
to GFM integration, then designing oscillation control using
this coherency information.

Over the last few decades, Reinforcement Learning (RL)
has effectively tackled intricate nonlinear dynamic tasks
within the context of a Markov Decision Process (MDP)
[9], and control-theoretic state-spaces [10], [11]. In power
systems, RL is used for short-term transient voltage control
[12], [13], energy storage control in microgrids [14], and
wide-area damping control [15]. However, RL’s model-free
approach results in high sample complexity for training [16].
To address this, we use a hybrid approach: employing the
nominal dynamic model of the grid with additional process
noise to account for uncertainties from load and renewable
fluctuations. We then use a zero-order gradient optimization
approach within a risk-constrained linear-quadratic regulator
(LQR) setting. In addition to the recent work [17], the control
design incorporates a distributed architecture to account for
infusing the perturbed coherency information, which improves
the oscillation performance.

Contributions. The contribution of the work is multi-fold.
First, we present the formulation of wide-area oscillation
control when large-scale GFM integration replaces some
of the conventional synchronous generation. Due to the
consideration of the load and renewable fluctuations, the
mean-variance risk constraints are enforced within the control
framework. Next, we present the theoretical analysis of how
large-scale grid-forming penetration can structurally impact
grid clustering behavior. Subsequently, the paper presents
the design of a distributed output feedback reinforcement
learning controller that leverages the domain-aware coherency
information, demonstrating improved performance compared
to coherency-agnostic control designs. Lastly, numerical
experiments conducted on the IEEE 68-bus system validate
the efficacy of the proposed approach.
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II. GFM INTEGRATION FOR SG REPLACEMENT: GRID
CONTROL PROBLEM

A. Grid Dynamics

Consider a power grid consisting of N number of buses.
We consider Nr number of resource buses, i.e., where we
either consider synchronous generators (SGs) or grid-forming
inverter (GFM) interfaced resources. From a conventional
viewpoint, all such buses would operate with synchronous
generators. The dynamics of SG i ∈ G in bus i is represented
by the following swing equations [18]:

δ̇i = ωi − ω0, (1a)

ω̇i =
1

Mi

[
Di(ω0 − ωi) + Pi − Pei

]
, (1b)

where δi, ωi, Pi, Pei are the angle, frequency, input me-
chanical power and generated electrical powers of SG
i, and parameters {Mi, Di} are the inertia and damping
coefficients, respectively. At this point, we replace p number
of synchronous generators with grid-forming inverters of the
same ratings; therefore, we will have Nr − p number of SGs
remaining in the grid with indices contained in the set G, and
p number of GFMs integrated with indices contained in the
set F . For each GFM j ∈ F in bus j, the active and reactive
powers Pej and Qej at the terminal are calculated using
the terminal voltage/current measurements passing through
a low-pass filter. The active power-frequency and reactive
power-voltage droop controls are implemented as follows
[19], [20]:

δ̇j = ωj − ω0, (2a)

ω̇j =
1

τj

[
ω0 − ωj + λp

j (P
ref
j − Pej)

]
, (2b)

V̇ e
j =

1

τj

[
V ref
j − V e

j − Vj + λq
j(Q

ref
j −Qej)

]
, (2c)

Ėj = kpvj V̇ e
j + kivj V e

j (2d)

where λp
j , λ

q
j , τj are the active, reactive power droop coeffi-

cients and filter time constant, respectively. The parameters
kpvj and kivj in (2d) are the proportional and integral gains
associated with the Q-V control loop, respectively.

B. Control Formulation

The system operator would like to minimize oscillatory
power grid behavior following faults and other disturbances.
The operator can create a linearized grid model by linearizing
around a stable operating point (Kron reduction [18]) in
normal operations. Let us concatenate all the generator
states such that xs = [δ1, . . . , δNr−p, ω1, . . . , ωNr−p], and
the state vector per GFM j are denoted as xf = {xj}, xj :=
[δj , ωj , V

e
j , Ej ]. Thereafter, the stacked state-vector x =

[xs, xf ]
⊺ would result in an integrated discrete small-signal

dynamics by considering the GFM control time ∆t as:

xt+1 = Axt +But + ξt, t = 0, 1, . . . , (3)

where u := [∆V ref ,∆P ref ,∆Qref ]⊺ ∈ R3Nf with V ref =
{V ref

j }j , P ref = {P ref
j }j , Qref = {Qref

j }j . Here, we add
process noise ξt to account for the variability in the grid due

to load and renewable perturbations to formulate a robust
design.

Utilizing the system dynamics given in equation (3), we
determine an optimal control strategy by solving a linear
quadratic regulator (LQR). This objective aims to minimize
the overall cost associated with both state and control
variables:

min
K

R0(K) = lim
T→∞

1

T
E

T−1∑
t=0

[
x⊺
tQxt + u⊺

tRut

]
, (4)

with Q and R being positive semi-definite and positive
definite weight matrices for each state and control variables,
respectively. Our objective is to find the distributed static
controller gain matrix K for ut = −Kyt. Here, yt are
the outputs Cxt with output matrix C indicating the list
of observable states, which enforces the distributed nature
of the wide-area control. Along with (4), we implement
a mean-variance risk constraint to improve the worst-case
performance:

min
K

R0(K) = lim
T→∞

1

T
E

T−1∑
t=0

[
x⊺
tQxt + u⊺

tRut

]
(5)

s.t. Rc(K) = lim
T→∞

1

T
E

T−1∑
t=0

(
x⊺
tQxt − E

[
x⊺
tQxt|Ht

])2 ≤ c

whereHt = [x0, u0, . . . , xt−1, ut−1] being a state and control
trajectory up to t and c being a risk tolerance parameter. The
mean-variance risk measure indicates deviations between
the expected and realized state costs. Incorporating the risk
constraint helps address challenges from system variability
due to external load disturbances, renewable fluctuations,
and imperfect modeling, thus enhancing the controller’s
worst-case performance. Here, we introduce the distributed
consideration in the design.

Coherent-structure-aware Control: From a system-level
perspective, integrating GFM-dominated resources inherently
influences the dynamic behavior of power systems. Slow
coherency, a key characteristic, arises from the time-scale
separation in the dynamics of synchronous machines. Strongly
coupled machines oscillate together, forming slow, coherent
groups, while these groups oscillate against each other over
a slower time scale due to weaker coupling. The goal
of distributed control is to leverage this slow coherency
structure for better oscillation damping control. Understanding
the inherent clustering pattern, especially with significant
GFM-based renewable energy, enhances wide-area control
performance. Thus, we first identify the altered coherency
structure from GFM integration and then design distributed
control accordingly.

III. DISTRIBUTED RISK-CONSTRAINED LEARNING
CONTROL SOLUTION

A. Perturbed Coherency Behavior

We start by extracting the Laplacian sub-matrix of the
state dynamics, i.e., frequency dynamics governed by the
influence of angles involving synchronous generators and



inverters. Let us consider the vector concatenating all the
angles for SGs is denoted by δs, and for GFMs by δf , and
similarly for frequencies in ωs, and ωf . Then, we can write
the frequency dynamics in compact form for SG: Mẇs =
f̄sync(δs, V ), where f̄sync(.) denotes the part of the full
functional form corresponding to the frequency dynamics.
The dynamics are dependent upon the SG angles as the
electrical active power from the SG i is given by Psi =
(Ei/x

′

di) (ViRe
sin δi − ViIm cos δi) . Now, for the GFM units,

we can similarly write in the compact form as, Mf ẇf =
f̄gfm(δf , Ef , V ), where f̄gfm(.) denotes a part of the full
dynamics corresponding to the frequency evolution, and Ef

denotes stacked internal voltage states for inverters. The
equivalent inertia provided by the GFM unit is dependent upon
the GFM droop control parameters: Mf = blkdiag({ τj

λp
j
}j).

Now, the power-flow equations in the functional form can
be slightly elaborated to encapsulate some of these specific
states such that, 0 = g(δs, δf , Ef , V ), At a stable operating
point, linearizing the SG, GFM dynamics, and the power-flow
equations, we have,

M∆ẇs = A11∆δs +A12∆V, (6)
Mf∆ẇf = A21∆δf +A22∆V,+A23∆Ef , (7)
0 = A31∆δs +A32∆δf +A33∆V +A34∆Ef , (8)

where the matrices Aij denotes the Jacobians corresponding
to the argument variables. Let us also perform some manipula-
tions here, such as denoting A1 = blkdiag(A11, A21), A2 =
[A12;A22],Me = blkdiag(M,Mf ), A3 = [A31A32], A4 =
[0;A34]. Then, we will have

∆V = −A−1
33 A3

[
δs
δf

]
−A−1

33 A34∆Ef . (9)

Using this expression in (6) and (7), we will have,

Me

[
∆ẇs

∆ẇf

]
=(A1−A2A

−1
33 A3)

[
δs
δf

]
+(A4−A2A

−1
33 A34)∆Ef .

(10)

The Laplacian matrix for this Kron-reduced coupled SG-GFM
interaction network is captured by,

L = (A1 −A2A
−1
33 A3), (11)

and the inertia-weighted sub-matrix that captures the influence
of angles on the frequency dynamics is given by M−1

e L. The
eigen-structure of this weighted Laplacian matrix determines
how the resultant dynamic coupling between the conventional
SG and the GFM is modified.
Proposition 1: (i) GFMs preserve the grid Laplacian
structure L, such that L.1 = 0; (ii) Moreover, a considerable
replacement can cause perturbation in coherent boundaries.
Proof: Part (i): With only conventional synchronous machines
integrated into the grid, the linearized model can be recalled
as follows: M∆ẇs = A11∆δs + A12∆V, 0 = A31∆δs +
A33∆V, and the Kron-reduced frequency dynamics would
lead to, M∆ω̇s = (A11−A12A

−1
33 A31)∆δs. Thus, the inertia-

weighted Laplacian for the sync-only grid is expressed as
M−1L̄ where: L̄ = (A11 − A12A

−1
33 A31). Consequently,

the perturbation resulting from extensive GFM integration,
leading to M−1

e L will reflect the intrinsic clustering behavior.
The GFM frequency dynamics enable the synchronous-like
behavior with the modification to the inertia parameters
(τj/λ

p
j for inverter j). As a result, after the admittance

matrices are Kron-reduced to account for the all-to-all
coupling between generation resources, including SGs and
GFMs, the active power generated by the ith GFM unit
toward another GFM or SG (say, denoted by jth unit) would
be equivalently given by EiEjBij sin(δi − δj) where Bij is
the equivalent Kron-reduced admittance between SG/GFM
resources. The elements of the matrix L are:

L(i, j) = EiEjBij cos(δi0 − δj0) if i ∼ j, (12)
= 0, if disconnected.

Considering the active power-balance structure between
the SG/GFMs we will have, L(i, i) = −

∑
j∈Ni

L(i, j).
Therefore, we will have 1 as one of its eigenvectors with
zero eigenvalue resulting in the condition: L.1 = 0.

Part (ii): We consider r coherent areas, recalling the
slow coherent behaviors as in [21]. We consider matrices
Wr, and W̄r whose columns are the eigenvectors of the
zero eigenvalues and the (r − 1) slow eigenvalues of the
weighted Laplacians M−1

e L, and M−1L̄, respectively. A
Gaussian elimination-based method is proposed in [5] to
create permuted versions of Wr and W̄r by identifying
the group reference machines, denoted as Wr, and W̄r.
The canonical angles between these two sub-spaces are
defined as θi = cos−1σi, i = 1, . . . , r where σi, i = 1, . . . , r
are the r smallest singular values of W̄T

r Wr. Let ei and
ēi be the ith eigenvalues of M−1

e L, M−1L̄, respectively.
If there is a gap such that |er − ēr+1| > β for some
β > 0, then the perturbation in the sub-spaces can be
bounded by ||sin(Θ)||F ≤ 1

β ||M
−1L̄Wr − WrΣr||F ,

where Θ = diag(θ1, . . . , θr) and Σr = diag(e1, . . . , er);
more details can be found in [22], [23]. As a result
of this perturbation, the row vectors of the permuted
GFM-integrated slow-subspaces (αi’s) will deviate from
those of the SG-based subspaces (ᾱi’s) as follows:

||αi − ᾱiQ||F ≤
1 +
√
2

β
||M−1

e L−M−1L̄||F , (13)

where Q is orthogonal matrix that minimizes ||Wr−W̄rQ||F .
However, since these row vectors are constrained by the
hyperplane

∑
j=1:r αij = 1, i = 1, . . . , n, [21] they will

exhibit a rotational shift. This results in a new clustering
structure, significantly altering ||M−1

e L −M−1L̄||F . This
captures the impact of GFM integration, introducing a
perturbation in the slow eigenspace that ripples through the
row vectors of the slow subspace, consequently altering the
clustering.

B. Distributed Output Feedback

1) Pre-tuning: The pre-tuning is designed to select appro-
priate feedback variables based on the modified clustering
structure. Here, the main steps are as follows:



• Step-1: Compute small-signal model for the grid with
GFM penetration.

• Step-2: Examine eigen-vectors corresponding to slow
eigenvalues (inter-area oscillations) and compute mode-
shapes (an example will be given in numerical experi-
ments).

• Step-3: Compute the all-new coherent groupings encom-
passing SGs and GFMs based on the mode-shapes.

• Step-4: Construct angular differences along the new
partitions, which are used as distributed feedback. This
step signifies capturing tie-line active power flows as they
are dependent upon angular differences of the boundary
resources.

Therefore, feedback are taken from the generating resources
assuming they are equipped with decentralized estimators
near the coherent boundaries within the nearest possible hops
of the form ∆δi −∆δj (signifying Pij) where ith and jth

resources belong to neighboring areas. Next, we describe the
algorithm to compute ut = −Kyt.

2) Zeroth-order RL: Problem (5) poses difficulty due to the
risk-aware constraints, and static output feedback, therefore,
we utilize the policy gradient based reinforcement learning
framework. To solve (5), we first reformulate the constraint to
a quadratic form while removing the conditional expectation
with respect to Ht [24]. Specifically, with an assumption that
the noise ξt has a finite fourth-order moment, the constraint
is reformulated as

Rc(K) = lim
T→∞

1

T
E

T−1∑
t=0

(
4x⊺

tQWQxt + 4x⊺
tQM3

)
≤ c̄ (14)

where c̄ := c−m4+4tr{(WQ)2}, ξ̄ := E[ξt], W := E[(ξt−
ξ̄)(ξt − ξ̄)⊺], M3 := E[(ξt − ξ̄)(ξt − ξ̄)⊺Q(ξt − ξ̄)], and
m4 := E[(ξt − ξ̄)⊺Q(ξt − ξ̄)− tr(WQ)]2. Here, we consider
random noise samples for ξ to represent worst-case variability
in actual real-world load and generation variations. Hence, the
required moment values are computed by gathering samples
of ξ, which are used in offline trajectory generation. Once
learning is complete, the learned K is utilized to generate
control actions during online implementation. In practice,
designers can adopt more systematic methods to generate
ξ using historical measurements gathered by utilities. From
these datasets, measures of the noise statistics can be obtained.

Next, we implement a stochastic gradient-descent method
with a max-oracle (SGDmax), which can consider both the
risk constraint and structured feedback using dual approach
[25]. First, we formulate the Lagrangian function with the
multiplier µ ≥ 0, as given by,

L(K,µ) := R0(K) + µ[Rc(K)− c̄]. (15)

Note that the Lagrangian retains the same quadratic structure
as the original LQR objective. This characteristic allows us
to apply a gradient-based approach, which is widely used for
solving the unconstrained LQR problem [24]. Specifically,
we employ the policy gradient method with the Lagrangian
function considered as a value function. We directly update
our policy K by computing the estimated gradient of the value

function, which, in our case, is represented by the Lagrangian
function [9]. With (15), the dual problem is formulated as
the maximin problem:

max
µ∈Y

min
K
L(K,µ), (16)

where Y := [0, µ̄] is a bounded set for µ by assuming that (5)
is feasible and thus µ is finite. Here, we consider minimax
counterpart of (16) instead, i.e.

min
K

Φ(K), where Φ(K) := max
µ∈Y
L(K,µ), (17)

which enables us to find the stationary point of (16) since
the KKT stationary condition is the same in both problems.
Note that we can directly find optimal µ by choosing µ = 0
if the constraint is satisfied and µ = µ̄ otherwise as L(K,µ)
is a linear function of µ. In order to further minimize Φ(K),
we can implement the gradient descent (GD) method with
the zero-order policy gradient (ZOPG) [25]. Specifically, we
can estimate the ZOPG by utilizing the expression:

∇̂KL(K;U) =
nK

r
L(K + rU, µ′)U, (18)

where U represents a random perturbation following the same
structure as K, with ∥U∥=1, while r and nK indicates the
smoothing radius and the number of non-zero entries and µ′=
argmaxµ∈Y L(K + rU, µ). Note that incorporating ZOPG
eliminates the necessity of computing the first-order gradient
∇KL(K,µ) as ZOPG can directly utilize the function value
L(K,µ) to estimate the gradient.

By utilizing the ZOPG, we implement the stochastic
gradient-descent with max-oracle (SGDmax) algorithm as
indicated in Algorithm 1. From the initial policy K0, we
perform iterative gradient descent updates on K. To mitigate
estimation variance, we leverage Ĝ(K), which denotes
the average of Ni estimates obtained through ZOPG. It
is noteworthy that by selecting appropriate values for the
smoothing radius r, step-size η, and the number of iterations
M along with the Lipschitz and smoothness constants of
Φ(K), we can achieve a high convergence probability to the
stationary point, as stated in Lemma 1. The detailed proof with
selection of parameters can be found in [25, Appendix B].

Lemma 1. [25] By appropriately selecting parameters
r, η, and M in accordance with the local Lipschitz and
smoothness properties of Φ(K), and initializing a feasible
K0, Algorithm 1 is demonstrated to converge to the stationary
point of (17) with a high probability of approximately 90%.

IV. NUMERICAL EXPERIMENTS

We conducted numerical tests using the standard IEEE 68-
bus system. As described in Section II, we replaced p = 3 SGs
out of a total of 16 SGs with GFMs, positioned at nodes 63,
64, and 65. The parameters for the GFMs were configured
as follows: τ = 0.01, kpv = 1.00, kiv = 5.86, λp =
0.05, λq = 0.05. For the distributed feedback, we considered
that only angle differences ∆δij could be observed between
SGs and GFMs in different areas, within nearest-possible
hops from the area boundary, and set the output matrix C



Algorithm 1: Coherency-aware Stochastic gradient-
descent with max-oracle (SGDmax)

1 Inputs: A feasible and stable policy K0, upper bound
µ̄ for µ, step- size η, the number of ZOPG samples
Ni and the number of iterations M .

2 Run steps 1-4 as of pre-tuning to select the modified
coherency structure and distributed feedback.

3 for m = 0, 1, . . . ,M − 1 do
4 for s = 1, . . . , Ni do
5 Sample the random Us where ∥Us∥ = 1.
6 Use (18) to return ∇̂KL(Km;Us).
7 end
8 Compute the averaged stochastic gradient

Ĝ(Km) = 1
Ni

∑N
s=1 ∇̂KL(Km;Us).

9 Update Km+1←Km − ηĜ(Km).
10 end
11 Return: the final iterate Km.

accordingly. This captures the tie-line active power flows as
they are dependent upon angular differences. Fig. 1 shows how
the GFM integration impacts the coherent area boundaries
where SGs at buses 53, 54, 55, 60, and 61 are transitioned
from the nominal area grouping to form an all-new area
partitioning. Fig. 2 shows how the mode-shapes (eigenvector
elements corresponding to the low-frequency(slow) modes)
of the resources signify this shift in area boundaries. More
details on such changes can be found in the pre-print [26].

We compared two scenarios with different area partitioning
strategies aimed at enhancing oscillation control, as illustrated
in Fig. 1. In scenario 1 (coherency-agnostic), default areas
were utilized as in the left figure of Fig. 1, while scenario
2 (coherency-aware) implemented a coherency-aware dis-
tributed design for area partitioning by following the right
one. Consequently, scenario 1 involved buses {53, 54, 60, 61}
in Area 1 and {62, 63, 64} in Area 2, whereas scenario 2
considered {56, 57, 58, 59} in Area 1 and {53, 55, 60, 61} in
Area 2. Both scenarios underwent training using the SGDmax
algorithm outlined in Algorithm 1, with the following
parameters: r = 0.01, M = 10, and η = 10−8. The control
time step was set to ∆t = 0.01s, with observations conducted
from 0− 100s. At t = 0, we generate the impulse inputs to
each SG and GFM, while ξt follows the Gaussian distribution.

We first present training results to verify the convergence

Fig. 1. Transition in Coherent Area Partitioning

Fig. 2. Mode shape plots for (a) Nominal (Base) and, (b) Modified GFM
integrated power system model

Fig. 3. (a) Training performance and (b) Average µ for Scenario 1 and
Scenario 2

of Algorithm 1 and check the solution satisfies the constraint.
Fig. 3(a) depicts the evolution of the objective values over
time. Along with convergence, notably, the coherency-aware
design consistently yields smaller objective values compared
to the coherency-agnostic approach, achieving approximately
a 30% enhancement. In addition, during the convergence
phase, after the initial transients settle around 2000 iterations,
the cost objectives of the coherency-aware design consistently
remain lower bounds compared to those of the coherency-
agnostic design. This observation suggests that integrating
perturbed area-partitioning information into the distributed
feedback significantly enhances the learning process for wide-
area control. Next, Fig. 3(b) illustrates the trajectory of
average µ from Ni ZOPG samples during training. It is
evident that starting near µ̄, the average µ gradually converges
towards 0. This outcome suggests that as the iterations
continue, we approach the optimal solution that satisfies the
constraint as µ = 0 when the constraint is satisfied, whereas
µ = µ otherwise.

Using the converged policies in both scenarios, we conduct
tests between scenarios 1, 2, and the one without control.
Fig. 4 illustrates ∆ωi and ∆δi − ∆δj for some typical
scenarios. Specifically, Fig. 4(a) and Fig. 4(b) compare ∆ω53

and ∆ω66 between the one without control (yellow) and
scenario 2 (black), respectively. Clearly, the control policy
of scenario 2 outperforms the one without control. More
specifically, the damping of a couple of slow modes 0.49
and 0.56 Hz have been improved from 1.2%, 1.8% to 13.4%
and 4.5%, respectively. Similarly, Fig. 4(c) and Fig. 4(d)
depict the comparison of ∆ω53 and ∆ω66 between scenario
1 (orange) and scenario 2 (black). Still, scenario 2 exhibits
better performance than scenario 1, indicating that coherent



Fig. 4. Plots for without control vs coherency-aware (a) frequency at SG-53,
(b) frequency at SG-66; plots for coherency-agnostic vs coherency-aware (c)
frequency at SG-53, (d) frequency at SG-66, (e) angle difference between
SG-53 and SG-60, and (f) angle difference between SG-57 and GFM-65.

area partitioning enhances damping performance. This is
further demonstrated in Fig. 4(e) and Fig. 4(f), which illustrate
∆δ53 − ∆δ60 and ∆δ57 − ∆δ65, respectively. Similar to
∆ω, scenario 2 displays superior performance in reducing
deviations in both cases. Since these angle differences are
closely related to tie-line power flow, the result highlights
the effectiveness of the proposed method in mitigating the
power flow deviations across the coherent areas.

V. CONCLUSIONS

This paper explores the significance of incorporating
coherency-aware control design for mitigating persistent
oscillations in large-scale power grids with substantial pres-
ence of inverter-based resources. Our proposed coherency-
aware design employing distributed output feedback-based
reinforcement learning has demonstrated superior training
and oscillation performance compared to coherency-agnostic
control designs. Future research will include high-fidelity
transmission-scale models, different types of power electron-
ics interfaced resources causing coherent clustering behavior
of the bulk power grids. Additionally, robust data-driven
control designs in presence of net-load uncertainties and
incorporation of other risk measures, such as conditional
value at risk (CVaR) will be investigated.
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