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Abstract— Autonomous systems typically leverage layered
control architectures, created by interconnecting components
that operate at multiple timescales, i.e., evolve under various
clocks. To formalize this typically heuristic procedure, we
introduce a new logic, Multiclock Logic (MCL), that can express
the requirements of components from the point of view of their
local clocks, promoting independent design and component
reuse. We then use assume-guarantee contracts expressed in
MCL to prove global stability properties of a system using the
stability properties of its components. In particular, we consider
the classic layered architecture consisting of model predictive
control (MPC) layered on top of feedback linearization, and
prove overall stability of the systems.

I. INTRODUCTION

Over the years, the field of control theory has devel-
oped many tools to design control blocks in isolation—e.g.,
PID, feedback linearization (FBL), model predictive control
(MPC) [1], [3], control Lyapunov functions (CLFs) [2], [12],
etc. The design of complex control systems—legged robots,
aerial robots, and autonomous vehicles, to name a few—
normally involves the combination of various blocks of con-
trol functionality. It is often the case that designers working
independently on each control block make assumptions on
the behaviors of other blocks that are not communicated or
explicitly stated—leading to a development process prone to
errors. Moreover, control blocks are normally implemented
at different loop rates, leading to unaccounted for timing and
interfacing issues. The end result is that we interconnect our
control blocks hoping the system will work.

This letter provides a compositional, specification-based
approach to proving control properties of layered systems by
using the properties of each layer. We introduce a new logic,
Multiclock Logic (MCL), to be able to express properties
from the local point of view of a processor running on
its own clock—capturing the multi-rate nature of layered
control systems. We use MCL to abstract layers into assume-
guarantee contracts, which are formal specifications that
capture what a component guarantees and requires from its
environment to be able to deliver its guarantees [6]. We use
the algebra of contracts to compositionally relate the local
stability properties of control algorithms with the system-
level properties of their interconnection. While multi-rate
control architectures were first studied in [10], the problem of
compositionally writing and analyzing formal specifications
for control systems made from layers that operate on distinct
time bases has not been studied.
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Fig. 1. A typical layered control architecture, whereby MCL contracts en-
able independently designed controllers to meet system-level specifications.

This letter is organized as follows. Section II introduces
our motivating example. Section III presents the syntax and
semantics of MCL. Section IV shows how to express contract
specifications for a multilayer controller using MCL, and to
prove system-level stability properties from the properties
of the control layers. An extended version of this letter [7]
contains background on behavioral modeling and contracts.

II. MULTI-RATE SYSTEM CASE STUDY

To illustrate our compositional analysis of a layered ar-
chitecture, we will consider the design of a control strategy
for the pendulum shown in Figure 1. Our objective will
be for the system to satisfy a top-level stability objective
expressed as contract C. We will understand the controller for
such as system as an architecture consisting of a high-level
and a low-level control layers interconnected by a network.
Each control layer will be assumed to be implemented on
a processor operating on its own clock, as is common in
practice. We will identify contracts CHL for the high-level
layer, CLL for the low-level layer, CEst for state estimation,
and CTmg for the networking between the layers. As these
contracts need to state formal properties over multiple clocks,
they will be expressed in MCL in Section IV. The property of
these contracts is that their composition is a refinement of the
desired stability contract C. This means that we will be free to
independently implement these aspects of the functionality,
and the procedure will be guaranteed to yield a system that
satisfies the system-level objective C. Afterwards, we will
implement each of these control blocks independently.

We now consider the details of this case study. The
configuration space of the system is given by θ ∈ Q , S1,
and the associated state by x = (θ, θ̇) ∈ TQ. We can write
the dynamics in control-affine form as ẋ = f(x) + g(x)u,
with control input u ∈ R, continuously differentiable drift
vector f : TQ → R2, and actuation matrix g : TQ → R2.
We will be concerned with the high level task of reaching
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some neighborhood of the goal state xg = 0, the unstable
upright equilibrium. Low-level controllers alone struggle to
simultaneously enforce state and input constraints while en-
suring progress to the goal is being made [3]—this motivates
the use of a hierarchy for achieving this control task. Our
hierarchy will consist of two layers—a high-level controller
and a low-level controller—running on different clocks.

1) Low-level controller design: To actuate the system, we
use a feedback controller which is able to track a desired
trajectory xd. We begin by defining an output y : X → R
as y(x) = θ, whereby we can construct error coordinates
e(x, t) =

[
y(x) Lfy(x)

]ᵀ −
[
y(xd(t)) ẏ(xd(t))

]ᵀ
, with

Lfy(x) denoting the Lie derivative of y with respect to f .
Then, a feedback control law can be created to stabilize the
outputs. For example, the control law can be the feedback
linearizing controller

kfbl(x, t) = LgLf (x)
−1(−L2

fy(x) + ÿ(xd(t))−Ke(x, t)),

which exponentially stabilizes the output coordinates for el-
ementwise positive vector K ∈ R2. Given bounded additive
disturbances to the dynamics, there exists a robust invariant
set E ⊂ Rn such that applying kfbl results in bounded
tracking error, i.e., x(t) ∈ xd(t)⊕ E [4].

2) High-level controller design: This controller will be
concerned with producing the pieces of trajectories xd which
make progress towards the goal xg for the low-level con-
troller to track. In order to do so, we set up the following
MPC program:

min
xd(t),ud(t)

∫ T

0

h(xd(t), ud(t))dt (1)

s.t. ẋd(t) = fa(xd(t)) + ga(xd(t))ud(t),

xd(0) ∈ x̂⊕ E , xd(T ) = 0,

x(t) ∈ X , u(t) ∈ U ,

with X ⊂ R2 a state constraint set, U ⊂ R an input constraint
set, h : X ×U → R≥0 a convex stage cost, fa and ga linear
approximations of the dynamics, x̂ ∈ X an estimate of the
system state, E ⊂ Rn a robust invariant set of the low level
controller, and x(t) and u(t) the continuous-time state and
input of the low-level system.

Combining MPC with a low-level controller is a popular
technique which is extensible to stabilizing complex nonlin-
ear systems [5], [10]. When deploying such an architecture,
however, the underlying approximations of convexification
and discretization are often not explicitly reasoned about,
leaving practitioners hoping rather than knowing that the
closed-loop system will work. Common assumptions include:
i) the estimate of the state x̂ is “close enough” to the true state
x; ii) the MPC runs “fast enough” and produces solutions
which are “close enough” to the system dynamics; and iii)
the low-level controller runs “fast enough” and can track
“well enough.” The aim of this paper is to construct a
pipeline whereby these assumptions are made explicit, with
an eye towards automating the system verification process
for layered control systems.

III. MULTICLOCK LOGIC

In this section, we introduce Multiclock Logic (MCL),
a framework to reason about layered control operating on
multiple clocks. First we define the behaviors over which
the logic makes predicates, then introduce the logic. MCL
will allow us to express properties from the local point of
view of each control block in our design without burdening
the syntax with synchronization over the multiple clocks
present in the system. While some of these properties can be
expressed intuitively, MCL is a formal language and so can
be manipulated by a machine. This is necessary in order to
automate formal system-level design.

1) System-level behaviors: The fundamental notion of
system-modeling is the variable. We understand a variable as
a tuple (v,Xv,Dv), where v is the name for the variable, Xv

is the value space (a topological space where the variable
takes values), and Dv is a totally-ordered Abelian group
called the clock, giving a notion of a progression of values.
Whether a variable is discrete/continuous/constant depends
on the clock that we assign to it: R/N/{•}, respectively. We
model clocks as totally-ordered Abelian groups because we
need order to compare values of a clock and define intervals,
and the group structure to add and subtract these values.

Suppose we have a set C of clocks and that a set Vars
of variables shares clock c ∈ C. The joint behaviors of these
variables will be given by maps c→

∏
v∈Vars Xv , as in the

tagged signal model [9]. In order to isolate the value of a
variable u ∈ Vars from those of the other variables in the
same clock, we will use the projection maps that come with
the definition of the product, i.e., πu :

∏
v∈Vars Xv → Xu.

Stating certain predicates may require us to use a clock
to read the values of variables belonging to another clock.
Suppose c, d ∈ C. To read the value of a d-variable in the
clock c, we will assume the existence of a map τdc : c →
d. The τ maps, which we may call synchronization maps,
determine the index of the target clock that is used when
reading variables from a given clock. E.g, to read the value of
a variable x clocked by d from the clock c at time t ∈ c, we
would get the value of x at time τdc (t). The synchronization
maps capture the amount of delay incurred by reading data
from a clock from which the data does not originate.

Suppose that we build a system that comprises a set of
variables Vars and a set of clocks C. For each variable
v, we let C(v) be the clock corresponding to v ∈ Vars.
The inverse of this map, C−1(c), yields the set of variables
corresponding to clock c ∈ C.

Definition 1. A system-level behavior is an object
β = (bd)d∈C ×

(
τdc

)
c,d∈C

, where the elements bd ∈(
d→

∏
v∈C−1(d) Xv

)
carry the behaviors of the variables

clocked by d, while the τdc ∈ (c → d) indicate how to read
values of d-variables using the clock c.

Components, as usual, are defined as sets of behaviors.
The following definition will be useful to give semantics to
the eventual modality ♢ of the logic.



Definition 2. Let β = (bd)d∈C ×
(
τd

′

d

)
d,d′∈C

be a sys-

tem behavior. Given t ∈ c ∈ C, we define the (c, t)-
execution βt

c as βt
c = (bd)d∈C ×

(
τ̃d

′

d

)
d,d′∈C

, where

τ̃d
′

d (x) =

{
τd

′

c (x+ t) d = c

τd
′

d (x) d ̸= c
.

The only difference between β and βt
c is that in βt

c the
clock c is anticipated by t units.

2) MCL syntax: Assume we have access to a set Vars
of variables, a set C of clocks, and a set F of formulas of
various arities. We let P be the set of symbols dd

′
, where d

and d′ denote clocks. The syntax of MCL is

ϕ ::= ρc. Φ | ¬ϕ | ϕ ∧ ψ
Φ ::= P (λ1(t1), . . . , λn(tn)) | ¬Φ | Φ ∧Ψ | ♢[t1,t2]Φ | ♢t1Φ,

where c ∈ C, λi ∈ Vars ∪P ∪ C, ti ∈ c, and P ∈ F is an
n-ary formula.

We think of the formulas ϕ as the global syntax of MCL,
and of the Φ formulas as the local syntax that applies to
a clock. The global syntax supports propositional logic. The
syntax ϕ = ρc. Φ indicates that a global formula ϕ is created
by binding a local formula Φ to the clock c. The local syntax
supports propositional logic and the eventual modality. It
also supports the enunciation of predicates involving multiple
variables evaluated at the indicated times ti ∈ c. The syntax
also supports the enunciation of predicates on clocks c ∈ C
and on clock pairs cd ∈ P. The use of clocks and clock pairs
cd ∈ P in formulas allows us to express timing constraints
in our systems. Observe that the logic leaves abstract the
formulas F used to define the predicates. The formulas are
functions that evaluate to Boolean values.

3) MCL semantics: The semantics of an MCL formula
apply to a system behavior. Let β = (bd)d∈C ×

(
τd

′

d

)
d,d′∈C

be a system behavior. We have the following global seman-
tics:
• β |= ρc. Φ iff β |=c Φ
• β |= ¬ϕ iff β ̸|= ϕ
• β |= ϕ ∧ ψ iff β |= ϕ and β |= ψ

Formulas at the global level are either created by Boolean
connectives, or they are local formulas that are assigned to a
clock in the system. The symbol “|=c” stands for satisfaction
in the local semantics of MCL, defined as follows:
• β |=c P (λ1(t1), . . . , λn(tn)) iff P (Interp(λi, ti))

n
i=1,

where

Interp(λi, ti) =


πv ◦ bC(v) ◦ τC(v)

c (ti) λi = v ∈ Vars

τd
c (ti) λi = d ∈ C

τd′
d ◦ τd

c (ti) λi = dd′ ∈ P and d ̸= c

• β |=c ¬Φ iff β ̸|=c Φ
• β |=c Φ ∧Ψ iff β |=c Φ and β |=c Ψ
• β |=c ♢[t1,t2]Φ iff ∃t. (t1 ≤ t ≤ t2) ∧ (βt

c |=c Φ)
• β |=c ♢t1Φ iff ∃t. (t1 ≤ t) ∧ (βt

c |=c Φ)

In addition to the formation of local formulas using Boolean
connectives and the eventual modality ♢, MCL local for-
mulas can be formed by making a predicate over a set of
symbols λi and a set of values ti of the clock c. In general,
the meaning of the formula P (λ1(t1), . . . , λn(tn)) is the

evaluation of the n-ary formula P for the values that each
symbol λi takes when the value of the clock c is τ cc (ti).
For example, the predicate ρc. ∥x(0)∥ > 2 for a variable x
means that we will evaluate the value of x when c = τ cc (0).
If x is clocked by c, we simply extract the value of x at time
τ cc (0); if it is clocked by d ̸= c, we would return its value at
time τdc (0). We recall that the local semantics can anticipate
the value of c by t time units—see Definition 2.

The formula ρc. d(0) −K > T for d ∈ C and constants
T,K ∈ d has the semantics τdc (0)−K > T . This statement
is true at ticks of clock c for which the index of clock d
that c uses to read the data of d is larger than K + T . This
type of predicate can be used as a precondition that ensures
that the clock d has issued sufficient ticks. The semantics
of a formula of the form ρc. r(0) − dr(0) < T for clocks
c, d, r, is τ rc (0)−τ rd ◦τdc (0) < T . It states that the difference
in r time units between a tick of c and the tick of d from
which c reads the data of d must be less than T . This kind
of statement is useful to bound the maximum allowed time
for data to have existed in its local clock d before it is read
by another clock c.

The notion of satisfaction is extended from system behav-
iors to components as follows: we say that a component M
satisfies an MCL formula ϕ if β |= ϕ for all β ∈M .

We extend the given syntax and semantics in the standard
way to support all Boolean connectives and the modality �,
or “globally.” Finally, when stating a formula of the form
ρc. P (λi(ti))i, we will sometimes omit the ti arguments. In
that case, the parameter should be understood as 0.

IV. VERIFYING THE MULTI-RATE CASE STUDY

We now continue the analysis of the archetypal layered
architecture described in Section II. Our goal is to specify
the high-level and low-level control blocks independently and
carry out system-level analysis using these specifications.
The objective of our system-level analysis is to show that
the system reaches and remains inside a neighborhood of
the goal state xg . To do so, we assume we have a cost
function V that maps the state x of the system to a well-
ordered set. The value of V is zero in a neighborhood of xg .
The function V will be further specified when we consider
the implementations of component contracts in Section IV-
C. As a well-order does not have infinite descending chains,
the fact that the codomain of V is a well-order means that
any process that decreases the cost V will eventually reach
the minimum cost V(x) = 0 in a finite number of iterations.

The system has three clocks: m = N, which runs the high-
level block; l = N, which runs the low-level and estimation
blocks; and r = R≥0, the physical time. The system state
is denoted by the variable (x,X ,r), i.e., its behaviors are
functions from the physical clock to the state space X .
The high-level block outputs a variable (xd,X r,m), which
contains the trajectory in the state space that the system is
to follow. Observe that the behaviors of this variable are
functions from m to functions from r to X . Thus, at any
tick of the clock m, the high-level controller will provide
a function for the low-level controller. This means that xd



will be doubly-indexed in our formulas. The first index
corresponds to the clock evaluation, and the second to the
time argument of the trajectory. For example, the l formula
ρl. ∥xd(0)(T )∥ < K evaluates to ∥xd (τml (0)) (T )∥ < K.
Finally, an estimation block running on clock l will out-
put a state estimate (x̂,X ,l). Our system’s objective is
ρl. ♢� (V(x) = 0), i.e., our cost will stabilize at zero.

A. Specifying the system

We consider the contracts for each layer in the system.
1) High-level controller: We consider the specification of

the high-level controller running on a dedicated processor
with clock m. The high layer has an input x̂, the state
estimate coming from another control layer, and a single
output xd, which is a trajectory that the low-level controller
has to follow.

On a given tick of the clock m, the high-level block will
assume that the state estimate is an accurate approximation
of the state. The high-level controller uses this to compute a
trajectory in the next tick of m. Finally, the high layer will
guarantee that the trajectories it generates either decrease the
cost V or keep it equal to zero. We can represent the high-
level controller contract CHL = (AHL, GHL) as follows:

AHL : ϕHL
A_init ∧ ϕHL

timing ∧ ϕHL
sensor ∧ ϕHL

bound_var

ϕHL
A_init : ρm. Close

(
x, xi; δ

HL
A_init

)
ϕHL

timing : ρm. �
(
(Tm

min ≤ r(1)− r ≤ Tm
max)∧

(r − lr < Tm
fresh)

)
ϕHL

sensor : ρm. �Close
(
x̂, x; δHL

sensor
)

ϕHL
bound_var : ρm. �BoundedVariation(x;Dx)

GHL : ϕHL
G_init ∧ ϕHL

rsp_dyn ∧ ϕHL
dynamics ∧ ϕHL

traj_bound_var ∧ ϕHL
progress

ϕHL
G_init : ρm. Close

(
xd(0)(0), xi; δ

HL
G_init

)
ϕHL

rsp_dyn : ρm. �RespectDynamics(xd)

ϕHL
dynamics : ρm. �Close

(
xd(0)(T

m
avg), xd(1)(0); δ

HL
dynamics

)
ϕHL

traj_bound_var : ρm. �BoundedVariation(xd;Dd)

ϕHL
progress : ρm. �

(
(V (xd(0)(0)) > V (xd(1)(0)))∨
�
(
V
(
Inflate

(
Im (xd) ; δ

HL
progress

))
= 0
))

ΦHL
sensor captures the requirement that the sensor produces

values that are close to the real state x at the time when
m ticks. The predicate Close(v, v′; δ) indicates that two
symbols v, v′ are evaluated to quantities that are close up to
a parameter δ for some notion of distance (taken to be ℓ2
for the case study). ΦHL

bound_var assumes that the state x has
bounded variation. ΦHL

timing requires the clock period of m to
lie between Tm

min and Tm
max; (we also assume that the nominal

m period Tm
avg lies between these bounds); the assumption

also requires the difference in physical time between a tick
of m and the tick of l from which m reads l’s data to be
less than Tm

fresh. This means that the data from l that is read
from m cannot be too old. ΦHL

A_init requires x to be close to
a value xi at the beginning of the system execution.

With respect to guarantees, ΦHL
G_init means that the first

trajectory output by the high-level block will start close to
xi. ΦHL

rsp_dyn is a predicate stating that the high-level controller
will always generate trajectories xd that should be within the
competence of the low-level block to follow. In the context

of this work, we require that the produced trajectories are
dynamically feasible, i.e., there exists a feedback controller
which is able to track the generated trajectories. ΦHL

dynamics
states that the beginning of every new trajectory provided
by the high-level block has to be close to the value of the
previous trajectory at time Tm

avg. ΦHL
traj_bound_var is a promise

that the trajectories provided by the high-level controller will
have bounded variation.

Finally, in order to be able to promise that the system will
make progress towards its objective, the high-level block will
make use of the cost function V . The high-level controller
makes a guarantee ΦHL

progress which says that either the cost
at the beginning of a trajectory xd is larger than the cost at
the beginning of the next trajectory xd, or that all points that
are close to the trajectory have a cost of zero. The function
Inflate(A, δ) takes a set A and returns the set of all points
that are δ-close to any point of A. That is, each trajectory
either improves the cost or stays fixed at cost equal to zero.

2) Low-level controller: The low-level controller takes
as inputs trajectories xd that the system’s state x has to
follow and promises that it can make the system follow these
trajectories with a given accuracy. We have the following
contract CLL = (ALL, GLL) for the low-level controller:

ALL : ϕLL
timing ∧ ϕLL

rsp_dyn ∧ ϕLL
dynamics ∧ ϕLL

bound_var

ϕLL
timing : ρl. �


(
T l

min ≤ r(1)− r ≤ T l
max

)
∧(

r −mr < T l
fresh

)


ϕLL
rsp_dyn : ρl. �RespectDynamics(xd)

ϕLL
dynamics : ρl. �

(
(m ̸= m(−1)) ∧ (m ≥ 0)

→ Close
(
xd(0)(0), x; δ

LL
dynamics

))
ϕLL

bound_var : ρl. �BoundedVariation(x;Dx)

GLL : ϕLL
upd ∧ ϕLL

tracking

ϕLL
upd : ρl. �

(if (m ̸= m(−1)) ∧ (m ≥ 0) then
(upd = l) else (upd = upd(−1))

)

ϕLL
tracking : ρl. �

(
(l − upd > 0) →

Close
(
x, xd(0)

(
T l

avg(l − upd)
)
; δLL

tracking

))

The assumptions of this contract are as follows. ϕLL
timing

assumes that l’s period is bounded below and above, and that
the data read from clock m is not too old. ϕLL

rsp_dyn requires
trajectories received from m to respect certain physical
limits, i.e., that they satisfy the state and input constraints
used in the analysis of the low level controller. ϕLL

dynamics
makes sure that when l detects the generation of a new
trajectory xd from m, then the starting point of that trajectory
should be close to the value of the state. ϕLL

bound_var requires
the state x to have bounded variation.

Regarding guarantees, ϕLL
upd is a helper statement that

defines the variable upd. This variable contains the last
value of l when a new trajectory was received from m.
ϕLL

tracking guarantees that the low-level controller will make the
system follow the given trajectory xd. Observe that ϕLL

tracking
is enforced for all values of the trajectory xd, except its
first point. For the first point of the trajectory, the low level
controller makes the assumption ϕLL

dynamics on the state. T l
avg

is the nominal period of l and respects the bounds of ϕHL
timing.



3) Estimator: The estimator will guarantee that the state
estimates are always accurate on the clock ticks of l, yield-
ing the contract CEst = (AEst, GEst), where AEst : ρl. True
and GEst : ϕEst

sensor, with ϕEst
sensor : ρl. �Close

(
x̂, x; δEst

sensor

)
.

4) Timing design: We understand the timing component
of the system as “network design” in the sense that enforcing
timing constraints is implemented by applying networking
and clock synchronization technologies. This component will
have the following contract CTmg = (ATmg, GTmg):

ATmg : ρr. True

GTmg : ϕ
Tmg
l-timing ∧ ϕ

Tmg
m-timing

ϕ
Tmg
l-timing : ρl. �


(
T l

min ≤ r(1)− r ≤ T l
max

)
∧(

r −mr < T l
fresh

)


ϕ
Tmg
m-timing : ρm. �

(
(Tm

min ≤ r(1)− r ≤ Tm
max)∧

(r − lr < Tm
fresh)

)

B. System-level analysis
We have component-level contracts for all layers in our

system. The following result connects these specifications
with the desired top-level stability objective.

Theorem 1. Consider a two-layer control system formed
by a high-level controller and a low-level controller. If
each layer satisfies contracts CHL and CLL, respectively, the
estimator satisfies CEst, and their interconnection satisfies
CTmg, then the top-level system will satisfy the top level
contract (A,G), where

A : ϕHL
A_init ∧ ϕHL

bound_var G : ρl. ♢� (V(x) = 0) , (2)

provided that the following conditions hold:
δEst

sensor + Tm
freshDx ≤ δHL

sensor (3)

δHL
G_init + δHL

A_init +DxT
l
fresh ≤ δLL

dynamics (4)

δLL
tracking + δHL

dynamics + (Tm
fresh + T l

fresh)Dx +Dd∆Tm ≤ δLL
dynamics (5)

δLL
dynamics ≤ δHL

progress, (6)

where ∆Tm = Tm
max − T l

avg

⌊
Tm

min−(T
m
fresh+T l

fresh)
T l
max

⌋
.

Proof. Contract composition yields the specification formed
by interconnecting the components whose specifications
we have available. Our system-level specification is
CSys = CHL ∥ CLL ∥ CEst ∥ CTmg, which we compute by
applying the ContractComposition routine of Algo-
rithm 1 of [8]. We now verify how this composition yields
a system satisfying the assumptions of all components.

a) High-level controller: We consider the assumptions:
ϕHL

init is an assumption on the initial state that we need to
conserve at the system-level. ϕHL

bound_var is also a system-level
assumption. ϕHL

timing is satisfied by ϕTmg
m-timing of our timing

design. ϕHL
sensor needs to be analyzed. We observe that1

ϕEst
sensor ϕ

Tmg
m-timing ϕHL

bound_var

ρm. Close
(
x̂, x; δEst

sensor + Tm
freshDx

)
.

We need the relation (3) to hold in order to satisfy ϕHL
sensor.

1This notation means that the formula below the horizontal bar is a valid
deduction from the conjunction of the formulas on top of the bar.

b) Low-level controller: ϕLL
timing is satisfied by ϕTmg

l-timing
of the timing design. ϕLL

bound_var is an assumption on the
dynamics of the physical system and should therefore be a
system-level assumption. ϕLL

rsp_dyn is satisfied by the guarantee
ϕHL

rsp_dyn. The satisfaction of ϕLL
dynamics requires an inductive

argument. For the proof that relation (4) is required for
ϕLL

dynamics to hold in the initial case and that ϕLL
dynamics holds

inductively when (5) is true, please see Section 6.2.2 of the
extended version of this letter [7].

c) Progress: Our analysis indicates that the compo-
sition of all contracts so far defined yields a situation in
which all contracts have their assumptions met—provided the
system parameters meet conditions (3), (4), and (5). Now we
verify whether the system makes progress towards its goal.
We observe that the fact that V takes values in a well order
means that we can carry out the following deductions:

ϕHL
progress

ρm. ♢�
(
V
(
Inflate

(
Im (xd) ; δHL

progress

))
= 0

)
ϕLL

upd ϕLL
tracking ϕLL

dynamics

ρl. ♢� (V(x) = 0)

provided that (6) holds.

C. Component-level verifications

Theorem 1 shows that if we implement control layers
adhering to the specifications introduced in Section IV-A and
satisfying constraints (3)-(6), the system will satisfy the de-
sired stability property (2). These constraints impose timing
requirements in the system. For instance, (5) imposes a limit
on the maximum compute time of the high-level controller.
This means that constraints (3)-(6) can be used to increase
the robustness of the design by ensuring that they are satisfied
with margin. Now we verify that each implementation of our
control layers satisfies its own contract.

1) Low-level controller: In order to use the methods
presented in [4] which combine a low level controller with
(1), we begin by showing that applying zero order held
inputs, i.e., with ρl. � (ū = kfbl(x,l − upd)), results in
bounded exogenous disturbance to the error dynamics. For
the following discussion, let x′(t) denote the solution to the
system dynamics with continuous time control applied, and
x(t) the solution with zero order held inputs. Plugging in the
solution to the differential equation with x′(0) = x(0) and
adding and subtracting g(x′(τ))ū yields

∥x(t)− x′(t)∥ =

∫ t

0

d

dt
(x(τ)− x′(τ))dτ (7)

≤
∫ t

0
(Lf + Lg∥ū∥)∥x(τ)− x′(τ)∥+ ∥g(x′(τ))∥∥u(τ)− ū∥dτ,

where Lf and Lg represent the local Lipschitz constants of
the drift vector and actuation matrix, respectively. From the
perspective of the low level controller, we assume via ϕLL

rsp_dyn
that ∥u(t)∥ ≤ U and that x(t) ∈ X , a compact set. These will
be necessary for the analysis, and will be explicitly enforced
in the proposed MPC formulation. From these constraints, we
know that there exists a G > 0 such that ∥g(x′(τ))∥ < G
and that all local Lipschitz constants are global over X . Com-
bining these facts and using the Bellman-Gronwall Lemma
[11] leads to ∥x(t) − x′(t)∥ ≤ UGt2e(Lf+LgU)t , tρ(t),



where ρ ∈ K∞, a class K infinity function. Next, let
e′(t) , x′(t) − xd(t) denote the error dynamics with
continuous time control applied, whereby the feedback lin-
earizing controller kfbl yields ė′(t) = Acle

′ for Acl a stable
matrix. Taking e(t) = x(t) − xd(t) to be the error with
zero order held inputs, we have ė = w(t) + Acle, where
w(t) = d

dt (x− x′) +Acl(x
′ − x).

Plugging in the terms developed in (7) results in ∥w(t)∥ ≤
∥w(T l

max)∥ ≤ T l
max((Lf +2LgU +∥Acl∥)ρ(T l

max)+GU). As
this bound is a composition of class-K functions in time,
for all δw > 0 there exists an ϵ > 0 such that T l

max < ϵ
results in ∥w(t)∥ ≤ δw. Fixing an allowable δw and thereby
upper bounding T l

max, by integrating the error dynamics and
using the comparison lemma we have ∥e(t)∥ ≤ ∥x(0) −
xd(0)∥Me−λt + T l

maxδw, for some M,λ > 0 as determined
by the convergence rate of the low level controller. Therefore,
in order to produce the guarantee of ϕLL

tracking, we must enforce
that δLL

dynamicsMe−λT l
min + T l

maxδw ≤ δLL
tracking.

2) MPC: Lemma 2 in [4] demonstrates that the trajec-
tories produced by (1) are dynamically feasible, i.e., able
to be exactly tracked via the feedback linearizing controller
kfbl, implying satisfaction of ϕHL

rsp_dyn. As the MPC program
produces solutions to a linear system with bounded state and
control inputs, we have that the resulting desired trajectory
xd will have bounded variation, satisfying ϕHL

traj_bound_var.
Next, we ensure that the above MPC program is recur-

sively feasible, which requires showing that the enforced set
E is a robust invariant for the system. Choosing E such that
B
(
0, δLL

tracking

)
⊂ E results in a set that can be rendered

invariant by the low level controller, even during sampling.
Therefore, we choose E to meet this condition as well as
the design requirements imposed by the system analysis in
Section IV-B. We then appeal to the results in [4] to prove
recursive feasibility of the MPC algorithm used therein.

Finally, let V : X → R denote the sum of the run-
ning and terminal cost of MPC, often used as a Lya-
punov function in stability proofs. As we have effec-
tively transformed our nonlinear MPC program to a linear
one, we can use standard MPC results [3] to state that
ρm. (V (xd(1)(0)) < V (xd(0)(0))). Since the guarantees of
the MPC contract involve V , which takes values in a well-
order, we can define V by quantizing the function V . Then
we can choose a vicinity around xg and define V(p) = 0 for
p ∈ E . In that case, V takes values in a well-order, and the
MPC block satisfies ϕHL

progress.
3) Simulation results: We investigate the use of MCL

contracts as a design tool towards achieving stability and
state constraint satisfaction for an architecture consisting of a
high-level and a low-level control block designed in isolation.
In both cases, the same control architecture and time delay
of T l

fresh = Tm
max = Tm

min was used, i.e., the time delay is
equal to one m clock cycle, and the m clock does not have
jitter. In the first case shown in Figure 2a, the MPC and FBL
controllers were independently implemented, but their in-
terconnection was not verified against formal specifications.
Therefore, our analysis did not yield any guarantees of sys-

Fig. 2. a) Nominal controller whose design process did not use MCL
contract verification fails to meet system objectives. b) Control blocks which
adhere to MCL contracts satisfy the constraint, despite being designed in
isolation.

tem behavior, and indeed we find that our system violates the
desired state constraints x(t) ∈ X . In Figure 2b, the margin
E was modified such that (5) holds with equality. As a result
of adhering to the MCL contracts, the composite control
hierarchy maintains the desired system-level specification in
(2) despite having independently designed components.

V. CONCLUDING REMARKS

We considered an effective way of specifying control
layers running on multiple clocks using MCL. Once the spec-
ifications were expressed, we used MCL contracts to prove
system-level stability properties using the local properties
of each layer. Our framework is extensible to systems with
additional layers. We showed in the case study how to verify
that each control block satisfies its own specification. Our
simulation results showed that a violation of the system-level
constraints led to failure. Future work involves applications
to more complex systems, such as bipedal robots.
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