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Abstract— The problem of estimating the reaction coefficient
of a system governed by a reaction-diffusion partial differ-
ential equation is tackled. An estimator relying on boundary
measurements only is proposed. The estimator is based upon
a setpoint regulation strategy and leads to an asymptotically
converging estimate of the unknown reaction coefficient. The
proposed estimator is combined with a state observer and shown
to provide an asymptotic estimate of the actual system state.
A numerical example supports and illustrates the theoretical
results.

I. INTRODUCTION

Reaction-diffusion processes can be found in various ar-

eas, mostly arising from chemistry, but also from physics,

biology or ecology. They are described by parabolic partial

differential equations, including both diffusive and reactive

phenomena. In the case of linear reaction, the model is

thus characterized by two parameters: diffusion coefficient

and reaction rate. In this paper, we are interested in the

case of unknown reaction coefficient. Within this setting, we

consider a scenario in which measurements can be collected

only at one boundary. At the same boundary, we assume

that the spatial derivative of the system state is controlled

(Neuman’s condition). The problem of adaptive control de-

sign for such a class of systems has been deeply studied (see

e.g. [1], [2], [3], [4], [5], [6]), but with full state knowledge

or via the use of backstepping transformations and in a

control design perspective. Recently, in [7] the problem of

estimating the state of a reaction-diffusion equation in the

presence of unknown parameters in the output equation has

been addressed via a finite-dimensional adaptive observer.

In the present paper, we pursue a different approach. In

particular, we assume that the system state is not known

and we use the system control input (setpoint regulation)

for an identification purpose (reaction coefficient estimation).

This in turns allows to provide an estimator for the full

state. More precisely, the key idea consists of designing

a dynamic, finite-dimensional, compensator that drives the

boundary output towards a reference value. Accordingly, the

unknown reaction coefficient is recovered by relying on the

nonlinear mapping between the compensator steady-state and

the corresponding reference value, which turns out to be a

static function of the reaction coefficient. In particular, owing
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to the convergence of the compensator state to its steady-state

value, the sought reaction coefficient can be asymptotically

estimated by relying on the compensator state. The proposed

scheme is shown to be exploitable in combination with a

classical infinite-dimensional observer, thereby providing the

simultaneous estimation of the unknown parameter and of the

actual system state. Summarizing, the paper’s contribution is

twofold:

• We deliver an adaptive control strategy for estimating

the unknown reaction coefficient;

• We show how to apply the previous result to the design

of an adaptive PDE observer.

Related results can be found in [8], where unknown input

observers are considered for parabolic equations with ad-

ditive uncertain terms, [9] and [10], where backstepping-

based observer design is considered, or [11], where adaptive

multiple-models are proposed to approximate the behavior

of the uncertain system.

The remainder of the paper is organized as follows.

The problem under consideration is more formally stated

in Section II, and the main parameter estimation result

presented in Section III. An extension to joint state and

parameter estimation is then discussed in Section IV, while

an illustrative simulation result is provided in Section V.

A. Notation

The notation R indicates the set of real numbers. The

symbol D(A) stands for the domain of the operator A. Given

a function f : U → V , with U and V being normed linear

vector spaces, df(x) stands (when it exists) for the Fréchet

differential of f at x ∈ U . The symbol L2(0, 1) stands for

the collection of equivalence classes of measurable functions

f : [0, 1] → R that are square integrable and H2(0, 1) :=
{f ∈ L2(0, 1): f, f

′ are absolutely continuous and f ′′ ∈
L2(0, 1)}, where1 f ′ and f ′′ stand, respectively, for the first

and second (weak) derivative of the function f . The notation

V1⊕V2 indicates the direct sum of the vector spaces V1 and

V2.

B. Preliminaries

In this paper, we consider semilinear abstract dynamical

systems of the form

ẋ = Ax+ f(x) (1)

1An element of L2(0, 1) is said to be absolutely continuous if there is
an absolutely continuous function in the equivalence class of the element
itself.

IEEE Control Systems Letters paper presented at
2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy 

Copyright ©2024 IEEE



where x ∈ X is the system state, X is a real Hilbert space

equipped with the natural norm ‖ · ‖ induced by the inner

product, A : D(A) ⊂ X → X is a linear (unbounded)

operator, and f : X → X is such that f(0) = 0. A solution

to (1) is any continuous function ϕ : [0, T ) → X , with

T ∈ R≥0 ∪ {∞}, such that for all t ∈ [0, T )
∫ t

0

ϕ(s)ds ∈ D(A)

ϕ(t) = ϕ(0) +A

∫ t

0

ϕ(s)ds +

∫ t

0

f(ϕ(s))ds.

In particular, we say that ϕ is maximal if its domain cannot

be extended and complete if its domain is unbounded.

The following notion of well-posedness is considered

throughout the paper.

Definition 1: System (1) is said to be well posed if the

following items are satisfied:

(i) The operator A generates a strongly continuous semi-

group on the Hilbert space X ;

(ii) The function f is locally Lipschitz continuous on the

Hilbert space X .

The satisfaction of the two items outlined in Definition 1

ensures that for all ϕ0 ∈ X , there exists a unique maximal

solution ϕ to (1) such that ϕ(0) = ϕ0. Moreover, if ϕ is

bounded, then it is complete; see [12, Chapter 6.1] for more

details about these aspects.

The following notions of stability are used in the paper.

Definition 2: Let items (i)−(ii) in Definition 1 hold. The

origin of (1) is said to be2 :

• Stable if for all ε > 0, there exists δ > 0 such that any

maximal solution ϕ to (1) with ‖ϕ(0)‖ ≤ δ satisfies

‖ϕ(t)‖ ≤ ε for all t ∈ R≥0;

• Globally uniformly attractive if every solution to (1) is

bounded and for any ε, µ > 0 there exists T > 0 such

that t ≥ T implies ‖ϕ(t)‖ ≤ ε for every solution ϕ to

(1) with ‖ϕ(0)‖ ≤ µ;

• Globally asymptotically stable (GAS) if both stable and

globally uniformly attractive;

• Locally exponentially stable (LES) if there exist

r, λ, κ > 0 such that any maximal solution ϕ to (1)

with ‖ϕ(0)‖ ≤ r satisfies

‖ϕ(t)‖ ≤ κe−λt‖ϕ(0)‖ ∀t ≥ 0.

II. PROBLEM SETTING

Let us consider the reaction-diffusion problem

ut(x, t) = λuxx(x, t)− ku(x, t), x ∈ [0, 1], t ≥ 0
ux(0, t) = 0
ux(1, t) = v(t)
u(x, 0) = u0(x)

y(t) = u(1, t)
(2)

2In light of the inherent boundedness requirement of the stability, global
uniform attractivity, and local exponential stability notions, under the
satisfaction of items (i) − (ii) in Definition 1, maximal solutions to (1)
turn out to be complete. This is why completeness of maximal solutions is
tacitly assumed throughout Definition 2.

for a control input function v and some unknown initial state

function u0, with known coefficient λ > 0, and unknown

k > 0, and available measurement y. The goal of this paper

can be outlined as:

• Recover the value of the reaction coefficient k;

• Design an asymptotic state observer for the equation (2).

The first intuitive attempt to tackle the estimation of

(2) might be using a classical adaptive control strategy. In

particular, one may consider an adaptive observer (û, k̂), with

infinite-dimensional part to be updated by replicating the

system dynamics and inserting an output injection with gain

̺ > 0. A good adaptation law for k̂ should be found instead

by looking at the derivative of a Lyapunov function V (·)
for the error system e(x, t) = u(x, t) − û(x, t), searching

among the solutions to the inequality V̇ (·) ≤ 0, and finally

conclude by LaSalle’s invariance principle. Developing the

latter idea, based on the ensuing Lyapunov analysis, it

becomes clear that one would need an adaptation law capable

of compensating a term in a form similar to3

(k − k̂)

∫ 1

0

e(x, t)û(x, t)dx.

However, this is not feasible relying on the output y(t) only.

In fact, the integral term above contains the whole error state

e(x, t) and therefore it is not available for measurement, thus

hampering the chance of successfully estimating the state

u(x, t) and the constant k by following this approach.

The unsuccessful attempt using the classical approach

motivates the search for alternative methods. We propose

here a novel approach, based on a particular choice for

the control input, which aims at setpoint regulation of the

boundary output.

III. MAIN RESULTS

A. Outline of the proposed estimator

A building block of the proposed estimator is given by

the following (finite-dimensional) dynamic feedback com-

pensator

χ̇ = −ρ(y − yr)
v = χ− γ(y − yr)

(3)

where γ, ρ > 0 and, yr ∈ R are tuning parameters that are

selected later. The closed-loop system becomes

ut(x, t) = λuxx(x, t)− ku(x, t), x ∈ [0, 1], t ≥ 0
χ̇ = −ρ(u(1, t)− yr)

ux(0, t) = 0; u(x, 0) = u0(x)
ux(1, t) = χ− γ(u(1, t)− yr)

y(t) = u(1, t).
(4)

For any yr ∈ R, system (4) admits a unique equilibrium

z̄ := (ū, χ̄) ∈ H2(0, 1)⊕R. In particular, such an equilibrium

3This particular form arises when using V (e) =
∫

1

0
e(x)2dx, which is

the simplest and most natural choice for the Lyapunov function.



corresponds to the unique solution to the following boundary

value problem

0 = λūxx(x) − kū(x), x ∈ (0, 1)
0 = ū(1)− yr

ūx(0) = 0
ūx(1) = χ̄.

(5)

By solving (5) one gets

ū(x) =

cosh

(√
k
λ
x

)

cosh

(√
k
λ

) yr, x ∈ [0, 1]

χ̄ =

√
k

λ
tanh

(√
k

λ

)
yr.

To make the proposed parameter estimation strategy effec-

tive, one needs to establish conditions on the parameter γ
ensuring convergence of solutions to (4) to the equilibrium

z̄. To this end, it is convenient to define the following error

coordinates ũ := u − ū and χ̃ := χ − χ̄ and analyze the

corresponding dynamics. In particular, by using (5), one gets:

ũt = λũxx − kũ
ũx(0) = 0
ũx(1) = −γũ(1) + χ̃

˙̃χ = −ρũ(1).

(6)

By taking as a state z̃ := (ũ, χ̃) ∈ X := L2(0, 1) ⊕ R, the

dynamics in (6) can be formally modeled by the following

abstract dynamical system

˙̃z = Aez̃ (7)

where

Ae

[
ũ
χ̃

]
:=

[
λũxx − kũ
−ρũ(1)

]

D(Ae) :=
{
(ũ, χ̃) ∈ H2(0, 1)⊕ R : ũx(0) = 0,

ũx(1) = −γũ(1) + χ̃} .
(8)

The next result, which is proved in [13], addresses the well-

posedness of (7).

Proposition 1: The unbounded operator Ae defined in (8)

generates a strongly continuous semigroup on the Hilbert

space X equipped with the following inner product

〈(u1, χ1), (u2, χ2)〉X := 〈u1, u2〉L2(0,1) +
λ

ρ
χ1χ2.

B. Convergence analysis

Let us now address the convergence of the error system.

The following property holds for system (7).

Proposition 2: Let γ > 0. Then, the origin of (7) is GES.

Proof: Let for all z ∈ X

V (z̃) :=

∫ 1

0

[
ũ(x)
χ̃

]⊤
Q

[
ũ(x)
χ̃

]
dx, (9)

where

Q :=

[
1 −ε
−ε λ

ρ

]

with ε ∈ (0,
√
λ/ρ) to be selected later. Observe that the

above selection of ε ensures that Q ≻ 0, which in turn

implies that

c1〈z, z〉2X ≤ V (z) ≤ c2〈z, z〉2X ∀z ∈ X (10)

with

c2 := λmax(Q)
ρ

λ
, c1 := λmin(Q)

ρ

λ
.

Let, for all z̃ ∈ D(Acl), V̇ (z̃) := dV (z̃)Aez̃. Then, with

some computations one gets

V̇ (z̃) =− 2k

∫ 1

0

ũ2 + 2λ

∫ 1

0

ũũxx

︸ ︷︷ ︸
ω

−ε

∫ 1

0

(λũxx − kũ)χ̃

+ ερ

∫ 1

0

ũ(1)ũ− 2λχ̃ũ(1).

(11)

Now by recalling that (ũ, χ̃) ∈ D(Ae), using integration by

parts and bounding one has

ω = −γũ(1)2 + ũ(1)χ̃−
∫ 1

0

ũ2
x ≤ −γũ(1)2 + ũ(1)χ̃

Plugging the above bound into (11), integrating the term ũxx

and using again the fact that (ũ, χ̃) ∈ D(Ae) one gets

V̇ (z̃) ≤− 2k

∫ 1

0

ũ2 − 2λγũ(1)2 + ε

∫ 1

0

kũχ̃

+ ερ

∫ 1

0

ũ(1)ũ− λεχ̃2 + λεγũ(1)χ̃.

(12)

By defining

Ψ(ε) :=



−2k εk

2
ερ

2

⋆ −λε λεγ

2
⋆ ⋆ −2γλ




(12) can be equivalently rewritten as

V̇ (z̃) ≤
∫ 1

0




ũ
χ̃

ũ(1)



⊤

Ψ(ε)




ũ
χ̃

ũ(1)


 . (13)

Next we show that there exists ε⋆ > 0 such that for all

ε ∈ (0, ε⋆], Ψ(ε) ≺ 0. To this end, notice that by Schur’s

complement lemma Ψ(ε) ≺ 0 if and only if

Υ(ε) :=

[
−2k εk

2
⋆ −λε

]

︸ ︷︷ ︸
LΥ(ε)

+
ε2

8λγ

[
ρ2 λγρ
⋆ λ2γ2

]
≺ 0.

Therefore, by using Weyl’s inequality (see, e.g., [14, Theo-

rem 8.4.11])

λmax(Υ(ε)) = λmax(Υ(ε) + LΥ(ε)− LΥ(ε))

≤ λmax((Υ(ε)) + λmax(Υ(ε)− LΥ(ε)).

The latter, by recalling that, due to symmetry, ‖Υ(ε) −
LΥ(ε)‖2 = |λmax(Υ(ε)− LΥ(ε)| gives

λmax(Υ(ε)) ≤ λmax((LΥ(ε)) + ‖Υ(ε)− LΥ(ε)‖2 (14)



Simple calculations show that

LΥ(ε) ≺ 0, ∀ε ∈
(
0,

8λ

k

)
. (15)

Now, let

0 < a < b <
8λ

k
(16)

and define

M := max
ε∈[a,b]

λmax(LΥ(ε)). (17)

Notice that M is well-defined due to LΥ being continuous

on ε and that M < 0 thanks to (15) and the selection of a
and b in (16). Pick

δ ∈
(
0,

1

b
|M |

)
. (18)

Select ε′ > 0 such that

‖Υ(ε)− LΥ(ε)‖2 ≤ δε ∀ε ∈ (0, ε′). (19)

This is always possible since ε 7→ Υ(ε) is Fréchet differen-

tiable and by construction Υ(0)+dΥ(0)ε = LΥ(ε), ∀ε ∈ R.
Then, by combining (14) and (19) one has

λmax(Υ(ε)) ≤ λmax((LΥ(ε)) + δε ∀ε ∈ (0, ε′) (20)

Now pick ε⋆ ∈ (a,min{b, ε′}). Then, since ε⋆ ∈ (0, ε),
from (20) one gets λmax(Υ(ε⋆)) ≤ λmax((LΥ(ε

⋆)) + δb
Hence, from the definition of M in (17), the latter yields

λmax(Υ(ε⋆)) ≤ M + δb which by using the selection of δ
in (18) gives λmax(Υ(ε⋆)) < M + |M | = 0.

To conclude the proof, let ε⋆ > 0 such that Ψ(ε⋆) ≺ 0.

Pick ε ∈
(
0,min

{
ε⋆,
√

λ
ρ

})
. Then, from (13) one has

V̇ (z̃) ≤ −|λmax(Ψ(ε))|(〈ũ, ũ〉+ χ̃2) (21)

which by using (10) and the definition of the inner product

〈·, ·〉X yields

V̇ (z̃) ≤ −|λmax(Ψ(ε))|max
{
1,

ρ

λ

}
V (z̃). (22)

This concludes the proof.

C. Recovery of the unknown parameter

The steady-state χ̄ can be expressed as χ̄ = gλ(k)yr,

where gλ : [0,∞) → [0,∞) is the function defined by

gλ(k) =

√
k

λ
tanh

(√
k

λ

)
(23)

The following technical lemma establishes some properties

of the function gλ(k) that will be helpful to devise an

algorithm for the recovery of the unknown parameter k.

Lemma 1: For any fixed λ > 0, the function gλ(·) is

a class K∞ function, so that the inverse function g−1
λ (·)

exists and is well defined over [0,∞). Moreover, gλ(·) is

continuosuly differentiable in (0,∞) with g′λ(·) > 0.

Based on the previous result, we can give an algorithm for

the recovery of k from the estimate χ, which follows as a

direct corollary from Proposition 2.

Corollary 1: Consider the error system (7), with yr 6= 0.
Define the estimated parameter

k̂(t) := g−1
λ

(
max

{
0,

χ(t)

yr

})
(24)

Then one has

lim
t→+∞

|k − k̂(t)| = 0

Proof: Thanks to the convergence of χ(t) to χ̄, by

construction there exists t̄ ≥ 0 such that χ(t)/χ̄ > 0 for

any t ≥ t̄, which implies also that k̂(t) = g−1
λ (χ(t)/yr) for

t ≥ t̄. Recalling that function g−1
λ (·) is continuous, one has

lim
t→+∞

k̂(t) = g−1
λ

(
χ̄

yr

)
= g−1

λ (gλ(k)) = k

and this proves the claim.

It is worth stressing that, even though the inverse function

g−1
λ (k) is well-defined, no closed-form expression can be

found and therefore (24) needs to be implemented via

numerical evaluation.

IV. JOINT STATE AND PARAMETER ESTIMATION

The estimation procedure exemplified earlier can be also

used in combination with an infinite-dimensional observer

to retrieve the full state of the system u(x, t) from the

boundary measurement y(t). To this end, let us design an

observer by copying the original dynamics of the system and

implementing an output injection at the right boundary, with

a gain α > 0. Clearly, as the true value k is unknown, the

observer dynamics can only be defined through the estimated

value k̂(t) defined by (24). We have then

ût(x, t) = λûxx(x, t) − k̂(t)û(x, t), x ∈ [0, 1], t ≥ 0
ûx(0, t) = 0
ûx(1, t) = v(t) + α(y(t) − û(1, t))

(25)

Let us define the estimation error η(x, t) := u(x, t)− û(x, t),
whose dynamics is governed by the PDE

ηt(x, t) = ληxx(x, t) − ku(x, t) + k̂(t)û(x, t)

= ληxx(x, t) − k̂(t)η(x, t) − (k − k̂(t))u(x, t)

ηx(0, t) = 0
ηx(1, t) = −αη(1, t)

(26)

Let us rewrite (26) as the following abstract semilinear

dynamical system



η̇
˙̃u
˙̃χ


 = Â



η
ũ
χ̃


+ f(χ̃, ũ, η) (27)

where

Â :=

[
Aη 0
0 Ae

]

D(Aη) :=
{
η ∈ H2(0, 1): ηx(0) = 0, ηx(1) = −αη(1)

}

Aηη := ληxx

f(χ̃, ũ, η) :=

[
−Ψ(χ̃)η − (k −Ψ(χ̃))(ũ+ ur)

0

]



and Ae is defined in (8). The well-posedness of system

(27) follows by observing that f is locally Lipschitz con-

tinuous and the operator Â is the infinitesimal generator

of a strongly continuous semigroup on the Hilbert space

L2(0, 1)⊕ L2(0, 1)⊕ R.

Let us now consider the total error system, denoted by

Σtot = (ũ, χ̃, η), and defined as the joint system given by

(7) together with (27). Using the identity u = ũ + ur and

defining4

k̂ = Ψ(χ̃) := g−1
λ

(
max

{
0,

χ̃

yr
+

χ̄

yr

})

we can observe that the total error system Σtot is structured

as a cascade nonlinear feedback of (ũ, χ̃) with η. In partic-

ular, the dynamics of η in (27) can be rewritten as

η̇ = Aηη −Ψ(χ̃)η − (k −Ψ(χ̃))(ũ + ur) (28)

It is worth stressing that ur ∈ L2(0, 1) is considered to be

arbitrary but fixed here, resulting in the presence of affine

terms in the dynamics (28). Before proceeding with the

analysis of the stability of the total error system, let us exploit

the next fact, following from Proposition 2 as a corollary.

Fact 1: In light of the global exponential stability of

ũ(x, t) and χ̃(t), for any pair of initial conditions ξ0 :=
(ũ(x, 0), χ̃(0)) ∈ L2(0, 1) × R and any ν > 0, there exists

T0 = T0(‖ξ0‖, ν) > 0 such that for any t ≥ T0 one has

‖ũ(x, t) + ur(x)‖L2 ≤ ν + ‖ur(x)‖L2 , |k −Ψ(χ̃(t))| ≤ ν
We are now ready to state the following convergence result.

Theorem 3: The origin of the total error system Σtot,

governed by (6) and (28), is GAS and LES.

Proof: The proof is divided in two steps. First we prove

that the origin of the total system is globally attractive, and

that the system trajectories reach in finite-time a bounded

and closed set containing the origin and having arbitrarily

small size. Then the local exponential stability of the origin

is established which, building on the global attractivity con-

dition, entails global asymptotic stability as well. To study

the convergence of the total error system, let us begin by

introducing the Lyapunov functional

W (η) :=
1

2

∫ 1

0

η(x)2dx

Evaluating the derivative along the solutions of (28), upon

integration by parts and the application of Poincaré-Wirtinger

inequality, yields

Ẇ (η) = −(c̃0 + 2Ψ(χ̃))W (η)

−(k −Ψ(χ̃))

∫ 1

0

η(x)(ũ(x) + ur(x))dx

≤−c̃0W (η) + |k−Ψ(χ̃)|
∫ 1

0

|η(x)(ũ(x)+ur(x))|dx
(29)

where c̃0 > 0 depends on λ, α and the Poincaré-Wirtinger

constant cP. Now, invoking Hölder’s inequality, the previous

condition can be further manipulated as

Ẇ (η) ≤ −c̃0W (η)+
√
2W (η)

1

2 |k−Ψ(χ̃)|‖ũ+ur‖L2 (30)

4Observe that, by construction, we have Ψ(0) = k.

Let us now show that, for any ς > 0, there exists a finite

number Tς > 0 such that solutions are confined in the set

Bς :=

{
η ∈ L2(0, 1) : W (η) =

1

2
‖η‖2L2 ≤ ς

}

for t ≥ Tς , thereby proving that {η(x) = 0} is globally

attractive. To this end, fix ς > 0. By exploiting Fact 1 and

observing that, from inequality (30), W (η) is qualified as

ISS-Lyapunov function for (28), we have

Ẇ (η) ≤ −c̃0W (η) +
√
2W (η)

1

2 (ν2 + ν‖ur(x)‖L2)

≤ − c̃0
2
W (η)

for any t ≥ T0(ξ0, ν) and as long as the error η(t) satisfies

W (η(t)) ≥ 8(ν2 + ν‖ur‖L2)2/c̃20. In particular, the latter

inequality guarantees that η is bounded. Moreover, since ν
can be chosen arbitrarily, by picking ν < νς with 8

c̃2
0

(ν2ς +

νς‖ur(x)‖L2)2 = ς, the claimed attractivity property holds

uniformly with Tς = T0(‖ξ0‖, νς). Combining such property

with the stability of the dynamics (6), we can easily infer

that, for any closed and bounded set E ⊂ L2 × R and for

any given ς > 0, the convergence of (z̃, η) onto the set E×Bς

occurs in finite-time. This shows indeed that the equilibrium

{z̃, η = (0, 0)} of the total system is globally attractive.

To prove LES, consider now the composite Lyapunov func-

tional

U(z̃, η) := V (z̃) + ϑW (η)

with V (z̃) defined as in (9) and ϑ > 0 to be selected.

From the Lyapunov analysis carried out in the proof of

Proposition 2, we can infer that V̇ (z̃) ≤ −φ1V (z̃)− φ2|χ̃|2
for some positive constants5 φ1, φ2 > 0. For what concerns

the handling of Ẇ (η), consider again (29) and apply Young’s

inequality to get

Ẇ (η) ≤ − (c̃0 − δ)W (η)+
1

2δ
|k−Ψ(χ̃)|2‖ũ(x)+ur(x)‖2L2

with 0 < δ < c̃0. Using again Fact 1, there exists an open

region of initial conditions E such that, if z̃(0) ∈ E , then

‖u(x)‖2L2 ≤ (1 + ‖ur(x)‖L2)2 =: c3 ∀t ≥ 0.

Furthermore, using a Taylor expansion around χ̃ = 0 and

applying the formula for the inverse function derivative, the

term k −Ψ(χ̃) can be expressed as

k −Ψ(χ̃) = k − g−1
λ

(
χ̃

yr
+ gλ(k)

)
= − 1

g′λ(k)

χ̃

yr
+ o(χ̃)

where gλ(k) is defined as in (23) and o(χ̃) indicates higher-

order terms. The above expression is always well-defined

since, by definition, one has g′λ(k) > 0 for any k > 0. Now,

an open subset of initial conditions E1 ⊆ E can always be

chosen such that if z̃ ∈ E1, then

|o(χ̃)| ≤
∣∣∣∣

χ̃

g′λ(k)yr

∣∣∣∣ ∀t ≥ 0

5For example one can pick φ1 = σ|λmax(Ψ(ε))|max
{

1, ρ

λ

}

and φ2 =
(1− σ)|λmax(Ψ(ε))|max

{

1, ρ

λ

}

for some σ ∈ (0, 1).



thus providing the estimate |k − Ψ(χ̃)|2 ≤ c4|χ̃|2 ∀t ≥ 0
with c4 := 4/(|g′λ(k)yr|)2. Now, putting all pieces together,

we have shown that, for (z̃, η) ∈ E1×L2(0, 1), the following

condition is met

U̇(z̃, η) = V̇ (z̃) + ϑẆ (η)

≤ −φ1V (z̃)− ϑ(c̃0 − δ)W (η)−
(
φ2 − ϑ

c3c4
2δ

)
|χ̃|2

Finally, by picking ϑ < (2δφ2)/(c3c4), it is straighforward to

verify that U̇(z̃, η) ≤ −c5U(z̃, η) with c5 := min{φ1, (c̃0 −
δ)}, and this inequality implies the claimed local exponential

stability condition. By the global attractivity property that has

been established earlier, for any initial condition z̃(0), there

exists a finite time T1 > 0 such that z̃(t) ∈ E1 for any t ≥ 0,

so that also GAS of the equilibrium {(z̃, η) = (0, 0)} has

been proved. This concludes the proof.

V. NUMERICAL EXAMPLE AND SIMULATIONS

Consider the reaction-diffusion equation (2), with coeffi-

cients λ = 3, k = 2 and initial condition u0(x) = 7x2/4.

Selecting the output reference yr = 1, we have implemented

the estimation procedure detailed in Section III. The adapta-

tion gains in (6) have been chosen as γ = 2, ρ = 4.5. The

simulations have been performed in Matlab, using a finite-

dimensional approximation of the partial differential equa-

tions based on spectral decomposition. The results are shown

in Figure 1. In particular, in the top-left plot, we can observe

the output tracking performances of the control, whereas, in

the top-right plot, we can appreciate the convergence of the

estimation k̂(t) to the actual value of the unknown reaction

coefficient k. The bottom-left plot shows the graph of the

system solution. To further illustrate the capabilities of the

proposed approach, the joint state and parameter estimation

procedure detailed in Section IV has been tested. In particular

an observer with the structure (25) has been implemented.

The bottom-right plot of Figure 1 displays the obtained

results, which are characterized by a very fast convergence

of the estimation error. In particular we can observe that

the transient of the estimation error is significantly shorter

than the one of the recovery of the reaction coefficient.

This feature suggests that the proposed set-point regulation

control is inherently robust to the uncertainty in the reaction

coefficient.

VI. CONCLUSIONS AND EXTENSIONS

This paper deals with a reaction-diffusion equation with

collocated boundary control and unknown reaction coeffi-

cient. Avoiding the use of classical adaptive control tools, we

proposed here a novel estimation technique for the unknown

coefficient based on the use of set-point regulation controller.

In particular, hinging on the particular structure of the steady-

state solution, the value of the reaction coefficient can be

recovered by nonlinear mapping inversion. The obtained

results are then shown to be pivotal for the design of a state

observer for the uncertain PDE based on boundary output

only, which allow for the simultaneous estimation of the

reaction coefficient and the full state of the parabolic equa-

tion, owing to the cascade structure of the total error system.

Fig. 1: Estimation results.

We are currently working on the extension of the proposed

adaptive estimation technique to reaction-advection-diffusion

equations and to systems of linear parabolic equations with

uncertain coefficients. The use of time-varying output refer-

ences yr(t) could also be object of future investigations.
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