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Abstract— This paper studies a novel distributed fault es-
timation framework for multi-agent systems under directed
topology, subject to time-varying multiplicative and additive
faults. Both actuator and sensor faults are simultaneously ad-
dressed by introducing an augmented system. A two-step design
process is presented aimed at joint estimation of faults, system
state, and exogenous disturbance, which involves an ℓth-order
proportional-integral observer and a constrained least square
estimator. Utilizing the relative output of neighbor information
enhances the accuracy of fault and state estimation. Output
sharing is realized by a dynamic event-triggered communication
protocol, which effectively saves network resources. The design
conditions of the observer are formulated as an optimization
problem subject to linear matrix inequalities, ensuring guar-
anteed H-infinity performance of not only estimation error but
also event error. Simulation results validate the effectiveness
and feasibility of the proposed method.

I. INTRODUCTION

Technological advances have led to increasing research
and applications on multi-agent systems (MASs). In this
context, agents collaborate through information exchange
via networks, with distributed control and state estimation
design. Examples include leader-following consensus[1], dis-
tributed localization of multi-vehicle [2], and unmanned
aerial vehicle cooperative control [3], to name a few.

Due to the interconnection of MASs, the propagation of
faults across agents can lead to safety risks, highlighting
the significance of fault estimation within fault diagnosis
systems. Various approaches have been investigated for fault
estimation, including unknown input observer (UIO) for
sensor faults [4], proportional-integrator observer (PIO) for
actuator faults [5], reduced-order UIO for actuator faults, and
intermediate-estimator-based methods for fault estimation
and consensus tracking [6], to name a few. Simultaneous
estimation of sensor and actuator faults presents more chal-
lenges. In [7], a mixed H∞/H− formulation is presented for
compound fault detection. In addition, the authors in [8] and
[9] develop a PIO-based observer for TS fuzzy system with
unmeasurable decision variables, employing compensatory
signals and H∞ criteria.

While the studies mentioned above primarily concentrate
on additive faults, research on multiplicative faults remains
limited. Multiplicative faults bring increased complexity due
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to their coupled effects with control inputs. Notably, [10]
proposes a neural network (NN)-based method for estimat-
ing actuator multiplicative faults. [11] introduces the least
squares (LS)-based estimation approach under conditions
where the system’s state is known. [12] models multiplicative
faults as a polytopic matrix and addresses them using a T-
S observer. Besides, in [13], authors propose an adaptive
NN-based approach for large-scale systems with multiplica-
tive and additive faults. The research in [14] attempts to
address the issue of compound faults under the formation
problem where the external disturbance is not considered.
In summary, the methodologies in existing studies are either
limited to a single agent or focus solely on actuator or sensor
faults. Consequently, compound fault estimation in MASs
with both multiplicative and additive terms still remains an
open problem.

We also notice that many articles utilize relative outputs
as inputs for fault observers, such as in [4], [5], [7], [10],
[15]. This method relies on continuous communication be-
tween agents and neighbors, leading to high network loads,
particularly in large-scale MASs. One solution to this issue is
event-triggered communication, which has drawn extensive
research attention, as demonstrated in [16], [17]. However,
it is notable that there is limited literature developing this
technique in relative output signals for fault estimation,
which constitutes a part of our study.

In summary, to the best of our knowledge, there is cur-
rently no existing solution that can simultaneously estimate
multiplicative and additive compound faults in MASs under
event-triggered communication networks, which is the ob-
jective of our work. Therefore, we outline our contributions
as follows:

1. A novel joint fault estimation strategy is proposed
for MAS under directed communication topology, which
enables simultaneous estimation of time-varying actuator
and sensor faults. Both multiplicative and additive faults
are distinguished. This strategy consists of 1) a distributed
ℓth-order proportional integral observer (PIO) utilizing local
sensor information and shared neighbor’s output, and 2) a
decentralized least square estimator, operating in a data-
driven manner by online solving a constrained regression
problem.

2. Unlike the existing studies [4], [5], [7], [10], [15]
which relies on continuous neighbors’ outputs, we develop a
dynamic event-triggered communication protocol. This can
facilitate adaptive data transmission, which can significantly
save network resources.

3. A comprehensive robustness analysis based on H∞
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criteria is performed, establishing sufficient conditions for the
design of robust observers. The design problem is formulated
as a set of optimization problems subject to linear matrix
inequalities (LMIs), with maximum robustness for estimation
error and event error against unknown input.

The rest of the paper is organized as follows: Section II
provides basic graph theory. Section III presents the problem
formulation and a two-step fault estimation process. The
detailed estimation framework, including the distributed PIO
and LS estimator, is presented in Section IV. The numerical
simulation is demonstrated in Section V, followed with a
conclusion in Section VI

Notations: Let R,N+ denote the set of real numbers
and the set of positive natural numbers, respectively. Given
a matrix P , PT denotes its transpose. P < 0(P ≤ 0)
denotes that P is negative definite (semi negative definite),
and P > 0(P ≥ 0) means −P < 0(−P ≤ 0). In denotes an
identity matrix of dimension n. ⊗ denotes the Kronecker
product. Let ∗ denote the symmetric entries in a matrix.
Denote diag(a1, . . . , aN ) a N × N diagonal matrix whose
entries are a1, . . . , aN .

II. PRELIMINARIES

Consider a leader-following MAS with N(N ∈ N+)
followers and one leader. The communication topology is
represented by a directed graph Gd = (V, E) consisting of
a vertex set V = {v1, ..., vN} and an edge set E ⊆ V × V .
Follower agent i and the leader are represented as vertices vi
and v0, respectively. Denote Ni the set of neighbors of agent
i. The weighted adjacency matrix Ad = (aij) ∈ RN×N

of Gd is defined such that aii = 0, aij = 1 if vi is
connected to vj (i.e., there exists a directed edge (vi, vj)
from vj to vi) and aij = 0 otherwise. The Laplacian matrix
Ld = (lij) ∈ RN×N is defined as lii =

∑
i̸=j aij and

lij = −aij , i ̸= j. Define Ḡd = (V̄, Ē) the augmented
graph of Gd, with V̄ = V ∪ {v0} and (vi, v0) ∈ Ē if
agent i is connected to the leader. Define leader adjacency
matrix Ed = diag(ε1, ..., εN ) as a diagonal matrix where its
diagonal element εi = 1 if (vi, v0) ∈ Ē otherwise εi = 0.
Define H = Ld + Ed.

III. PROBLEM STATEMENT

Consider a MAS with N followers and one virtual leader
with the following discrete-time dynamics:

Followers ∀i ∈ {1, . . . , N} :{
xi(t+ 1) = Axi(t) +BΘi(t)(ui(t) + fai(t)) +Ddi(t)

yi(t) = Cxi(t) +Hfsi(t)

Leader: x0(t+ 1) = Ax0(t), y0(t) = Cx0(t)
(1)

where xi(t) ∈ Rnx and yi(t) ∈ Rny are agent’s state
and output respectively. ui(t) ∈ Rnu is the control input.
Θi(t) ∈ Rnu×nu is the multiplicative faults, fai(t) ∈ Rnu

and fsi(t) ∈ Rns are the actuator additive fault and sensor
additive faults, respectively. di(t) is exogenous disturbance.
In particular, Θi(t) = diag(θ1i (t), . . . , θ

nu
i (t)), where θji ∈

[0, 1] represents the effectiveness of j-th actuator of agent i.

fai = (f1ai, ..., f
nu
ai )

T , with f jai ∈ [f j
ai
, f

j

ai], j = 1, ..., nu,

where f j
ai

and f
j

ai are the knowing lower bound and upper
bound of the additive fault f jai. Note that only Θi(t) and
fai(t) are assumed to be slow time-varying. The objective is
to estimate not only the state xi but also the unknown faults
Θi, fai, fsi as well as the disturbance di.

In order to estimate the actuator and sensor faults si-
multaneously, we transform the sensor faults to be a part
of the process fault by using an output filter ξi(t + 1) =
E(ξi(t) − yi(t)) with a prescribed Schur matrix E. Define
a new state Xi(t) =

(
xTi (t) ξTi (t)

)T ∈ Rnx+ny , and the
new augmented system is{

Xi(t+ 1) = ÃXi(t) + B̃ui(t) + F̃wi(t)

Yi(t) = C̃Xi(t)
(2a)

Ã =

(
A 0

−EC E

)
, B̃ =

(
B
0

)
, F̃ =

(
B D 0
0 0 −EH

)
(2b)

C̃ =
(
0 Iny

)
, wi(t) =

Θ̄i(t)ui(t) + Θi(t)fai(t)
di(t)
fsi(t)

 (2c)

where Θ̄i(t) = Θi(t)−Inu . Note that the new variable wi(t)
contains all unknown faults and disturbances of the original
system (1), which acts as an unknown input of the augmented
system (2a). However, there is a coupling effect between
actuator multiplicative fault Θi and additive fault fai at the
first term of wi, making it non-trivial to be distinguished by
a common observer.

To jointly estimate the multiplicative and additive faults,
we propose a novel estimation framework consisting of a
two-step design process:

1) Step 1: Design an ℓth-order proportional-integral ob-
server (PIO) to realize robust estimation of the state
xi and the unknown input wi by using the relative
output of neighbors. A dynamic event-triggered com-
munication design is also involved to avoid continuous
communication.

2) Step 2: Design a constrained least square estimator
(CLSE) to distinguish further the coupling variables Θi

and fai based on the prior PIO estimation and system’s
model.

The PIO is distributed and relies on an event-triggered
communication protocol, while the CLSE is decentralized.
Fig. 1 is the block diagram of this joint estimation strategy.

Fig. 1. Distributed Joint Fault Estimation Procedure

The following assumptions hold in this paper.
Assumption 1: The unknown signal wi(t) is assumed to

have bounded ℓth order derivatives (ℓ ∈ N+). The dynamic
of wi(t) is described in (3).




wi(t+ 1) = wi(t) + w1

i (t)

w1
i (t+ 1) = w1

i (t) + w2
i (t)

. . .

wℓ−1
i (t+ 1) = wℓ−1

i (t) + wℓ
i (t), ∥wℓ

i (t)∥ ≤ w̄

(3)

Remark 1: Note that Assumption 1 guarantees that the
disturbance di(t) and the sensor fault fsi(t) have bounded
ℓth order derivative. In addition, Θi(t), fai(t) and ui(t) and
their 1st to ℓth order derivatives are also bounded.

Assumption 2: The graph Gd is fixed and directed, and the
augmented graph Ḡd contains a spanning tree with the leader
agent being its root.

We recall the following lemma used in [1]:
Lemma 1: There exists a positive diagonal matrix Ψ =

diag(ψ1, ..., ψN ) > 0 such that ΨH+HTΨ > 0.

IV. MAIN RESULTS

A. Step 1: PIO description with dynamic event-triggered
communication

The proposed ℓth-order proportional-integral observer
(PIO) estimates simultaneously the faults and the state in the
presence of the unknown disturbance, described as follows:

X̂i(t+ 1) = ÃX̂i(t) + B̃ui(t) + F̃ ŵi(t) +KP ri(t)

Ŷi(t) = C̃X̂i(t)

ŵi(t+ 1) = KIri(t) + ŵi(t) + ŵ1
i (t)

ŵ1
i (t+ 1) = K1

I ri(t) + ŵ1
i (t) + ŵ2

i (t)

. . .

ŵℓ−1
i (t+ 1) = Kℓ−1

I ri(t) + ŵℓ−1
i (t)

(4)

where X̂i =
(
x̂Ti ξ̂Ti

)T
is the estimated augmented state

and ŵi is the estimation of wi, which contains the estimated
disturbance d̂i and estimated sensor faults f̂si. KP , K1

I , ...,
Kℓ−1

I are observer gains to be designed. Note that the PIO
can also give an estimation of first to (ℓ−1)th order derivative
of wi, which provides more information about wi. ri(t) is
the relative output of neighbors defined as follows:

ri(t) =
∑

j∈Ni
aij [Ỹj(t)− Ỹi(t)

−(
˜̂
Yj(t)− ˜̂

Yi(t))]− εi(Ỹi(t)− ˜̂
Yi(t))

(5)

where the event-based outputs Ỹi(t) and ˜̂
Yi(t) (i ∈

{1, ..., N}) are defined as follows:

At t = tik : Ỹi(t) = Yi(t
i
k),

˜̂
Yi(t) = Ŷi(t

i
k)

t ∈ [tik, t
i
k+1) : Ỹi(t) = Ỹi(t

i
k),

˜̂
Yi(t) =

˜̂
Yi(t

i
k)

(6)

where tik is the kth event of agent i, which will be defined
in the sequel.

Remark 2: Different from [4], [5], [7], [10], [15], ri(t) is
generated by event variables Ỹi(t) and ˜̂

Yi(t), which avoids
continuous data transmission.

Remark 3: ri(t) can provide more abundant information
by introducing the graph connectivity information H in PIO
design (see (7)), which can yield more accurate estimation
(similar idea used in [5] but not with ℓth-order PIO). Besides,

the leader’s dynamic is not involved in (4), and only the
connectivity information εi is used.

Note that except at the event moments, the event variables
Ỹi(t),

˜̂
Yi(t) differ from the true value Yi(t), Ŷi(t). To mea-

sure this difference, we define the following event error hi:
hi(t) = Ỹi(t)− ˜̂

Yi(t)− (Yi(t)− Ŷi(t)), and we denote h =(
hT1 . . . hTN

)T
. Define the output error e

Yi
= Yi − Ŷi,

which yields ri =
∑

j aij(hj + e
Yj

− (hi + e
Yi
))− εi(hi +

e
Yi
)). Define output error vector e

Y
=

(
eT
Y1

... eT
YN

)T
. The

augmented state estimation error is defined as e
Xi

= Xi−X̂i,
ewi

= wi − ŵi, ... ,ewℓ−1
i

= wℓ−1
i − ŵℓ−1

i . We denote

e
X

= ( eTX1
... eT

XN
)T , ew = ( eTw1

... eTwN
)
T , ... , ewℓ−1 =

( e
T

w
ℓ−1
1

... eT
w

ℓ−1
N

)T , wℓ = ( (wℓ
1)

T ... (wℓ
N )T )

T . The final error
vector is defined as e = ( eTX eTw ... eT

wℓ−1 )T ∈ RN(n
X
+ℓnw),

with n
X

= nx + ny , and nw = nu + nd + ns. Define
r = ( rT1 ... rTN )T , which yields that r = −(H⊗Iny

)(h+e
Y
)

With the notations above, we can obtain the following
error dynamics:

e(t+ 1) =Fe(t) +K(H⊗ I)h(t) +Bww
ℓ(t) (7)

F = A+K(H⊗ C̃)C1 (8)

A =



IN ⊗ Ã IN ⊗ F̃ 0 · · · 0

0 I I 0
...

0 0 I
. . . 0

...
. . .

. . . I
0 0 . . . 0 I


(9)

K =


IN ⊗KP

IN ⊗KI

IN ⊗K1
I

· · ·
IN ⊗Kℓ−1

I

 , CT
1 =

INn
X

0
· · ·
0

 , Bw =

 0
· · ·
0

INnw

 (10)

Drawing insights from [18], the dynamic event-triggered
mechanism (DETM) in this paper is proposed as

tik+1 = inf
{
t|t > tik, gi(t) ≥ 0

}
(11)

where gi(t) = −ηi(t) + ω(hTi (t)U1hi(t)− eT
Yi
(t)U2eYi

(t)).
U1 > 0, U2 > 0 are two matrices to be designed. The
auxiliary variable ηi(t) is employed to prolong the inter-event
time and is defined as ηi(t+ 1) = ληi(t)− hTi (t)U1hi(t) +
eT
Yi
(t)U2eYi

(t), with the initial condition ηi(0) > 0. λ
and ω are two positive scalars satisfying λ ∈ (0, 1) and
(λ − 1/ω) > 0. The event rule implies that ∀t, gi(t) < 0,
which yields

∀t, ηi(t+ 1) > ληi(t)− ηi(t)/ω > 0 (12)

Since λ ∈ (0, 1) and ηi(t) > 0, it follows that

ηi(t+ 1)− ηi(t)

=(λ− 1)ηi(t)− hT
i (t)U1hi(t) + eT

Yi
(t)U2eYi

(t)

≤− hT
i (t)U1hi(t) + eT

Yi
(t)U2eYi

(t)

(13)

Remark 4: The auxiliary variable ηi has its own dynamic
and is proven to help to provide longer inter-event time than
static event-triggered mechanism [18]. Furthermore, since we
only consider the discrete-time system, the Zeno behavior is
naturally excluded.



B. H∞ robustness conditions for PIO estimation
In this section, PIO robust estimation against the bounded

disturbance is studied by considering the H∞ performance.
Since the dynamic of estimation error given in (7) is per-
turbed by unknown but bounded signal wℓ, the objective
is to find sufficient conditions for robust PIO such that
the errors e(t), h(t) satisfy

∑t
k=0 ∥(eT (k) hT (k))T ∥2 ≤

γ2
∑t

k=0 ∥wℓ(k)∥2 under the zero-initial condition, where
the positive scalar γ should be as small as possible.

The following result gives LMI conditions for robust
estimation.

Theorem 1: The estimation of the PIO (4) robustly con-
verges to the state of the augmented system (2a), and H∞
performance is guaranteed with an attenuation level γ, if
there exists P > 0, U1 > 0, U2 > 0, LP , LI , L

1
I , . . . , L

ℓ−1
I

such that the following optimization problem holds:

min γ > 0, subject to Σ < 0 (14)

where

Σ =



−P 0 0 Σ14 I 0 Σ17

∗ −IN ⊗ U1 0 Σ24 0 I 0
∗ ∗ −γI BT

wP 0 0 0
∗ ∗ ∗ −P 0 0 0
∗ ∗ ∗ ∗ −γI 0 0
∗ ∗ ∗ ∗ ∗ −γI 0
∗ ∗ ∗ ∗ ∗ ∗ −IN ⊗ U2


(15)

Σ14 = ATP + CT
1 ((HTΨ)⊗ C̃T )LT (16)

Σ17 = CT
1 (I ⊗ (C̃TU2)), Σ24 = ((HTΨ)⊗ I)LT (17)

L =


IN ⊗ LP

IN ⊗ LI

IN ⊗ L1
I

. . .
IN ⊗ Lℓ−1

I

 , P =

Ψ⊗ P00 · · · Ψ⊗ P0ℓ

...
. . .

...
Ψ⊗ Pℓ0 · · · Ψ⊗ Pℓℓ

 (18)

and Ψ > 0 satisfying Lemma 1. Then, the observer gains
are obtained by KP

KI

· · ·
Kℓ−1

I

 = (P )−1

 LP

LI

· · ·
Lℓ−1

I

 , with P =

P00 · · · P0ℓ

...
. . .

...
Pℓ0 · · · Pℓℓ


(19)

Proof: Consider the following Lyapunov function

V (t) = eT (t)PeT (t) +
∑N

i=1 ηi(t) (20)

where P is in (18). Note that by (12) ηi(t) > 0 thus
∀t, V (t) ≥ 0. To have the guaranteed H∞ performance, the
following condition should be satisfied:

J = V (t+1)−V (t)+γ−1χT (t)χ(t)−γ(wℓ(t))Twℓ(t) < 0 (21)

where χ = (eT hT )T . Note that the relation in (13)
yields

∑
i(ηi(t + 1) − ηi(t)) ≤

∑
i(−hTi (t)U1hi(t) +

eT
Yi
(t)U2eYi

(t)) = −hT (t)(IN ⊗ U1)h(t) + eT
Y
(t)(IN ⊗

U2)eY (t). Replacing V (t) by this inequality, and by (7), we
obtain

J ≤(Fe+K(H⊗ I)h+Bww
ℓ)TP

× (Fe+K(H⊗ I)h+Bww
ℓ)− eTPe

− hT (IN ⊗ U1)h+ eT
Y
(IN ⊗ U2)eY

+ γ−1(eT e+ hTh)− γ(wℓ)Twℓ = ςTΠς

(22)

by using the relation e
Y

= (IN ⊗ C̃)C1e. ς =
(eT hT (wℓ)T )T , and Π = Π1+Π2, where Π1 = STP−1S,
S =

(
PF PK(H⊗ I) PBw

)
, Π2 = diag(−P +

CT
1 (IN ⊗ C̃TU2C̃)C1 + γ−1I,−IN ⊗ U1 + γ−1I, −γI).
Hence, Π < 0 is a necessary and sufficient condition for

J < 0. By using the Schur complement, it is equivalent to
Π < 0 that



−P 0 0 FTP I 0 Σ17

∗ −IN ⊗ U1 0 (HT ⊗ I)KTP 0 I 0
∗ ∗ −γI BT

wP 0 0 0
∗ ∗ ∗ −P 0 0 0
∗ ∗ ∗ ∗ −γI 0 0
∗ ∗ ∗ ∗ ∗ −γI 0
∗ ∗ ∗ ∗ ∗ ∗ −IN ⊗ U2


< 0

(23)
Using the expression in (8) yields FTP = ATP+CT

1 (HT ⊗
C̃T )KTP . Then, replacing P , K by (18) and (10), respec-
tively, with the change of variables in (19) yields:

PK = P

 I ⊗KP

I ⊗KI

· · ·
I ⊗Kℓ−1

I

 =

 Ψ⊗ LP

Ψ⊗ LI

· · ·
Ψ⊗ Lℓ−1

I

 = L(Ψ⊗I) (24)

where L is defined in (18). Therefore FTP = ATP +
CT

1 ((HTΨ)⊗C̃T )LT and (HT⊗I)KTP = ((HTΨ)⊗I)LT ,
which completes the proof.

Remark 5: Note that the designed condition of Theorem
1 is in a linear form. Indeed, the LMI condition Σ < 0 in
(14) can be easily solved by numerical tools (such as the
YALMIP software).

C. Step 2: CLSE design

The constrained least square estimator (CLSE) is a data-
driven estimator that further distinguishes multiplicative
faults from additive faults. The CLSE is only for the es-
timation of Θi and fai. The sensor fault fsi and disturbance
signal di could be directly estimated by PIO in the variable
ŵi (see Fig. 1). Suppose we have a well-designed PIO in
step 1 and consider the following process:

xi(t+1)−Axi(t)−Ddi(t) = BΘi(t)(ui(t)+fai(t)) (25)

Denote zi(t) = xi(t) − Axi(t − 1) − Ddi(t − 1), and
Πi(t) =

(
Būi(t− 1) B

)
, where ūi = diag(ui). Denote

the fault vector:

f̃i(t+ 1) = (θ1i (t) . . . θnu
i (t) (θ1i f

1
ai)(t) . . . (θnu

i fnu
ai )(t))T

(26)
where f1ai, ..., f

nu
ai are elements of additive faults fai. With

the above notations, a concise expression is obtained: zi(t) =
Πi(t)f̃i(t). Then, estimating f̃i becomes a regression prob-
lem. In general, this problem can be solved by any parameter
estimation methods, such as least squares, recursive least
squares, or neural networks[19]. In this paper, we consider
using a sliding-window least square method with boxed-
constrained. A sliding window of length Nw is used to collect
the most recent data from t−Nw+1 to t, with the assumption
that f̃i is approximately a constant over [t−Nw + 1, t]:

zNw
i (t) = ΠNw

i (t)f̃i(t) (27)



where zNw
i (t) =

(
zTi (t) z

T
i (t− 1) . . . zTi (t−Nw + 1)

)T
,

ΠNw
i (t) =

(
ΠT

i (t) Π
T
i (t− 1) · · · ΠT

i (t−Nw + 1)
)T

.
Since the estimation error is marginal given a well-

designed PIO, the optimal estimation of f̃i(t) is given by
the following optimization problem with boxed constraint:

ˆ̃
fi(t) = argminf ∥ẑNw

i (t)−ΠNw
i (t)f∥2

such that f ∈ [f̃
i
, f̃ i]

(28)

where ẑNw
i (t) =

(
ẑTi (t) ẑ

T
i (t− 1) . . . ẑTi (t−Nw + 1)

)T
,

ẑi(t) = x̂i(t) − Ax̂i(t − 1) − Dd̂i(t − 1), f̃
i

=

(0 . . . 0 min(0, f1
ai
) . . . min(0, fnu

ai
))T , f̃ i =

(1 . . . 1 max(0, f
1

ai) . . . max(0, f
nu

ai ))
T . Note that d̂i(t−

1) = [0 Ind
0] ŵi(t − 1) and x̂i(t) = [Inx

0] X̂i(t), where
ŵi and X̂i are estimated by the PIO in Step 1. The variable
flow between Step 1 and Step 2 is also illustrated in Fig. 1.

Remark 6: A warm-up stage is needed to collect at least
Nw samples as the initialization of the CLSE.

Remark 7: The imposed constraints f̃
i

and f̃ i can yield a
more accurate estimation than unconstrained methods, such
as in [11], [20]. Unfortunately, the well-known solution
ˆ̃
fi(t) = (ΠNw

i (t))†ẑNw
i (t) or its recursive version [20] under

unconstrained LS regression is no longer valid. To solve this
constrained LS problem, we use the interior point algorithm
with the MATLAB solver ”lsqlin”.

Remark 8: Different from [11], where the LS is based
on measurable states without disturbance, which is difficult
to achieve in a real-world setting, our strategy provides a
more general solution together with PIO design for joint
estimation.

V. NUMERICAL EXAMPLES

Consider a MAS with three follower agents and one leader
described by the dynamic in [21]. A zero-order holder for
discretization is employed with the sampling period Ts =
0.001s, which yields the following discrete dynamic for (1):

A =

 0.999 0.001 0 0
−0.001 1.000 0 0

0 0 1.000 0.003
0 0 −0.003 1.000

 , B =

 0.001 0
0.001 0
0 0.001

−0.001 −0.001


and C = diag(1, 0.5, 0.5, 1), D = (0 0.01 0 0.01)T , H =
(0 0.1 0 0)T . The communication topology is described as

Ld =

 1.2 0 −1.2
−0.8 0.8 0
−2 0 2

 , Dd = diag(1, 0, 0)

Set the length of the sliding window as Nw = 500. Set
E = diag(0.8, 0.8). Table. I describes non-identical faults
in Agent 1 and Agent 2. The fault signals are illustrated in
Fig. 2 - Fig. 4. In this example, we construct a 2nd-order
PIO (4) by solving the LMI conditions in Theorem 1. The
simulation results for faults estimation are depicted in Fig. 2,
Fig. 3, and Fig. 4, which show that both the PIO (for sensor
faults) and the CLSE (for actuator faults decoupling) have a
validated estimation.

Meanwhile, the PIO offers an accurate estimation of the
system state xi and disturbance di, depicted in Fig. 5 and

TABLE I
FAULT SCENARIO SETTINGS

0 ≤ tTs < 5 no faults

5 ≤ tTs < 20
θ11 = 0.8− 0.005(t− 5), θ21 = 0.2
fa1 = [0.1(t− 5) + 0.05 sin( t−5

2
),−0.02(t− 5)]T

20 ≤ tTs < 30

θ11 = 0.725, θ21 = 0.2
fa1 = [1.5 + 0.05 sin( t−5

2
),−0.02(t− 5)]T

fa2 = [−2 + 0.05 sin(
(t−20
2.5

), 0]T

fs1 = 0.2, fs2 = −0.5 + 0.1 sin( t
2
)

tTs ≥ 30

θ11 = 0.725, θ21 = 0.2 , θ12 = 1, θ22 = 0.5
fa1 = [1.5 + 0.05 sin( t−5

2
),−0.02(t− 5)]T

fa2 = [−2 + 0.05 sin(
(t−20
2.5

), 3]T

fs1 = 0.2, fs2 = −0.5 + 0.1 sin( t
2
)
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Fig. 2. Actuator multiplicative faults and estimation
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Fig. 3. Actuator additive faults and estimation
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Fig. 6, respectively. Notice that sudden faults can cause some
perturbation, such as in t = 5 and t = 20. Overall, the
simulation results show a good simultaneous estimation of
faults, states, and disturbances.
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Fig. 5. State estimation error, ∥exi∥ = ∥xi − x̂i∥, i = 1, 2, 3
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Fig. 6. Disturbance estimation error, edi = di − d̂i, i = 1, 2, 3

Furthermore, we conclude the inter-event time of each
agent in Table. II. Notice that for each agent, the inter-event
time is much longer than the sampling period Ts, which
shows a reduction in communication frequency.

TABLE II
INTER-EVENT TIME (IET) IN MS

Agent 1 Agent 2 Agent 3 Ts

Average IET 1.72 1.61 1.77 1.00Maximum IET 19.0 17.0 20.0

VI. CONCLUSIONS AND ACKNOWLEDGEMENTS

In this study, a novel distributed fault estimation frame-
work for time-varying compound faults in MASs is proposed.
The coupling effect of multiplicative and additive faults is
addressed by the proposed two-step design process, including
the ℓth-order PIO and the CLSE approach, subject to actuator
and sensor faults. The PIO acts as a fundamental observer,
providing state and disturbance estimation with guaranteed
H-infinity performance w.r.t. estimation error and event error,
while the CLSE distinguishes between multiplicative and ad-
ditive faults based on PIO results. Additionally, the drawback
of continuous communication is addressed by introducing
a DETM, effectively reducing network bandwidth usage.
Simulation results confirm the efficacy of the theoretical
methods. Communication delays and a general error analysis
of CLSE are not addressed in this study, and they will be
the focus of our future work.

Finally, the author would like to express their sincere
appreciation to the editor and the reviewers for their valuable
suggestions and constructive criticism.
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