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Abstract— This paper shows that trajectories of continuous-
time monotone systems (in the sense of Kamke-Muller) con-
verge to equilibrium points if their vector field is continuously
differentiable and if they are nonexpansive w.r.t. a diagonally
weighted infinity norm. Differently from the current literature
trend, the system is not required to be contractive but merely
nonexpansive, thus allowing for multiple equilibrium points.
Easy-to-check conditions on the vector field to verify that
the system is both monotone and nonexpansive are provided.
This is done by showing that nonexpansiveness is implied by
subhomogeneity of the system, a generalization of the translation
invariance property. We apply the results in the context of RNNs,
thus providing sufficient conditions for convergence of the state
trajectories of nonexpansive monotone neural networks that are
not contractive.

Index Terms— Monotone Systems, Type-K Monotone, Subho-
mogeneous, Nonexpansive, Neural Networks.

I. INTRODUCTION

Dynamical systems whose trajectories preserve a partial
order have sparked considerable interest in numerous fields:
such systems are usually called monotone [1], in the sense of
Kamke-Muller [2], [3] and are such that any pair of ordered
initial conditions give rise to ordered solutions. Monotonicity
appears naturally in real-world phenomena and engineering
applications, including chemical reactions [4], [5], biological
systems [6], flow networks [7], [8], phase-coupled oscilla-
tors [9], [10], opinion dynamics [11], mechanical systems [12],
and so on. Within the systems and control community, many
authors are currently interested in monotone systems. Among
them, Manfredi and Angeli have studied the case of monotone
networks with unilateral interactions [13]. Como and Lovisari
have considered monotone dynamical flow networks [7], [8],
a topic of interest for Coogan and Arcak as well [14]. In
particular, Coogan has recently presented a tutorial paper
on mixed monotonicity, which extends the usual notion of
monotonicity [6]. Also worth mentioning is the line of research
on eventually monotone systems pursued by Altafini and
Mauroy [11], [15], as well as the framework of differentially
positive systems drawn up by Forni and Sepulchre [12].
For insights on new advances and applications of monotone
systems, we refer interested readers to the work of Smith [1].

Contraction theory is becoming a popular framework [16]–
[18], providing powerful tools for establishing stability prop-
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erties of nonlinear dynamical systems. In general, a dynamical
system is contractive if every two trajectories converge to one
another, thus resulting in systems with a unique equilibrium
(for time-invariant systems). On the other hand, convergence
of trajectories toward equilibrium points is still possible when
the system is not contractive but only nonexpansive, that is ev-
ery two trajectories do not diverge from one another. It is clear
that the class of nonexpansive systems is broader than con-
tractive systems, naturally allowing for multiple equilibrium
points. While classical approaches mostly focus on contraction
with respect to the Euclidean ℓ2-norm, recent works have
shown that the stability of monotone systems can be studied
for contractive systems [19] and nonexpansive systems [10],
[20], [21] with respect to non-Euclidean norms. For instance, it
is known that for a monotone system satisfying the translation
invariance or the conservation law, nonexpansiveness naturally
arises with respect to the supremum norm [22, Lemma 2.7.2]
or the taxicab norm [22, Proposition 2.8.1], respectively.

We have recently shown in [10] that smooth continuous-
time dynamical systems, i.e., systems with a continuously
differentiable vector field, which are also monotone, satisfy
a stricter notion of monotonicity called type-K monotonicity
recently exploited in [10], [20], [23] also in the context of
multi-agent systems. The main feature of type-K monotonicity
is that, when considering discrete-time systems, it prevents
periodic state trajectories with periods exceeding one, while
simple monotonicity cannot. The main contribution of this
manuscript is leveraging type-K monotonicity to prove that:

• Trajectories of smooth monotone systems that are nonex-
pansive w.r.t. a diagonally weighted sup-norm converge
toward equilibrium points, if any exist (Propositions 1-2);

• Smooth monotone systems are nonexpansive if and only
if they are subhomogeneous (Theorem 1);

• Necessary and sufficient conditions for monotonicity and
subhomogeneity are given in terms of the Jacobian matrix
of their vector field (Lemmas 1-2).

We also apply our novel results to the convergence analysis
of recurrent neural networks (RNN), with a focus on Hopfield
and firing-rate dynamics. In particular, we prove that:

• Monotonicity and subhomogeneity of these neural net-
works ensure convergence of their state trajectories even
if their dynamics are not contractive (Theorem 2).

Structure of the paper. Section II introduces the notation
and preliminaries on monotone and nonexpansive systems.
Section III contains our main results and a tutorial example.
In Section IV the results are applied to the analysis of nonex-
pansive RNNs. In Section V we give concluding remarks.
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II. NOTATION AND PRELIMINARIES

The set of real and integer numbers are denoted by R and Z,
while their restriction to nonnegative values are denoted with
R≥0, N, respectively. Matrices M ∈ Rn×n are denoted by
uppercase letters, vectors v ∈ Rn by boldface bold letters,
scalars s ∈ R by lowercase letters, while sets and spaces S
are denoted by uppercase calligraphic letters. Elements of a
matrix M or a vector v are denoted by mij and vi, where i
and j denotes the corresponding row and column. A matrix
M is Metzler if its off-diagonal elements mij ≥ 0 with i ̸= j
are nonnegative. The vectors of zeros and ones of dimension n
are denoted by 0n and 1n, respectively. A diagonal matrix is
written as [v] with diagonal elements v1, . . . , vn. In = [1n] is
the identity matrix of dimension n. The element-wise product
between vectors or matrices of appropriate dimensions is
denoted by the symbol ⊙. We denote by ||·|| the vector norm
in Rn and corresponding induced norms on Rn×n. We will
be specifically interested in the diagonally weighted sup-norm,
defined by a positive vector η ∈ Rn

+ as follows

||x||∞,[η]−1 = max
i=1,··· ,n

1

ηi
|xi|.

Any weighted norm is equivalent to the standard sup-norm:

min
i=1,··· ,n

1

ηi
||x||∞ ≤ ||x||∞,[η]−1 ≤ max

i=1,··· ,n

1

ηi
||x||∞

A. Dynamical systems

We consider continuous-time autonomous dynamical sys-
tems ẋ(t) = f(x(t)), with x(t) ∈ X denoting the state of the
system at time t ∈ R and X ⊆ Rn denotes the state space.

Assumption 1: The vector field f : X → Rn is continuously
differentiable and the state space X ⊆ Rn is convex.

Under Assumption 1, the Jacobian of the vector field f is
denoted by Df(x). A dynamical system can be described in
terms of its flow φ(t,x0) denoting the state at time t as

x(t) = φ(t,x0), ∀t ≥ 0, with x(0) = x0.

The sequence of all values taken by the state vector is called
the trajectory of the system. A point xe ∈ X is called
an equilibrium point if f(xe) = 0, and the set of equilib-
rium points is denoted by F(f) = {xe ∈ X : f(xe) = 0}. A
trajectory starting at x0 is said to converge asymptotically
toward an equilibrium point xe if limt→∞ φ(t,x0) = xe. We
conclude by defining the properties of nonexpansiveness and
contractivity for dynamical systems.

Definition 1 (Nonexpansiveness and contractivity): Let ||·||
be a norm in Rn. A system on X ⊆ Rn is nonexpansive if for
all x0,y0 ∈ X it holds

||φ(t,x0)− φ(t,y0)|| ≤ ||x0 − y0||, t ≥ 0.

If the inequality holds strictly, the system is contractive.

B. Convergence of nonexpansive monotone systems
Consider the Euclidean space Rn equipped with the stan-

dard partial order ≤. Dynamical systems in (X ,≤), with
X ⊆ Rn, whose flow preserves such order w.r.t. initial condi-
tions are referred to as “order-preserving” [20], [22] or “mono-
tone” [4], [5]; this manuscript uses of the latter denomination.
We formally define the monotonicity property in Definition 2,
along with the special class termed “type-K monotonicity” in
Definition 3, introduced by us in [10], [20], [23].

Definition 2 (Monotonicity): A system on X ⊆ Rn is
“monotone” if for all x0,y0 ∈ X it holds:

x0 ≤ y0 ⇒ φ(t,x0) ≤ φ(t,y0), ∀t ≥ 0.

Definition 3 (Type-K Monotonicity): A system on X ⊆ Rn

is “type-K monotone” if it is monotone and if for all x0,y0 ∈
X and for all i = 1, . . . , n it holds:

x0 ≤ y0 ∧ x0,i < y0,i ⇒ φi(t,x0) < φi(t,y0), ∀t ≥ 0.

We have recently shown in [10] that for continuous-time
smooth dynamical systems, monotonicity and type-K mono-
tonicity are equivalent properties, and they can be verified by
the sign structure of the Jacobian of the vector field.

Lemma 1: For a system ẋ(t) = f(x(t)) under Assumption 1,
the following statements are equivalent:
(a) The system is monotone;
(b) The system is type-K monotone;
(c) The Jacobian Df(x) is Metzler for all x ∈ X .

Proof: Under Assumption 1, (a) ⇔ (b) holds by [10,
Theorem 3] and (a) ⇔ (c) holds by [10, Proposition 2]. Note
that (a) ⇔ (c) was originally proved in [4].

A nice feature of type-K monotonicity is that it allows
to prove convergence toward equilibrium points for systems
that are nonexpansive w.r.t. the sup-norm ||·||∞ and admit at
least one equilibrium point. This result, which we explic-
itly prove here for monotone systems with a continuously
differentiable vector field, was also exploited in [10, Theo-
rem 1] to prove convergence toward equilibrium points for
K-subtopical systems – that is, systems that are type-K mono-
tone and 1-subhomogeneous as eq. (1), both in continuous-
and discrete-time.

Proposition 1: Consider a system ẋ(t) = f(x(t)) under As-
sumption 1 satisfying the following:

• the system is monotone and nonexpansive w.r.t. ||·||∞;
• the set of equilibrium points F(f) ̸= ∅ is not empty.

Then all equilibrium points are stable and each trajectory
converges asymptotically to one of them.

Proof: Since the system is monotone and continu-
ously differentiable, then it is also type-K monotone by
Lemma 1. Since the system is nonexpansive w.r.t. ||·||∞,
by [22, Lemma 2.7.2] we know that the flow is such that

φ(t,x0 + α1) ≤ φ(t,x0) + α1, ∀α ≥ 0, ∀t ≥ 0. (1)

As it will be formalized in Section III, systems satisfying
the above property are called “1-subhomogeneous”, or “plus-
subhomogeneous” (see [10, Definition 2]). Type-K monotonic-
ity and plus-subhomogeneity of the systems ensure stability



of equilibrium points [10, Lemma 4] and convergence of all
trajectories to equilibrium points [10, Theorem 1].

We remark that the “monotonicity of a dynamical system”
is to be intended in the sense of Kamke-Muller [2], [3], which
must not be confused with the “monotonicity of an operator”
in functional analysis [24, Definition 12.1]. This clarification
is important in this manuscript as the notion of monotonicity
of an operator is used in the same context of our application,
that is recurrent neural networks. For instance, in [25], [26]
the notion of monotonicity of an operator is generalized to
Banach spaces by using weak pairings as a substitute for inner
products, which is then used to effciently compute equilibria
of recurrent neural networks via fixed-point iterations.

Example 1: We now provide two examples proving that
the two notions of monotonicity are different. First, recall
that a linear dynamical system, both in continuous-time
ẋ(t) = Ax(t) and in discrete-time x(k + 1) = Ax(k), is
monotone in the sense of Definition 2 if A is nonnegative [10,
Proposition 2 and Theorem 5]. Secondly, recall that a linear
operator A : x 7→ Ax is monotone in the sense of [24,
Definition 12.1] if and only if it is positive semidefinite, i.e.,
x⊤Ax ≥ 0 for all x [24, Example 12.2]. Let us define:

A1 =

1 1 0
1 1 0
1 0 1

 , A2 =

 1 −1 0
−1 1 0
0 0 1


One can verify that: 1) a dynamical system ruled by A1

is monotone because A1 ≥ 0, but the operator A1 is not
monotone since for x = [−2, 2, 1]⊤ it holds x⊤A1x = −1;
2) a dynamical system ruled by A2 is not monotone because
A2 ̸≥ 0, but the operator A2 is monotone because it is
symmetric with nonnegative eigenvalues.

III. NOVEL CONVERGENCE RESULTS

We start this section by generalizing the stability and
convergence results in Proposition 1 to systems that are
nonexpansive w.r.t. a weighted sup-norm.

Proposition 2: Consider a system ẋ(t) = f(x(t)) under As-
sumption 1 satisfying the following:

• the system is monotone nonexpansive w.r.t. ||·||∞,[η]−1 ;
• the set of equilibrium points F(f) ̸= ∅ is not empty.

Then all equilibrium points are stable and each trajectory
converges asymptotically to one of them.

Proof. Consider the change of variable z(t) =
[η]−1x(t) with η ∈ Rn

+, yielding the system ż(t) = g(z(t)).
Let φ(t, ·) and ϕ(t, ·) denote the flows of the system in the
original and new sets of coordinates, respectively. By Assump-
tion 1, both vector fields are continuously differentiable and
related by:

ϕ(t, z) = [η]−1φ(t, [η]z) = [η]−1φ(t,x), (2)

∀x, z ∈ Rn s.t. z = [η]−1x. This means that any trajec-
tory (φ(t,x))t≥0 has the same behavior of the trajectory
(ϕ(t, z))t≥0. Thus, the proof reduces to show that Proposi-
tion 1 holds for the system in the new set of coordinates:

• F(g) ̸= ∅ if and only if F(f) ̸= ∅, indeed, for any
xe ∈ F(f) then ze = [η]−1xe ∈ F(g) and vice versa.

• One system is monotone if and only if the other one is,
due to Lemma 1 and the fact that [η]Dg(z) = Df([η]z).

• The original system is nonexpansive w.r.t. ||·||∞,[η]−1 if
and only if the system in the new set of coordinates is
nonexpansive w.r.t. ||·||∞ due to eq. (2), which yields the
following (bidirectional) chain of inequalities:

||ϕ(t,z)−ϕ(t,v)||∞≤||z−v||∞,∣∣∣∣[η]−1φ(t,x)−[η]−1φ(t,y)
∣∣∣∣
∞≤

∣∣∣∣[η]−1x−[η]−1y
∣∣∣∣
∞, (3)

||φ(t,x)−φ(t,y)||∞,[η]−1≤||x−y||∞,[η]−1 . ■

Remark 1 (Comparison with Theorem 21 in [21]): Our
Proposition 2 has the advantage of not requiring piecewise
real analyticity of the vector field to prove convergence of
the trajectories to the set of equilibrium points. Another
advantage is the fact that Lemmas 1-2, together with
Theorem 1, provide easy-to-check conditions to apply
Proposition 2, which can be verified by looking at each
row of the Jacobian matrix independently. For instance, this
is particularly useful in the context of multi-agent systems
where these conditions translate into properties of the local
interaction rules between agents. On the other hand, [21,
Theorem 21] applies to general systems, not necessarily
monotone, which are nonexpansive w.r.t. a norm ||·||p,Q where
p ∈ {1,∞} and Q ∈ Rn×n is invertible.

We are going to prove in Theorem 1 that monotone systems
are nonexpansive w.r.t. ||·||∞,[η]−1 if and only if they are
η-subhomogeneus, as defined next.

Definition 4 (Subhomogeneity): A dynamical system on
X ∈ Rn is “η-subhomogeneous”, where η ∈ Rn

+ is a positive
vector, if for all initial conditions x0 ∈ X it holds:

φ(t,x0 + αη) ≤ φ(t,x0) + αη, ∀α ≥ 0, ∀t ≥ 0.

The system is η-homogeneous if the equality holds for α ∈ R.

Note that η-subhomogeneity encompasses properties like plus-
subhomogeneity, where η = 1 [10], [22], and translation in-
variance, corresponding to η-homogeneity [5], [18]. We now
state the main result of this section, which (together with the
following Lemma 2) provides an operative way to use the
stability and convergence results in Proposition 2.

Theorem 1: Consider a monotone system ẋ(t) = f(x(t))
under Assumption 1. Then, it is η-subhomogeneous if and only
if it is nonexpansive w.r.t. ||·||∞,[η]−1 .

Proof: Consider the same change of variable in the proof
of Proposition 2, i.e., z(t) = [η]−1x(t) with η ∈ Rn

+. We first
prove that the system is η-subhomogeneous if and only if the
system in the new set of coordinates is 1-subhomogeneous by
the following (bidirectional) chain of inequalities,

ϕ(t, z0 + α1) ≤ ϕ(t, z0) + α1

[η]−1φ(t, [η]z0 + α[η]1) ≤ [η]−1φ(t, [η]z0) + α1

[η]−1φ(t,x0 + αη) ≤ [η]−1φ(t,x0) + α1

φ(t,x0 + αη) ≤ φ(t,x0) + αη



Secondly, the system is monotone if and only if the sys-
tem in the new set of coordinates is monotone, as already
proven in the proof of Proposition 2. Under monotonicity,
1-subhomogeneity is equivalent to nonexpansiveness w.r.t.
||·||∞, because for any t ≥ 0 Lemma 2.7.2 in [22] holds for the
self-map ϕt(x) := ϕ(t,x) : X → X . In turn, it is equivalent
to nonexpansiveness w.r.t. ||·||∞,[η]−1 of the system by eq. (3).

We also provide two equivalent necessary and sufficient
conditions for η-subhomogeneity for monotone systems.

Lemma 2: For a monotone system ẋ(t) = f(x(t)) under
Assumption 1, the following statements are equivalent:
(a) the system is η-subhomogeneous;
(b) the vector field satisfies f(x+αη)≤f(x), ∀x∈X ,α≥0;
(c) the Jacobian satisfies Df(x)η ≤ 0, ∀x ∈ X .

Proof: Under Assumption 1 we have that:
• (a) ⇒ (b) is logically equivalent to its contrapositive
¬(b) ⇒ ¬(a), where “¬” denotes the “not” logical oper-
ation. If (b) does not hold, then there exist a point x ∈ X
and a component i ∈ {1, . . . , n} such that

fi(x+ αη) > fi(x).

By the continuous differentiability of the vector field
(Assumption 1), there exists T > 0 such that the distance
at time t = T between the i-th components of the flows
is greater than the initial distance at time t = 0, namely,

φi(T,x+αη)−φi(T,x)>φi(0,x+αη)−φi(0,x)︸ ︷︷ ︸
αηi

. (4)

Eq. (4) implies that the system is not η-subhomogeneous,
i.e., (a) does not hold.

• (b) ⇒ (a) is proven by contradiction. Consider any point
x ∈ Rn and, for the sake of contradiction, assume that
there exists a finite time T > 0 after which condition
(a) does not hold and let T be the minimum such
time, while up to T it holds by condition (b) and the
continuous differentiability of the flow (a consequence
of Assumption 1). Namely, there exists an arbitrary small
ε > 0 such that

φ(t,x+ αη) ≤ φ(t,x) + αη, t ∈ [0, T ], (5)
φ(t,x+ αη) ̸≤ φ(t,x) + αη t ∈ (T, T + ε]. (6)

Let v ≥ 0 be the nonnegative vector that fills the gap in
the inequality at time T , i.e.,

φ(T,x+ αη) = φ(T,x) + αη − v. (7)

We now find a contradiction to eq. (6). Let t > T , then:

φ(t,x+αη)
(i)
=φ(t−T,φ(T,x+αη))

(ii)
= φ(t−T,φ(T,x)+αη−v)

(iii)

≤ φ(t−T,φ(T,x)+αη)

∃δ⋆>0:
(iv)

≤ φ(t−T,φ(T,x))+αη, ∀t∈[T,T+δ⋆)

(v)

≤φ(t,x)+αη

where (i) and (v) hold by the group law, which ap-
plies to continuously differentiable flows (cfr. [27, Sec-
tion 7.1]); (ii) holds by eq. (7); (iii) holds by mono-
tonicity; (iv) holds by assumption (b), which implies
f(φ(T,x) + αη) ≤ f(φ(T,x)), and by the continuous
differentiability of the flow, which implies that ∃δ⋆ > 0
such that φ(δ, φ(T,x) + αη) ≤ φ(δ, φ(T,x)) + αη for
all δ ∈ [0, δ⋆]. This contradicts the existence of ε > 0
in eq. (6), i.e., there does not exists a finite T such that
eq. (6) holds. In turn, eq. (5) holds for all T ≥ 0, i.e.,
condition (a) holds.

• (b) ⇒ (c) is proven by the definition of the directional
derivative,

Df(x)η = lim
α→0+

f(x+ αη)− f(x)

α
(b)

≤ lim
α→0+

f(x)− f(x)

α
= 0.

• (c) ⇒ (b) is proven by the Newton-Leibnitz formula for
vector-valued continuously-differentiable functions:

[αη]
−1

(f(x+ αη)− f(x)) =

∫ 1

0

Df(x+ sαη)ds

[αη]
−1

(f(x+ αη)− f(x)) ≤ 0

f(x+ αη) ≤ f(x),

where [αη]−1 is a diagonal matrix with elements 1/αηi.

Remark 2: The results of Lemma 2 and Theorem 1 are
compatible with known results in the literature. In particular,
let the diagonally weighted logarithmic sup-norm of a matrix
M ∈ Rn×n be denoted by

µ∞,[η]−1(M) = max
i=1,··· ,n

(
mii +

n∑
j=1,j ̸=i

ηj
ηi
|mij |

)
. (8)

Statement (c) in Lemma 2 is equivalent to
µ∞,[η]−1(Df(x)) ≤ 0, ∀x ∈ X according to [18,
Lemma 4.17] and, in turn, it is equivalent to nonexpansiveness
w.r.t. ||·||∞,[η]−1 according to [28, Theorem 29]. In other
words, systems satisfying the conditions in [28, Theorem 29]
are subhomogeneous. This yields the following open question:
“Does Theorem 1 hold without Assumption 1?”.

Let us discuss an example of a monotone and subho-
mogeneous system, inspired from [19, Example 4.3], that
is not contractive w.r.t. any diagonally weighted norm but
nonexpansive w.r.t. ||·||∞,[η]−1 for some η > 0, and whose
trajectories converge according to Proposition 1.

Example 2: Consider the class of dynamical systems on R2

ẋ1(t) = −x1(t) + αx2(t)− γg(x1)

ẋ2(t) = βx1(t)− x2(t)

where α, β, γ ≥ 0 and g : R 7→ R≥0 is continuosly
differentiable with g(0) = 0 and positive derivative g′(x) ≥ 0
for all x ∈ R. Thus, the system is monotone because the
Jacobian of the vector field f := [f1, f2]

⊤ is Metzler,

Df(x1, x2) =

[
−1− γ d

dtg(x1) α
β −1

]
.



Subhomogeneity is verified for some vector η ∈ Rn
+ by solving

the system of linear equations Df(x1, x2)η ≤ 0,{
−(1− γ d

dtg(x1))η1 + αη2 ≤ 0

βη1 − η2 ≤ 0
⇒ η2 ∈ [βη1,

1

α
η1],

which is a set of admissible solutions that hold for all values
of γ ≥ 0. Thus, the system is η-subhomogeneous if αβ ≤ 1.
Since the origin is an equilibrium point of the system, one can
exploit Proposition 1 and Theorem 1 to prove the convergence
of all trajectories toward some equilibrium point.

Now, consider the special case α = 0.5, β = 2, and γ = 0,
for which the system becomes linear with dynamics

ẋ(t) = Ax(t), A =

[
−1 0.5
2 −1

]
, λ1 = 0, λ2 = −2.

Since the matrix has a null eigenvalue it is singular, then the
system admits infinitely many equilibrium points, which forms
the span of the eigenvector v1 = [1, 2]⊤. This implies that the
system cannot be contracting w.r.t. any diagonally weighted
norm. Indeed, the so-called logarithmic norm [18, Section 2.4]
is lower bounded by the greatest eigenvalue for any p ∈ [1,∞]
and any η ∈ Rn

+, and thus it is surely nonnegative (see [29,
Lemma 1]). This implies that the system is non-contracting
according to [28, Theorem 29]. In contrast, Proposition 1
ensures the convergence of the system’s trajectories despite
the fact it is non-contracting but only nonexpansive.

IV. STABILITY OF NONEXPANSIVE MONOTONE RNNS

We consider two models of RNNs [29], [30], the Hopfield
and the firing-rate models, with dynamics

ẋ(t) = fH(x(t)) := −Cx(t) +AΦ(x(t)) + b, (9)

ẋ(t) = fFR(x(t)) := −Cx(t) + Φ(Ax(t) + b), (10)

where C ∈ Rn×n is a positive diagonal matrix, A ∈ Rn×n

is an arbitrary matrix, b ∈ Rn is a constant input, and
Φ : Rn 7→ Rn is an activation function satisfying Assump-
tion 2.

Assumption 2: Activation functions are diagonal, i.e.,
Φ(x) = [ϕ1(x1), · · · , ϕn(xn)]

⊤ where each ϕi : R 7→ R is
continuously differentiable and globally Lipschitz, i.e., there
exists finite d1 ≤ d2 such that for all i = 1, . . . , n it holds

d

dx
ϕi(x) ∈ [d1, d2], ∀x ∈ R,

and the Lipschitz constant is given by d = max{|d1|, |d2|}

We now study their convergence toward equilibrium points.

Theorem 2: Consider Hopfield and firing-rate neural net-
works as in eqs. (9)-(10) with activation function sat-
isfying Assumption 2. Let A⋆ = min{d1A, d2A} and
A⋆ = max{d1A, d2A} satisfy the following conditions:

a) A⋆ is Metzler (monotonicity);
b) ∃η ∈ Rn

+ : (A⋆ − C)η ≤ 0 (η-subhomogeneity).
Then, all their trajectories converge to some equilibrium point,
if any exists.

Proof: Under Assumption 2, both Hopfield and firing-
rate neural networks are monotone if and only if condition
a) holds. In such case, The Jacobian matrix computed at a
generic point x ∈ R is lower bounded by

DfH(x)=ADΦ(x)−C≥min{d1A,d2A}−C=A⋆−C

DfFR(x)=DΦ(Ax+b)A−C≥min{d1A,d2A}−C=A⋆−C

where A⋆ − C is Metzler if and only if A⋆ is Metzler, since
C is diagonal. By Lemma 1, the Jacobian is Metzler if and
only if the smooth system is monotone. Secondly, we prove
that both Hopfield and firing-rate neural networks are η-
subhomogeneous if there is η ∈ Rn

+ such that condition b)
holds. For both networks it holds:

DfH(x)η = (ADΦ(x)− C)η

≤ (max{d1A, d2A} − C)η = (A⋆ − C)η

DfFR(x)η = (DΦ(Ax+ b)A− C)η

≤ (max{d1A, d2A} − C)η = (A⋆ − C)η.

Thus, if (A⋆ −C)η ≤ 0 then both Jacobians are non-positive
and, in turn, the system is subhomogeneous by Lemma 2.

We have proved that conditions a) and b) imply that both
neural networks are monotone and η-subhomogeneous. Thus
Theorem 1 ensures that they are also nonexpansive w.r.t.
||·||∞,[η]−1 and Proposition 1 ensures the convergence of all
trajectories toward equilibrium points, if any exists.

A. Comparison with contractive neural networks

We compare our results with those provided in Section V
of the recent work of Davydov, Proskurnikov, and Bullo [29],
whose extended version with all proofs and some additional
results is [30]. Let µ∞,[η]−1(·) denote the diagonally weighted
logarithmic sup-norm as in eq. (8). Then, Theorem 21 in [30]
gives the following condition for contraction of Hopfield
neural networks

max

{
µ∞,[η]−1(dA− (d− d1)A⊙ I − C)

µ∞,[η]−1(dA− (d− d2)A⊙ I − C)

}
< 0, (11)

where d is the Lipschitz constant of the activation functions
(Assumption 2), I is the identity matrix, and ⊙ denotes the
element-wise product. Theorem 23 in [30] gives the following
condition for contraction of firing-rate neural networks,

max

{
µ∞,[η]−1(d1A− C)
µ∞,[η]−1(d2A− C)

}
< 0. (12)

Under condition a) of Theorem 2, which implies that d1A and
d2A are Metzler, both conditions in eq. (11)-(12), reduce to

µ∞,[η]−1(A⋆ − C) < 0, (13)

which is a stricter than condition b) in Theorem 2, indeed,

µ∞,[η]−1(A⋆ − C) < 0 ⇔ (A⋆ − C)η < 0.

Thus the class of neural networks identified by Theorem 2
includes networks that are not considered in [29], [30].

Example 3 (Nonexpansive RNNs): Consider a Hopfield or
a firing-rate RNN with dynamics ruled by

C = I, A =

[
0 0.5
2 0

]
, ϕ(x) = tanh(x),



where Assumption 2 is satisfied with d1 = 0 and d2 = 1, and
thus d = 1. Condition (13) reads as

µ∞,[η]−1(A− C) = max

{
η2
2η1

,
2η1
η2

}
− 1 < 0

which has no feasible solution. Thus, the system is not con-
tracting w.r.t. to ||·||∞,[η]−1 , instead it is nonexpansive w.r.t.
to the ||·||∞,[η]−1 for η = v1 where v1 = [1, 2]⊤ is the
eigenvector of A associated with the eigenvalue λ1 = 1,
because all conditions of Theorem 1 hold:

• Assumption 1 is satisfied because the activation function
is the continuously differentiable hyperbolic tangent;

• The system is monotone since the Jacobian
Df(x0) ≥ −C is Metzler for any x0 ∈ Rn according
to Lemma 1, because C is diagonal.

• The system is v1-subhomogeneous according
to Lemma 2, because the Jacobian satisfies
Df(x0)v1 ≤ (A− C)η = Av1 − Cv1 = v1 − v1 = 0

Thus, the neural network satisfies conditions of Theorem 2 and
thus all trajectories converge to some equilibrium point.

Other examples of nonexpansive RNNs that are nonexpansive
but not contracting can be found for any nonnegative matrix
A ≥ 0 and choosing:

1) C = λMAXI , where λMAX is the largest eigenvalue of A:
the system is nonexpansive w.r.t. ||·||∞,v−1 where v is the
eigenvector associated with λMAX;

2) C = diag(A1). In this case, the system is nonexpansive
w.r.t. ||·||∞;

3) C = diag((Aη))[η]−1 for any η ≥ 0. In this case, the
system is nonexpansive w.r.t. ||·||∞,η−1 .

V. CONCLUSIONS

It has been shown that smooth monotone systems that
are nonexpansive w.r.t. a diagonally weighted infinity norm
exhibit aperiodic state trajectories that converge to one of the
equilibrium points. Notably, this differs from prevailing trends
in the literature by not requiring the system to be contractive,
thus accommodating multiple equilibrium points. This nice
behavior is ensured thanks to the fact that smooth monotone
systems naturally enjoy a stricter notion of monotonicity called
type-K monotonicity [10], [20], [23], which prevents periodic
trajectories. These findings apply also to RNNs, allowing us
to provide sufficient convergence conditions for nonexpansive
monotone neural networks that lack contractive properties.
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