
Tractable Reinforcement Learning for Signal Temporal Logic Tasks
with Counterfactual Experience Replay

Siqi Wang, Xunyuan Yin, Shaoyuan Li, and Xiang Yin

Abstract— We investigate the control synthesis problem for
Markov decision processes (MDPs) with unknown transition
probabilities under signal temporal logic (STL) specifications.
Our primary objective is to learn a control policy that max-
imizes the probability of satisfying the STL task. However,
existing approaches to STL control synthesis using reinforce-
ment learning encounter a significant exploration challenge,
particularly when expanding the state space to incorporate STL
tasks. In this work, we propose a novel reinforcement learning
algorithm tailored for STL tasks, addressing the exploration
difficulty by effectively leveraging counterfactual experiences to
expedite the training process. Through experiments we show
that these generated experiences enable us to fully employ the
knowledge embedded within the task, resulting in a substan-
tial reduction in the number of trial-and-error explorations
required before achieving convergence.

I. INTRODUCTION

With the rapid advancement of cyber-physical systems
(CPS), there is a growing imperative to formally verify and
synthesize spatial-temporal behaviors and provide provable
guarantees. As a formal specification language, signal tem-
poral logic (STL) offers a structured approach to reasoning
about temporal properties related to real-valued physical sig-
nals. STL empowers the expression of intricate requirements,
such as “drive to the charging station within 20 minutes and
remain there for at least 10 minutes.” In the past years, STL
has been successfully applied to various safety-critical CPSs
such as autonomous vehicles [1], industrial automation [2],
smart grids [3] and healthcare systems [4].

To address the control synthesis problem concerning STL
specifications, recent literature has witnessed the develop-
ment of various synthesis methods. Effective strategies in-
clude encoding the satisfaction of STL formulae as con-
straints using mixed-integer linear programming techniques
[5]–[7] and encapsulating the forward invariant satisfaction
regions of STL tasks using control barrier functions [8]–[10].
However, these approaches necessitate complete knowledge
of the system’s dynamics, which is not readily accessible in
practical applications.

When the dynamics of the system are unknown a priori,
model-free reinforcement learning (RL) becomes a prevalent
approach for synthesizing control policies [11]–[17]. In the
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context of RL for STL, a prominent approach is the τ -
MDP approach [11]. However, this approach heavily relies
on partial history trajectories, leading to an exponential
growth in state space with the maximum sub-task horizon. In
[15], the authors proposed an F -MDP formulation to more
efficiently record historical information. However, even with
this formulation, the state space can still become excessively
large in complex scenarios. Therefore, substantial interac-
tions between the agent and the environment are essential to
generate sufficient experiences for effective learning, which
may be time-consuming and mechanically harmful.

Experience replay is a widely utilized technique in RL
that can enhance sampling efficiency by storing and reusing
past experiences. Through random sampling from these
experiences during training, the agent can disrupt temporal
correlations and improve generalization [18]. Our research
draws inspiration from [19], [20], wherein counterfactual
experience replay is incorporated into policy synthesis for
linear temporal logic (LTL) specifications. This approach
leverages the known automaton representation of the LTL
task, incorporating that information to generate counterfac-
tual experiences. However, to our knowledge, leveraging
counterfactual experiences to expedite RL for STL tasks
has not been explored. This problem presents a significant
departure from the LTL problem, as STL lacks similar
automata representations.

Motivated by the necessity for a more efficient RL algo-
rithm tailored for STL tasks, this work adopts the philosophy
of counterfactual experience replay to guide RL for STL
synthesis. Specifically, our contributions can be summarized
as follows. First, we utilize the F -MDP model to encode both
the physical state and the task progress state of the agent.
Building upon this F -MDP representation, we introduce an
approach to generate counterfactual experiences from factual
ones. Subsequently, we present an off-policy RL framework
designed to synthesize policies for STL-specified tasks, ef-
fectively leveraging the generated information. Finally, we
conduct an extensive set of experiments, focusing on a path
planning problem for a mobile robot within a factory floor.
We thoroughly analyze the efficiency of our approach in
comparison to the baseline methodologies.

II. PRELIMINARIES

A. Signal Temporal Logic Tasks

We consider tasks specified by signal temporal logic (STL)
formulae. STL is a formal language widely used for de-
scribing high-level logic behaviors over continuous signals.
Similar to the setting of [15], we consider a restrictive yet
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expressive fragment of STL with the following syntax:

Φ := ¬Φ | F[0,T )ϕ,
ϕ := ¬ϕ | ϕ1 ∧ ϕ2 | F[0,τ)ψ,
ψ := true | µ | ¬ψ | ψ1 ∧ ψ2,

(1)

where µ : Rm → {true, false} is an atomic predicate such
that it is satisfied for signal value s ∈ Rm iff hµ(s) > 0,
where hµ : Rm → R is the underlying predicate function; ¬
and ∧ are the Boolean operators “negation” and “conjunc-
tion”, respectively; F is the temporal operator “eventually”
with τ, T ∈ N≥0 are two non-negative time instants.

Intuitively, formula class ψ represents Boolean formulae,
in which “disjunction” ∨ and “implication” → can also
be induced. Formula class ϕ represents the sub-formulae,
in which temporal operators can only be applied in front
of a Boolean formula ψ. Note that, within this class, one
can also define the temporal operator “always” G[0,τ)ϕ :=
¬F[0,τ)¬ϕ. Finally, formula class Φ captures the overall task
of our interest, in which two nested temporal operators are
allowed in front of Boolean formulae.

STL formulae are evaluated over finite signals that take
values in a continuous metric space Rm. For any signal s, we
denote by st its value at time t. Also, we denote by (s, t) |= φ
that signal s satisfies formula φ at time instant t. Formally,
the (Boolean) semantic of STL is defined recursively as

(s, t) |= µ ⇔ hµ(st) > 0,
(s, t) ̸|= φ ⇔ (s, t) |= ¬φ,
(s, t) |= φ1 ∧ φ2 ⇔ (s, t) |= φ1 and (s, t) |= φ2,
(s, t) |= F[0,T )φ ⇔ (s, t′) |= φ ∃t′ ∈ [t, t+ T ).

(2)

Based on the above semantics, the semantic for the temporal
operator “always” G[0,T ) can also be induced as

(s, t) |= G[0,T )φ⇔ (s, t′) |= φ ∀t′ ∈ [t, t+ T ).

We also define the characteristic function of an STL formula
φ w.r.t. signal s at time instant t by

χ(φ, s, t) =

{
1 if (s, t) |= φ,
0 otherwise, (3)

where χ(φ, s, t) = χ(φ, s) when t = 0. For any STL
formula, its satisfaction can be completely determined within
its horizon, denoted by hrz(φ), which can be computed as
the maximum sum of the time interval bound of all nested
temporal operators [11].
B. Q-Learning for Markov Decision Processes

We model the dynamic of the underlying system by
a Markov decision process (MDP). Formally, an MDP is
defined as a 5-tuple M = (Σ, s0, A, P,R), where Σ is the
set of states, s0 is the initial state, A is the set of actions,
P : Σ× A× Σ → [0, 1] is a unknown transition probability
function and R : Σ → R is the reward function. Note that
we include the reward function R to maintain alignment
with standard models despite it is not directly used in our
current method. For simplicity, we focus on a single initial
state; all results can be extended easily to the case of initial
distribution.

Given MDP M , a (stationary) control policy is a function
π : Σ× A → [0, 1] that assigns each action a probability at

each state with ∀s ∈ Σ :
∑

a∈A π(s, a) = 1. The objective
is to synthesize a control policy that maximizes the total
discounted rewards [18], i.e.,

π∗ = argmax
π

E

[
T−1∑
t=0

γtrt

]
, (4)

where rt is the random variable for the reward at instant t
when the policy π is applied and γ ∈ [0, 1] is a discount
factor that penalizes the reward in the future.

Since the transition probability is assumed to be unknown,
one needs to learn the optimal control policy based on the
online information of states, actions and rewards. Particu-
larly, tabular Q-learning, one of the simplest yet widely used
RL algorithms, is a model-free, temporal-difference method
which maintains the values of all state-action pairs in a Q-
table. Specifically, at each update, the Q-table is updated
with a transition (st, at, rt, st+1) according to the Bellman
equation:

Q(st, at) := (1− α)Q(st, at) + α[rt + γmax
a∈A

Q(st+1, a)], (5)

where α is the learning rate.
III. PROBLEM FORMULATION

Given an MDP M = (Σ, s0, A, P,R) with unknown P
and STL formula Φ, the overall control objective considered
in this work is to maximize the probability of the satisfaction
of STL formula Φ. Formally, we aim to find the following
optimal policy π∗ defined by

π∗ = argmax
π

Pπ[(s, 0) |= Φ], (6)

where Pπ is the probability measure over the set of all finite
signals of length hrz(Φ) under policy π. Note that, using
the characteristic function, Equation (6) can also be written
equivalently as

π∗ = argmax
π

Eπ[χ(Φ, s)]. (7)

Note that the objective function in the above formulation
cannot be handled by the standard Q-learning algorithm since
the reward is defined over the entire horizon rather than in
the discounted sum form. Therefore, following the approach
in [11], we use Log-Sum-Exp (LSE) to transform the original
objective into the RL-friendly form. Specifically, the LSE is
a smooth approximation method for max and min operators:

max(x1, . . . , xn) ≈ 1
β
log

n∑
i=1

eβxi ,

min(x1, . . . , xn) ≈ − 1
β
log

n∑
i=1

e−βxi ,
(8)

where the approximation error is bounded by two inequali-
ties, see [11].

In the context of the STL control synthesis problem, since
we focus on the STL formula of form F[0,T )ϕ or G[0,T )ϕ,
the control synthesis problem stated in Equation (6) can be
approximated as follows:

π∗
A = argmax

π
E
{ ∑T−1

t=0 eβχ(ϕ,s,t) if Φ = F[0,T )ϕ,∑T−1
t=0 −e−βχ(ϕ,s,t) if Φ = G[0,T )ϕ.

(9)

In the above problem reformulation, the objective is in
form of a summation of rewards, where each step reward can
be determined within the horizon of sub-formula ϕ. In order



to calculate the step reward, a direct approach is to augment
the original MDP to keep track of all states in the latest
hrz(ϕ)-step history. This is known as the τ -MDP approach
[11], which results in an augmented state space of size equal
to |Σ|hrz(ϕ). However, this approach requires extremely large
memory when the horizon of ϕ increases. In this work, we
will introduce a simple and tractable method for calculating
sub-task satisfaction.

IV. REINFORCEMENT LEARNING WITH
COUNTERFACTUAL EXPERIENCE REPLAY

In this section, we introduce our main algorithm for
approximating the objective function, building upon the flag-
based encoding of task progress proposed in [15]. Addition-
ally, we utilize the STL formula to guide the generation of
counterfactual experiences, enhancing the learning process
and resulting in a more efficient approach compared to the
original algorithm in [15].

A. Tractable Representation of Task Progress

First, we recall the F -MDP defined in [15] that captures
the system state as well as the task progress. The definition is
slightly different from the original version for the purpose of
later developments. Recall that our task is of form F[0,T )ϕ or
G[0,T )ϕ. Furthermore, each formula ϕ is a Boolean combina-
tion of sub-formulae. Therefore, we can write ϕ in terms of
its sub-formulae by ϕ = g(ϕ1, . . . , ϕn), where g is a Boolean
function and each ϕi is of form F[0,τi)ψi or G[0,τi)ψi.
Therefore, an F -MDP is constructed by augmenting the state
space of the original MDP by assigning flag variables for
each sub-formula ϕi to keep track of its progress.

Definition 1 (F -MDP): For MDP M = (Σ, s0, A, P,R),
its F -MDP is defined as a tuple MF =
(ΣF , sF0 , A, P

F , RF ), where

• ΣF ⊆ (Σ×
n∏

i=1

Fi) is the augmented state space obtained

by taking the Cartesian product of the system state space
with the n flag state sets Fi, i ∈ {1, . . . , n};

• sF0 = (s0, f1,0, . . . , fn,0) is the initial state with fi,0 =
0,∀i ∈ {1, . . . , n};

• PF : ΣF × A × ΣF → [0, 1] is the tran-
sition function. Let sF = (s, f1, f2, . . . , fn) and
sF

′
= (s′, f ′1, f

′
2, . . . , f

′
n). We have PF (sF , a, sF

′
) =

P (s, a, s′) if and only if f ′i = update(fi, s),∀i ∈
{1, . . . , n}, where update(·) is the update rule of flag
variables defined by:

fi,t+1 =
τi if st+1 |= ψi & ϕi = F[0,τi)ψi,
max (fi,t − 1, 0) if st+1 ̸|= ψi & ϕi = F[0,τi)ψi,
min (fi,t + 1, τi) if st+1 |= ψi & ϕi = G[0,τi)ψi,
0 if st+1 ̸|= ψi & ϕi = G[0,τi)ψi.

(10)
• RF : ΣF → R is a reward function defined over the

augmented state space.
The update rule of the flag variables is the essence of

the F -MDP formulation. Each flag variable captures the
completion progress of each sub-task and one can use it to
determine the overall satisfaction. For each sub-task , the

satisfaction of each sub-task is dependent on how st |= ψi is
seen in the last τi-step history. For ϕi = F[0,τi)ψi, fi,t > 0
means that there exists at least one t′ in the last τi-step
history that st′ |= ψi holds. And for ϕi = G[0,τi)ψi,
fi,t = τi means there exists continuous τi-step satisfaction
of st′ |= ψi. Thereby we derive satisfaction for sub-task ϕi:

χ(ϕi, s
F
t ) =

1 if(fi,t > 0 & ϕi = F[0,τi)ψi)
or (fi,t = τi & ϕi = G[0,τi)ψi)

0 else
. (11)

The satisfaction of the inner formula ϕ can be derived
using simple Boolean operations according to Equation (2).
Thus the step reward for the agent can be derived from
Equation (11). Specifically, the step reward is given by:

rt = RF (sFt+1) =

{
eβχ(ϕ,sFt+1) if Φ = F[0,T )ϕ

−e−βχ(ϕ,sFt+1) if Φ = G[0,T )ϕ
. (12)

One can easily derive that the size of the state space for

F -MDP is |Σ| ·
n∏

i=1

τi.

Remark 1: In most circumstances, the number of sub-
task n, is often trivial compared to each sub-task’s horizon
τi, ∀i ∈ {1, . . . , n}, which can increase drastically as
the problem complicates when one sub-task takes longer
to finish. The F -MDP representation is applicable to a
broader context. Only in extreme circumstances, where the
inner formula consists of multiple sub-formulas with short
horizons, and the original state space is small, the τ -MDP
representation is more economic.

B. STL-Guided Counterfactual Experience Generation

Although the F -MDP formulation reduces the state space
to certain degree, the state space size still grows exponen-
tially with the number of sub-tasks n and linearity with each
sub-task horizon hrz(ϕi). In RL processes, experiences are
obtained by interacting with physical systems or simulation
environments. Optimal policies can be learned given all
states are visited infinitely many times. However, when
there exist multiple sub-tasks or long-horizon sub-tasks, it is
extremely time-and-resource-consuming to explore the entire
state space.

In order to enhance the usage of samples, we propose an
STL-guided counterfactual experience generation scheme to
combat the issue of large state space. The philosophy of our
experience generation procedure is simple. Specifically, in
the F -MDP constructed, at each time step t, the transition
of flag variable is fully known given the resulted signal state
st+1. Therefore, in addition to considering the original flag
transitions, one can further use this physical transition sam-
pled together with artificial flags to generate new associated
flag transition.

To be more specific, at each step t, the agent takes an
action at from state sFt and then lands in state sFt+1, receiving
a reward rt. For the convenience of further discussions, we
write sFt = (st, f1,t, . . . , fn,t) and combine the flag states

(f1,t, . . . , fn,t) to form a vector ft ∈
n∏

i=1

Fi, where Fi is the

state set for each flag variable fi,t. We define such transitions



Algorithm 1 Counterfactual Experience Replay (CFER)

1: Initialize the learning algorithm A ▷ Q-Learning
2: Initialize the replay buffer B
3: for episode = 1 :M do
4: Sample an initial state s0.
5: for t = 0, H − 1 do
6: Interact and get e = (st, ft, at, rt, st+1, ft+1)
7: Generate counterfactual transitions Ẽ via (14)
8: Store the transitions in B
9: if episode%Replay Period= 0 then

10: Sample a minibatch B := S(B)
11: Update policy π := UPDATEA(π,B)
12: end if
13: end for
14: end for
15: return Policy π

resulted from actual interactions with the physical system
factual experiences. We store this experience as a tuple

e = (st, ft, at, rt, st+1, ft+1) . (13)

Definition 2 (Counterfactual Experience): The set of
counterfactual experiences generated by a factual experience
e is defined by

Ẽ =
{(
st, f̃t, at, r̃t, st+1, f̃t+1

)
| ∀f̃t ∈ F

}
, (14)

where f̃t+1 = update(st+1, f̃t) and r̃t = RF (s̃Ft+1), s̃
F
t+1 =

(st+1, f̃t+1) as defined Equation (10) and (12).
Intuitively, from each factual experience, we can pretend

that the agent starts from any arbitrary flag state ft and
generates a set of counterfactual experiences. In essence, to
achieve complete coverage of the augmented state space, the
agent is only required to explore the primary state space Σ,
while the augmented states can be systematically generated.

In Algorithm 1, we provide a framework for RL with
STL-guided counterfactual experience replay. During each
learning step, the agent produces a factual experience and
generates a set of counterfactual experiences according to
Equation (14) which are then stored the transitions into the
replay memory. At each replay period, the agent samples a
batch of experiences from the memory based on a sampling
strategy S and performs batch policy update according to
Equation (5).

V. CASE STUDY AND NUMERICAL COMPARISONS

In this section, we conduct a case study to illustrate
the feasibility and effectiveness of the proposed algorithm.
Specifically, we consider the control synthesis problem for
a mobile robot navigating in a workspace. We show in the
simulations that control policies can be learned to success-
fully achieve the STL tasks. Furthermore, we conduct a set
of numerical experiments with different tasks and different
grid sizes to compare the proposed algorithm with existing
algorithms.

(a) Factory workspace. (b) Agent.

Fig. 1: Simulation environment.
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Fig. 2: Sample traces generated by optimal CFER policies.

All algorithms are implemented using Python 3.7 on
a Ubuntu 20.04 machine. Simulations are provided by
robot simulator Coppeliasim. Codes and video of sam-
ple trajectories are available at https://github.com/
WSQsGithub/STL-CFER.

A. Environment Description and STL Tasks

We consider the scenario, where a mobile robot navigates
in a manufacturing factory as shown in Figure 1. As shown
in the figure, the factory workspace has two regions where
the robot can pick up or unload products and one charging
region where the robot can charge its battery. The robot
is navigating in the workspace in order to achieve some
STL task. We discretize the workspace into a grid world,
considering resolutions of 5 × 5 and 10 × 10 as shown in
Figure 2. Then at each instant, the agent makes a high-level
decision in the discrete abstract grid world to move to any
of its adjacent grid or to stay still. If the agent chooses an
action that results in collision with the boundaries, then it
is forced to remain still in the same grid. Then the high-
level command from grid to grid is executed by a low-level
hybrid controller for navigation. Due to discretization errors
as well as disturbances in the real world, the transitions from
grid to grid under high-level actions are uncertainty with an
unknown probability.

We consider the following three different types of STL
tasks, where signal s at each instant is the coordinate (x, y)
of the center of the current grid of the robot:

Reaching task: The agent is supposed to reach the storage
area (the blue colored region in Figure 2) to report to duty in
T+τ time units. Note that, although our fragment Φ requires
two nested temporal operator, this task can still be captured
by
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Fig. 3: Satisfaction curves for naive, naiveER,CFER for reaching, charging and patrolling task during training.

Φ1 = F[0,T+τ)(s ∈ A) = F[0,T )F[0,τ)(s ∈ A). (15)

Charging task: The robot needs to visit the charging
station every T time units and for each visit, to stay inside
the charging region for certain time τ to get fully charged.
This task can be specified by

Φ2 = F[0,T )G[0,τ) (s ∈ Charging Region) . (16)

Patrolling task: During the working hour, the robot must
pick up parcels from one area and deliver them to another,
completing each cycle within τ time units by patrolling
between blue and red regions in Figure 2. This task is
specified as

Φ3 = G[0,T )

[
F[0,τ)(s ∈ A) ∧ F[0,τ)(s ∈ B)

]
. (17)

B. Implementation Details of Learning Algorithm
We use the standard tabular Q-learning algorithm in [15]

as a baseline to synthesize control policies and compare it to
our modified version denoted as CFER. We adopt a uniform
sampling strategy to sample from the buffer. Furthermore, to
investigate the effect of counterfactual experience generation
and experience replay, we also conduct tests with ordinary
experience replay, which we denote as naiveER. Specifi-
cally, in naiveER, only factual experiences are inserted into
the replay memory in constrast to CFER, where counterfac-
tual experiences are also used for replay.

Note that for each of the three tasks, we consider two
different pairs of time horizions T and τ . Recall that we
consider two different resolutions of abstraction: 5 × 5 and

TABLE I: Implementation parameters

index nd memory size replay period batch size scale function max episodes

R1-R4 400 1000 4 64 2r − 1 4000
C1-C2 400 1000 4 64 2r − 1 4000
C3-C4 400 1000 4 64 2r − 1 10000
P1 400 1000 4 64 r − 0.9 4000
P2-P4 1000 10000 4 256 r − 0.9 10000

10 × 10. Therefore, we essentially run the three learning
algorithms on 3× 2× 2 = 12 different scenarios.

To make a fair comparison, each algorithm is implemented
using the identical hyper-parameters as specified in Table I.
Additionally, shared parameters we use throughout all exper-
iments are β = 50 for the reward function approximation,
learning rate α = 0.01, and discount factor γ = 0.9999 for
the policy update(5). We decay the exploration ratio ϵ by
ϵ = ϵ∞ + (ϵ∞ − ϵ0) × e−episode/nd , where ϵ0 = 0.99 and
ϵ∞ = 0.01 denotes the maximum and minimum value of ϵ
and nd, a parameter that determines the rate of the decay.
During the learning process, the policy is evaluated every 20
episodes with the average success rates, the result of which
is visualized in the learning curve in Figure 3. The success
rate at the end of the curve demonstrates the test success rate
after training.

C. Simulation Results and Discussions

We analyze our results from the following perspectives:
1) Is Each Task Achieved?:To demonstrate the feasibility

of our algorithm, in Figure 2, we depict trajectories observed
in the last evaluation with the maximum accumulative re-
ward. Specifically, Figure 2(a)-(c) correspond to 5× 5 grids
with τ = 5, and Figure 2(d)-(f) correspond to 10× 10 grids



with τ = 10. In all of these six scenarios, the CFER policies
are able to generate satisfying trajectories after a reasonable
time of learning, thereby verifying the feasibility of the CFER
algorithm. It is worth noting that, for the patrolling task, only
CFER policies successfully generate trajectories that meet the
task specification. The reason behind this observation will be
analyzed later along with the learning curve.

2) Does CFER Facilitate Learning?:Figure 3 depicts the
learning curves for the entire 12 sets of experiments with
three different algorithms. It is commonly observed that in
each sub-figure, the CFER curve converges much faster than
the naive one. However, in the reaching and charging task,
the naiveER policy converges sightly faster. But in the
patrolling task, only CFER policy manages to converge to a
non-zero success probability within given training episodes.

Our explanation is that the efficiency of CFER compared
with naiveER will become more significant when the
complexity of task increase. For Φ1 = F[0,10)F[0,5)(s ∈ A)
in a 10 × 10 grid world, the size of the state space is
5 × 102 = 500, which is smaller than the replay memory
size 1000. Since it is easy to visit all the 500 states, having
factual transitions filled into the replay memory already
ensures the variety of exploration. However, due to the
limited replay memory size, the generation of counterfactual
experience homogenizes the replay memory by producing
repetitive transitions across, leading to a less ideal learning
curve. However, for the patrolling task, where substantial
improvement of CFER is observed across all experiments, the
sizes of the state spaces are 2500, 5625, 10000, and 22500,
and replay memory is set to 10, 000. While it is burdensome
for the agent to explore the state space on its own or even
fill up the replay memory, the generation of counterfactual
transitions saves it from unnecessary trials and errors.

3) Does CFER Improve Scalability?:It is worth noting
that the task difficulty increases from the reaching task to the
charging task and patrolling task. Additionally, task difficulty
escalates with increasing horizons. Figure 3 demonstrates
that the gap between CFER’s learning curve and the naive
learning curve widens as task difficulties increase. For tasks
like patrolling, which cannot be completed within a finite
time using naive or naiveER methods, CFER can effort-
lessly achieve the desired results. Moreover, since experience
generations are performed on CPUs, the computation time
is negligible compared to the time consumption of a single
interaction. This provides evidence that our algorithm will
considerably expedite learning on large-scale complex tasks
described by STL formulae.

VI. CONCLUSION

In this paper, we investigate the control synthesis problem
for STL tasks. We observe in experiments that the CFER
policies generally converges faster compared to the naive
policies. Specifically, our CFER approach proves particularly
effective for handling complex STL tasks featuring long
horizons and multiple sub-tasks in large state spaces. A
potential extension of this work is to achieve a balance

between the roles of factual and counterfactual experience
replay. An effective sampling scheme can be explored to
unleash the potential of CFER.
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[2] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Mining
requirements from closed-loop control models,” in Proceedings of the
16th international conference on Hybrid systems: computation and
control, pp. 43–52, 2013.

[3] G. Silano, T. Baca, R. Penicka, D. Liuzza, and M. Saska, “Power line
inspection tasks with multi-aerial robot systems via signal temporal
logic specifications,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 4169–4176, 2021.

[4] R. Yan and A. A. Julius, “Interpretable seizure detection with signal
temporal logic neural network,” Biomedical Signal Processing and
Control, vol. 78, p. 103998, 2022.
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