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Abstract— Renewable energy sources (RES) are increasingly
integrated into power systems to support the United Nations’
Sustainable Development Goals of decarbonization and energy
security. However, their low inertia and high uncertainty pose
challenges to grid stability and increase the risk of blackouts.
Stochastic chance-constrained optimization, particularly data-
driven methods, offers solutions but can be time-consuming,
especially when handling multiple system snapshots. This paper
addresses a dynamic joint chance-constrained Direct Current
Optimal Power Flow (DC-OPF) problem with Automated
Generation Control (AGC) to facilitate cost-effective power
generation while ensuring that balance and security constraints
are met. We propose an approach for a data-driven approx-
imation that includes a priori sample reduction, maintaining
solution reliability while reducing the size of the data-driven
approximation. Both theoretical analysis and empirical results
demonstrate the superiority of this approach in handling
generation uncertainty, requiring up to twice less data while
preserving solution reliability.

I. INTRODUCTION

Integrating renewable energy sources align with the United
Nations’ sustainable development goals, promoting afford-
able and clean energy while enhancing energy security
and resilience. Unfortunately, RES introduces significant
uncertainty in power systems generation, posing substantial
challenges to grid optimization and control policies.

The Optimal Power Flow (OPF) [1] is a key optimization
problem that aims to achieve economically optimal gener-
ation while adhering to grid security and power balance
constraints. To account for generation uncertainty, the Joint
Chance-Constrained (JCC) extension considers an unknown
joint distribution of renewable energy sources [2], [3]. An
alternative robust optimization approach assumes bounded
uncertainty and offers a more conservative solution in prac-
tice [4], [5]. The discrete-time dynamic chance-constrained
OPF problem [6], [7] models optimal generation set-points
for sequential timestamps, temporarily binding generators’
power outputs through ramp-up and ramp-down constraints.
These constraints model the limit of the rate of change
of the power output, as significant immediate changes are
not feasible for some generators [8]. Automatic Generation
Control (AGC) is widely used for fast and efficient power
dispatch in bulk power systems [9].

While the chance-constrained extension enhances flexi-
bility in modeling uncertainty, solving it for an arbitrary
distribution and/or jointly for all technical limits becomes
computationally infeasible [10]. To overcome this, data-
driven (DD) approximations such as Scenario Approximation
(SA) [11] and Sample Average Approximation (SAA) [12]
have proven successful. Data-driven scenario approaches

are often computationally prohibitive when higher accuracy
is needed, prompting extensive scenario reduction studies.
Scenario reduction methods are either a-posteriori or a-priori.
A-posteriori methods solve the initial JCC problem multiple
times to identify reducible scenarios iteratively [2], [13]. A-
priori methods reduce scenarios before solving, enhancing
computational efficiency. These methods, pioneered in [14],
[15] and refined in [16], use probability metrics like the
Wasserstein distance to drop scenarios. Alternatively, some
methods use clustering to replace the initial set with a
smaller, more representative set [17], [18]. The key difference
between a-posteriori and a-priori reductions is the theoretical
guarantees for SA solution feasibility for the original JCC
problem. To our knowledge, such guarantees are limited for
a-priori methods in the literature. To address this, we propose
the A-priori Reduced Scenario Approximation (AR-SA), an
approach for a-priori sample reduction methods linked with a
data-driven Scenario Approximation (SA). This SA requires
significantly fewer samples to produce a reliable solution
for JCC dynamic DC optimal power flow and provides
theoretical feasibility guarantees for JCC DC-OPF.

The contributions of this paper are as follows. First, we
analytically define a-priori conditions that determine sam-
ple redundancy for JCC dynamic optimal power flow with
AGC and provide theoretical support for these conditions.
Second, we analyze dataset size requirements for AR-SA
data-driven approximation based on the reduced dataset,
taking into account solution reliability. Third, we compare
the performance of the AR-SA approach with SA constructed
on reduced scenario sets. The scenario reduction methods
used are Fast Forward (FF) [14], Simultaneous Backward
(SB) [16], and K-Means [18]. We use standard SA as a
baseline. For the proposed AR-SA we observe nearly a
twofold improvement in data efficiency compared to other
scenario reduction techniques. We summarize the paper’s
workflow in Figure 1.

The rest of this paper is organized as follows. Sec-
tion II provides background and problem setup of the multi-
stage high-voltage optimal power flow. Section III discusses
the setup of the multi-step high-voltage OPF with auto-
mated generation control. Section III formulates the chance-
constrained problem under consideration. Section IV presents
the sketch of the a-priori sample reduction approach, formal-
izes it, and proves its validity. Furthermore, we prove that
AR-SA (reduced data-driven approximation) theoretically
requires fewer data samples to produce a reliable solution
than classical SA. Section V compares AR-SA with classical
Monte Carlo-based SA and other scenario reduction methods
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Fig. 1: AR-SA workflow. We compare the performance
of AR-SA with other reduction techniques such as Fast
Forward, Simultaneous Backward, and K-Means methods on
Grid6-WW, Washington-14, and IEEE-30 grids.

such as Fast Forward (FF), Simultaneous Backward (SB),
and the clustering K-Means method. Finally, the conclusion
is in Section VI.

II. BACKGROUND AND PROBLEM SETUP

A. DC Optimal Power Flow
The high-voltage DC model is a widely used load flow model
in power systems. Let G = (V,E) be a power system graph
with the set of n nodes (buses) V and the set of m lines
(edges) E; p ∈ Rng , pd ∈ Rnd , and θ ∈ Rn be vectors
representing power generations, demands, and phase angles,
respectively. The system is balanced so the sum of all power
injections is zero,

∑
i∈V pi =

∑
i∈V pid. For clarity, we

designate one bus as the slack bus, with its phase angle set as
θs = 0. The components of admittance matrix B, B ∈ Rn×n,
denoted as Bij , are non-zero if there is a line between buses
i and j. For each node i, Bii is defined as the negative sum
of the off-diagonal elements Bij with j ̸= i. The DC power
flow equations, security and constraints for i ∈ V, (i, j) ∈ E
are:

p− pd = Bθ,

ng∑
i=1

pi =

nd∑
i=1

pid, p
i
g
≤ pig ≤ pi, |θi − θj | ≤ θ̄ij

The DC Optimal Power Flow (DC-OPF) feasibility set is
linear, defined by voltage phases and power generation within
the grid topology, line characteristics (admittance matrix),
and power demand [19, Chapter 4.1.4]. The objective is to
find an economically optimal active power generation profile
across available generators while adhering to technical limits
and system demand, which establish rules and constraints on
power transfer throughout the system. The feasibility set of
DC-OPF can be reformulated as a polytope P = p : Wp ≤ b
in the vector space of active power generations p ∈ Rng ,
where W ∈ RJ×ng and b ∈ RJ . Here, ng denotes the number
of controllable generators, and J represents the number of
constraints [20], [21]. Reliability constraints are violated
when the power generation vector p falls outside the polytope
P . Solving DC-OPF consists of finding the power flow by
minimizing a convex cost of power generation c(pg) subject
to the constraints defined by P .
B. Source of uncertainty and AGC
The fluctuations affect the power balance in the system and
are typically managed through primary and secondary control
[22]. In this paper, we consider linear Automatic Generation

TABLE I: Paper notation.

P DC-OPF feas. set PJCC JCC DC-OPF feas. set
p vector of generation ng # of controllable gen.
α participation factors J # of constraints in P
T # of modeling timestamps N (µ,Σ) Gaussian distribution
ξt power balance mismatch t Φ Standard Gaussian CDF
In identity matrix R ramp-up/down limits
Pr theoretical redundancy set P̂r sufficient redundancy set

Control (AGC). The AGC recourse adjusts the generation to a
new setpoint pt+1 = pt +αξt [23]–[25] with pt ∈ Rng , α ∈
Rng , and ξt ∈ R representing the total demand-generation
imbalance. The participation factors α for secondary con-
trol can slightly vary, enabling long-term grid stability and
fast control [22]. The total system imbalance ξt represents
the sum of power fluctuations due to the intermittency
of renewable generation, demand instability, and intra-day
electricity trading. Specifically, in a power system with nodes
B, ξt is calculated as ξt =

∑
b∈B(ξ

d
b )

t − (ξgb )
t, where

(ξdb )
t and (ξgb )

t are random variables modeling demand
and generation fluctuations at bus b at time t, respectively.
These variables follow various distributions based on the
source. For example, (ξgb )

t follows a beta distribution at
a bus with a PV generator [26], and wind speed near a
bus with a wind farm may follow a Weibull distribution,
though power output distribution may vary between turbines
[27]. Although ξt as the sum of these independent random
variables, often follows a Gaussian distribution due to the
Lyapunov or Lindeberg-Feller Central Limit Theorem [28]–
[30]. We validated the Gaussianity assumption using the
Shapiro-Wilk normality test on time series data from the
RTS-GLMC project, which includes demand, hydro, rooftop
PV, and wind farm generations [31]. The test indicates that
the hypothesis of normal distribution is rejected only for
August and November at a significance level of α = 0.05,
which supports the validity of the Gaussian assumption for
ξt. We further consider the stacked temporal uncertainty
vector ξ = (ξ1, . . . , ξT ) ∼ N (µ,Σ), where Σ models
temporal correlations. We consider a system influenced by
fluctuations and formulate an optimization problem to de-
termine an economically optimal control strategy and initial
system setpoint that satisfies JCC on technical limits and
demand. Table I summarizes the paper’s notation. Upper
indices denote elements of vectors and matrices. When clear
from context, we use P, E, and V for probability, expectation,
and variance without specifying the distribution.

III. CHANCE CONSTRAINT MULTI-STAGE CONTROL

In this section, we introduce the JCC discrete-time dynamic
DC-OPF with AGC and outline a data-driven approxima-
tion leading to a solution feasible for the original chance-
constrained problem with high probability.
A. Chance constrained optimization
Consider a dynamical system with T , T < ∞, timestamps,
and ξt, 1 ≤ t ≤ T - total power mismatch due to
uncertainties at timestamp t. Let individual uncertainties
follow a Gaussian distribution: ξt ∼ N (0, (σt)2), 1 ≤
t ≤ T , so that ξ ∼ N (0,Σ), Σ ∈ RT×T with marginals
distributed as N (0, (σt)2). The temporal binding between



system timestamps is modeled through the ramp rates of gen-
erators, ensuring realistic rates of change in power outputs as
|pti − pt−1

i | ≤ Ri, where Ri > 0. The discrete-time dynamic
chance-constrained optimization problem is then:

min
pt,α

E
T∑

t=1

c(pt), s.t.: (1)

P

(
Wpt ≤ b, pt = pt−1 + αξt, |ptk − pt−1

k | ≤ Rk,
1 ≤ k ≤ ng, 1 ≤ t ≤ T

)
≥ 1− η.

where η ∈ (0, 1/2], P is a joint measure induced by the
uncertainty distribution and α ∈ Rng is participation factors.
A compact statement of the Problem (1) is:

min
pt,α

E
T∑

t=1

c(pt)

s.t.:P
(
Wpp0 + EτWα · α ≤ β, 0 ≤ τ ≤ T

)
≥1− η,

(2)
where Eτ ∈ RJ+2ng×J+2ng is a diagonal matrix with first

J diagonal elements equal (1τ )⊤ξ, the rest are (eτ )⊤ξ. Here
1τ ∈ RT has components 1τi = 1, 0 ≤ i ≤ τ, 0 otherwise.
The vector eτi = 1, i = τ, eτi = 0 in the other case. Later in
the paper, given specific i : 1 ≤ i ≤ J +2ng and 1 ≤ τ ≤ T
we refer the second term components as (Eτ

i )
⊤ξ · (ωα

i )
⊤α,

where Eτ
i is 1τ for i ≤ J and eτ for i > J . Matrices are

obtained as vertical stacks: Wp =
(
W⊤, 0, 0

)⊤
and Wα =(

W⊤, Ing
,−Ing

)⊤
, Wp, Wα ∈ R(J+2·ng)×ng . The right

hand side of Eq. (2), β =
(
b⊤, R,R

)⊤
with R = {Rk}

ng

k=1

being the vector of ramp up/down limits. We use subscript
to refer to rows of the matrices Wp,Wα, Eτ ; ωp

i , ωα
i for

the rows of matrices Wp,Wα.
B. Scenario approximation of chance constrained control
A Scenario Approximation (SA) of the Problem (2) via the
set of scenarios ξ(j), j = 1, . . . , N , implying a separate set
of constraints for each one, is:

min
p0,α

c(p0), s.t.: (3)

∀j, 1 ≤ j ≤ N:Wpp0 + (Eτ )⊤ξ(j)Wαα ≤ β, 0 ≤ τ ≤ T.

SA offers practical benefits but demands a huge number of
samples to obtain a reliable solution [11]. Reduction strate-
gies, especially a-priori methods, are underexplored for JCC
problems in power systems. Reducing data samples lowers
constraint numbers, improving optimization tractability. We
analyze sample redundancy conditions and provide reliability
guarantees for the data-driven approximation’s solution.

IV. A-PRIORI SCENARIO REDUNDANCY

We define redundant data samples in an SA by setting
analytical conditions for data redundancy in a JCC multi-
timestamp DC-OPF. We provide the minimum number of
scenarios needed for a 1−ρ reliable solution, i.e., a solution
feasible for Problem (2) with a 1− ρ probability, and derive
reduction factors based on the measure of the analytical
redundancy set.
A. Redundant scenarios
In this subsection, we present an approach and theorems for
a-priori scenario redundancy classification. First, we formal-
ize data sample redundancy and illustrate it. Next, we provide

(p̂I , α̂I)

P
PJCC

Pr

P̂r

• P is a feasibility set
• PJCC is a JCC feasibility set
• The black dots – potential set-

points achievable by the AGC due
to power fluctuations

• (p̂I , α̂I) is the SA solution based
on all data samples

Fig. 2: All data samples can be divided into redundant and
non-redundant, depending on whether they are inside or
outside the set Pr with an unknown structure. In practice,
one can derive inner approximations P̂r of Pr. The latter
can be used to classify data by redundancy in SA.

formal statements that define an inner approximation of the
redundancy set Pr, classifying data samples as redundant.

Definition 1: Let I = {1, . . . , N}. Scenarios indexed
with Ir ⊂ I are called redundant iff a solution of SA with
constraints corresponding to scenarios indexed with Ir are
omitted - (p̂0I\Ir

, α̂I\Ir
) - is feasible for initial JCC (2) and

solution of SA (p̂0Ir
, α̂Ir

) with constraints corresponding to
those scenarios indexed with Ir is not feasible for JCC (2).
The redundancy concept is illustrated in Figure 2. Our goal
is to define conditions for a-priori identification of redundant
scenarios. Consider a set Pr containing all redundant sam-
ples (scenarios indexed by Ir from Def. 1). Keeping only
these samples from Pr results in an infeasible solution for
Problem (2). But keeping scenarios outside of Pr yields a
feasible solution. Since it’s challenging to analytically define
Pr, we aim to construct an inner approximation P̂r. Such
approximation provides a sufficient condition for identifying
redundant samples. We derive the inner redundancy set P̂r

for efficient scenario generation. Additionally, we employ a
standard technical assumption [13], that ensures that prob-
lems with finitely many constraints are feasible:

Assumption 1: For all possible uncertainty realizations
ξ(1), . . . , ξ(N), optimization problem (3) is either infeasible
or has a unique optimal solution.

To get an analytical sufficient condition on the redundant
scenarios, we derive a necessary condition for JCC feasibility
converted to a sufficient condition of not being in the JCC
feasibility set. Note that there is the following bound on
feasibility probability from (2):

Lemma 1: Let π(p0, α) ≥ 1 − η, where π(p0, α) =
P
{
∩i,τ (ωp

i )
⊤p0 + (Eτ

i )
⊤ξ · (ωα

i )
⊤α ≤ βi

}
. Then

max
i,t

P
{
(ωp

i )
⊤p0 + (Eτ

i )
⊤ξ · (ωα

i )
⊤α > βi

}
≤ 1−π(p0, α).

Proof: As P
{
∪i,t(ωp

i )
⊤p0 + (Eτ

i )
⊤ξ · (ωα

i )
⊤α > βi

}
=

1−π(p0, α), applying the Boole-Fréchet bound [32, Theorem
4.2.1] to the left-hand side of this we prove the lemma.
Lemma 1 provides a handful necessary condition:

Corollary 1: Let (p0, α) be feasible to JCC in (2). Then
maxi,t P

{
(ωp

i )
⊤p0 + (Eτ

i )
⊤ξ · (ωα

i )
⊤α > βi

}
≤ η.

Proof: Feasibility yields π(p0, α) ≥ 1 − η iff 1 −
π(p0, α) ≤ η. Applying Lemma 1 proves the corollary.

We now formalize P̂r for Problem (2). This gives us a-
priori sufficient condition on sample redundancy.

Theorem 1: Let scenarios ξ(j) ∼ N (0,Σ), j ∈ I =
{1, . . . , N} form SA (3) and a solution of this problem



(p̂0I , α̂I) be feasible for the JCC problem (2). Moreover,
assume that the cost function c(·) is linear. Let P̂r = {ξ ∈
RT : |(Eτ

i )
⊤ξ| ≤ Φ−1(1 − η)στ

i γ ∀i, τ}, where γ ∈ (0, 1)
and (στ

i )
2 = (Eτ

i )
⊤Σ(Eτ

i ). Then, first, SA where scenarios
ξ(j), j ∈ Ir = {j : ξ(j) ∈ P̂r} yields solution (p̂0Ir

, α̂Ir )
that is not feasible for original JCC Problem (2). Second,
SA where scenarios ξ(j), j ∈ I \ Ir yields the solution
(p̂0I\Ir

, α̂I\Ir
) that is feasible for the original JCC Problem

(2).
Proof: The feasibility set of SA is given by (wp

i )
⊤p0+

(Eτ
i )

⊤ξ(j) · (ωα
i )

⊤α ≤ βi, ∀i, τ, j. Since the cost function
is linear for solution of SA, ∃i′, τ ′, j′ : (wp

i′)
⊤p0Ir

+

(Eτ ′

i′ )
⊤ξ(j′) · (ωα

i′)
⊤αIr

= βi′ . Next, one has (Eτ
i )

⊤ξ(j′) ≤
Φ−1(1 − η)στ

i γ, because ξ(j′) ∈ P̂r, positive absolute
value case. This implies that (ωp

i′)
⊤p0Ir

≥ βi′ − Φ−1(1 −
η)στ ′

i′ ∥(ωα
i′)

⊤αIr∥γ. However, the necessary condition from
Corollary 1 implies that ∀i, τ (ωp

i )
⊤p0Ir

≤ βi − Φ−1(1 −
η)στ

i ∥(ωα
i )

⊤αIr
∥. Recalling that γ ∈ (0, 1) we obtain con-

tradiction that leads to the fact that (p̂0Ir
, α̂Ir ) is infeasible

for original JCC Problem. Now drop redundant scenarios
from the SA. Since (p̂0I , α̂I) is feasible for JCC problem and
data samples ξ(j), j ∈ Ir do not contribute to the feasibility,
then SA solution (p̂0I\Ir

, α̂I\Ir
) built on ξ(j), j ∈ I \ Ir is

feasible for JCC problem.
Theorem 1 establishes a sufficient, i.e., a priori condition

on sample redundancy across a given dataset ξ(j), j ∈ I
that guarantees a feasible solution. Specifically, if a dataset
provides assurance of producing a feasible solution for the
original JCC problem, samples within P̂r may be disre-
garded. Thus this theorem offers a way to assess the dataset’s
potential a-priori: if all data samples fall within Pr, it is
impossible to derive any feasible solution for the JCC from
this data.
B. SA Solution Guarantees and Dataset Complexity
In this section, we provide theoretical guarantees on the
solution of reduced SA that does not contain redundant
samples within P̂r. The following theorem addresses the
sampling complexity of the SA with data samples indexed
I \ Ir.

Theorem 2: Let (p̂0, α̂) be a unique solution of the
SA Problem (3) with N i.i.d. samples, so that none
of the samples belong to P̂r. Moreover, assume that
for any N the assumption 1 is fulfilled. Then for any
ρ ∈ (0, 1) and any η ∈ (0, 1/2], (p̂0, α̂) is also a
solution for the Chance-constrained optimal power flow
Problem (2) with probability at least 1 − ρ if N ≥⌈
2η−1(1− ν) ln 1

ρ + 2d+ 2dη−1(1− ν) ln 2(1−ν)
η

⌉
,where

d is a dimension of the space of controllable generators and
participation factors, i.e., d = 2ng , and ν is the probability
of a random scenario ξ ∼ N (0,Σ) to belong to P̂r, and
ν < 1.

Proof: First, notice that discarding random scenarios
ξ /∈ P̂r is equivalent in solving the SA problem with
sampling ξ from a distribution D where ξ ∼ D ⇔ ξ ∼
N (0,Σ) s. t. : ξ ̸∈ P̂r. From the theorem statement, 1− ν is
the probability mass associated with samples in ξ ∼ N (0,Σ)

that are outside P̂r. Assumption 1 and convexity of each
function in Problem 2 meet the conditions of Calafiori and
Campi [11, Theorem 1] implying that for any probability
ρ ∈ (0, 1) and any confidence threshold probability ε, and
dimension of the space of parameters d one has, for N1

N1 ≥
⌈
2ε−1 ln(1/ρ) + 2d+ 2dε−1 ln(2/ε)

⌉
(4)

scenarios from D and the optimal solution (p̂0, α̂) of
the Problem (3), the probability of failure is bounded as
PD{(p̂0, α̂) is feasible for 2} ≥ 1 − ε with prob. at least
1− ρ.

Notice, that the bounds on the number of samples (see
Eq. (4)) is strictly decreasing in ε for ε ∈ (0, 1). As scenarios
in P̂r are redundant and do not contribute to overall solution
reliability, to get a probability of failure η according to
measure N (0,Σ), we need the failure probability according
to D to be at least ε = η/(1−ν). Thus, using ε = η/(1−ν)
and monotonicity of Ineq. (4) one completes the proof.

V. EMPIRICAL STUDY

A. Algorithms and Implementation Details
We compare the performance of SA based on different
strategies: classical Monte-Carlo (SA) and the proposed A-
priori Reduced (AR-SA), and the state-of-the-art scenario
reduction methods: Fast-Forward, Simultaneous Backward
[14], [16] and K-Means [18]. For our test cases, we consider
power systems from MATPOWER [33], specifically Grid-
6WW [19] (pp. 104, 112, 119, 123-124, 549), Washington-14
and IEEE-30. We implemented the algorithms using Python
3.9.13 and PandaPower 2.8.0 [34] on a MacBook Pro (M1
MAX, 64 GB RAM). The optimization problems were solved
using the Pyomo framework [35] , which employed GLPK
[36].The code is available on GitHub1.
B. Test Cases and Numerical Results
We conducted two case studies to evaluate the performance
of SA, AR-SA, and other scenario reduction methods under
different scenarios. The first study focused on the Grid-6WW
and Washington-14, comparing the number of samples N
needed to achieve the 1−ρ = 0.99 reliability of 1−η feasible
solution among 5 methods. The second study analyzed IEEE-
30 bus system, which consist of 30 buses. In this case,
we compared the number of samples needed to achieve
solution reliability of 1 − ρ = 0.99 and assessed the total
execution time, including the scenario reduction step. We
summarized the required number of samples in Table II. In
all case studies, we model power generation and consumption
fluctuations with a standard deviation of 0.01 of their nominal
values, increasing cumulatively for each temporal snapshot.
Thus, we expressed fluctuations as ξt ∼ N (0, (σ̃t

2)), where
σ̃t

2 = σ̃2
0 · t. Simulations were carried out over T = 3

temporal snapshots.
Evaluation methodology. To get an empirical estimation

of the solution reliability 1− ρ̂, we independently construct
L = 100 different approximations for both SA and reduced
SA. Further, we short name SA with scenarios reduced by FF,
SB, and K-Means and P̂r as SA-FF, SA-SB, SA-KMeans,

1https://github.com/vjugor1/OptimalControlScenarioApproximation



Algorithm 1 ρ̂ – an empirical estimate

Require: L - # trials, DC-OPF parameters, η - confidence
level, N0 - initial size of SA, Nmax - maximal size of SA
N ← N0, ρ̂ – storage for ρ̂N
while N ≤ Nmax do

CN ← 0 – feasibility counter; l← 1
while l ≤ L do

Obtain SA solution (3) with N samples
Estimate feasibility prob. (P̂N )l using MC.
if (P̂N )l ≥ 1− η then CN ← CN + 1
end if

end while
1− ρ̂N ← CN/L – fraction of trials that are feasible
Append ρ̂N to ρ̂; update n← n+Nmax/10

end while
return mean of ρ̂

and AR-SA respectively. The data-driven approximation
size N starts with 3 and increases until the corresponding
scenario approximation problem reaches 1 − ρ̂ > 0.99.
For each approximation, we obtain L different solutions:
(x∗

N )l, l = 1, . . . , L. We estimate the confidence of each
obtained solution by running out-of-sample validation. We
use 104 Monte-Carlo samples of ξ to estimate of JCC fea-
sibility constraint (P̂N )l, l = 1, . . . , L. Finally, the solution
reliability is given by 1−ρ̂, which represents the fraction of L
solutions (x∗

N )l such that (P̂N )l ≥ 1−η. Alg. 1 summarizes
the sequence of steps.

Complexity and Execution Time. In addition to solving
the SA problem, Eq. (3), selecting scenarios requires com-
putational effort. Standard Monte Carlo-based SA (denoted
as SA) does not require scenario reduction, unlike other
methods that need additional computations for scenario se-
lection. The Fast Forward method adds scenarios one by one
based on probabilistic metrics (2-Wasserstein distance) and
redistributes probabilities after each addition. Simultaneous
Backward, on the other hand, removes scenarios using the
same process. Denoting Nr as the target number of scenar-
ios after reduction, the complexities of these methods are
O(N3

r + NrN
2) and O(N3

r + N3), respectively [16], [17].
The K-Means algorithm is based on iterative estimation of
scenario cluster centers and requires estimation of L2 dis-
tance between scenarios and cluster centers. This algorithm
requires O(NrN

2) [37]. Contrary, in the proposed AR-SA
the reduction step is conducted via checking if a current
sample is within P̂r, thus, the complexity is O(N). The
construction of P̂r itself grows linearly with the number of
deterministic constraints under probability measure in JCC of
(2). We analyze total execution time, including reduction and
solving the corresponding reduced scenario approximation.
The test case is IEEE-30 grid with a target JCC feasibility
level of 1 − η = 0.99. The results, shown in Figure 3d,
indicate that the execution time is almost similar for all re-
duction methods with classical Monte Carlo SA, except SA-
SB. This suggests that scenario reduction is computationally
inexpensive compared to solving the optimization problem.
Additionally, this experiment supports the proposed method’s

Case η SA AR-SA SA-FF SA-SB SA-KMeans

grid14 0.05 93 48 48 138 48
grid30 0.05 138 93 138 138 93
grid14 0.01 363 93 363 363 363
grid30 0.01 453 273 453 453 453

TABLE II: The number of samples for AR-SA and SA
required in CC-OPF with a confidence threshold of 1 − η
to get the empirical reliability of 1− ρ̂ = 0.99. The value of
1− η is given by out-of-sample Monte Carlo; the empirical
reliability is given by averaging over L = 100 independent
CC-OPF problem instances, as described in Algorithm 1.

practicality.
SA Solution Reliability. Following this analysis, we

evaluate methods on larger grids with high reliability re-
quirements. This experiment seeks to find the number of
samples sufficient for a solution of data-driven approximation
to be feasible for original JCC with high probability for
different η. We estimate the number of samples required
to reach confidence thresholds of 1 − η = 0.95 and 0.99
with reliability of 0.99 for AR-SA, SA, SA-FF, SA-SB and
SA-KMeans in Table II, showing the number of samples
required is 30-50% less for AR-SA compared to classical
SA and the advantage of AR-SA increases with the increase
of 1 − η. We illustrate the dependence between empirical
reliability, 1− ρ̂, and the number of samples, N , for different
values across the IEEE-30, Washington-14 and Grid6-WW
systems in Figures 3b, 3a and 3c, respectively. We maintain
a confidence threshold for JCC feasibility of 1 − η = 0.99.
Notably, AR-SA achieves higher reliability levels (1−ρ̂) with
significantly fewer samples N . From Figures 3b, 3a and 3c
one can observe that for Washington-14 and Grid6-WW AR-
SA reaches high reliability levels with the lower number of
samples and in IEEE-30 case, though SA, SA-FF, SA-SB,
and SA-KMeans reach 1 − ρ = 0.9 with less samples, the
higher 1 − ρ = 0.99 reliability level is reached by AR-SA
first. The latter is due to the problem-specific redundancy
set P̂r construction that is able to filter specifically those
scenarios that are irrelevant to the given problem.

VI. CONCLUSION
Data-driven approximations are useful in chance-constrained
stochastic programs with unknown uncertainty distribution
and/or JCC settings. However, the data requirements rapidly
become infeasible with the increase of size and reliability
requirements. To address this, we proposed a novel approach
that allows to a-priorily identify and remove redundant sce-
narios in stochastic approximations for JCC dynamic multi-
timestamp DC-OPF. We prove the validity of this approach
theoretically and ensured its high empirical performance over
various test cases.
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