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Abstract— Physical activity plays a key role in the prevention
of type 2 diabetes. However, despite the numerous clinical
evidences, there are still no mathematical models that satisfacto-
rily describe the effects of physical activity on the progression
of diabetes, preventing its onset or slowing down its course.
Instead, there are models describing the influence of single
training sessions of physical activity on blood glucose and
insulin levels in the short term. In this article we propose a novel
model for the long term effects of physical activity on diabetes
progression, by exploiting and adapting an existing short-term
model of physical activity. A pivotal role in the proposed model
is played by interleukin-6 released during physical activity and
known to be fundamental in maintaining pancreatic beta cells
production and therefore satisfactory insulin secretion. The
proposed simulation scenarios show how a modeling approach
of physical activity that neglects the interleukin-6 action is not
sufficient to capture the cumulative effects of physical exercise
on disease progression. Indeed, preliminary results pave the way
to natural extensions of the model to account for model-based
control techniques for the long-term control of diabetes through
personalized lifestyle interventions, properly accounting for the
effects of physical activity on the long-term dynamics of blood
glucose.

I. INTRODUCTION

Type 2 diabetes, the most common type of diabetes
mellitus, is a disease characterized by alterations in the
glucose-insulin regulation mechanism, eventually leading to
sustained hyperglycemia, strongly related to a wide range
of diabetic complications including retinopathy, neuropathy,
nephropathy, etc. Type 2 diabetes occurs as a combination of
insulin resistance and gradual beta-cells decrease, a decline
arising through years, usually related to unhealthy habits
including nutrition and lack of physical activity [1]. In light
of its high prevalence, the serious social implications and
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the non-negligible draining of the national healthcare budgets
[2], [3], in recent years a new line of research has emerged,
usually named as Artificial Pancreas, aiming at developing
control techniques for the regulation of the glucose-insulin
feedback-loop. Within this framework, a model-based ap-
proach has shown indisputable advantages, since it allows to
properly account for the physiological machinery underlying
the equations describing the glucose-insulin homeostasis,
therefore providing meaningful different scenarios according
to which control algorithms could be efficiently tested.

Besides, model-based approaches allow to resort to a large
variety of classical or up-to-date control techniques: we may
cite, among the others, Model Predictive Control [4] [5],
nonlinear control [6]–[8], robust control [9], and symbolic
control [10]. All these closed-loop control approaches have
been focused, so far, on the short-term treatment of diabetes.

On the other hand, dealing with type 2 diabetes prevention,
there is ample evidence in the literature that type 2 diabetes
progression can be slowed down or also prevented through
lifestyle intervention, for example physical activity, diet, and
stress management, whereas lack of prevention can lead
to significant burden of illness, multi-morbidity, and excess
health system utilization [11] [12]. However, mathematical
models able to explain the long-term benefits of physical
activity are lacking. Motivated by these considerations, the
work presented here proposes a novel model, capable of
simulating the effects of physical activity on blood glucose
control in the long term, by introducing the effect of variables
that can be used to design the glucose feedback control in
closed loop also for the long term.

We remark that defining a proper model of physical
activity and its long-term effects on the progression of type
2 diabetes is certainly a complex problem, in light of the
numerous physiological variables involved. The approaches
reported in the literature concern explanatory models of the
effect of physical activity on the glucose dynamics in the
short term [13]–[18]. Among these, one of the most popular
models is the model by Roy and Parker [19], which in turn
adapts and extends the minimal model by Bergman et al.
[20], to include the effect of physical activity on short-term
dynamics. These models of physical activity describe how
the variables glucose and insulin concentration behave in
response to single bouts of physical exercise in a time span of
hours. For what concerns the modelling of the long-term ef-
fects of physical activity on type 2 diabetes progression, few
attempts have been done. An example is the one proposed
in [21] to describe the overall long-term effects of lifestyle
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interventions (a combination of diet and physical activity) in
patients enrolled in a diabetes prevention program. It should
be pointed out, however, that the literature does also include
models of general progression of type 2 diabetes, such as
the model by Topp et al. [22] and its extensions [23]–[25],
that consider also the slow dynamics of beta cells: these
models allow to simulate the trends of the variables over
a time span of years. The methodology proposed in this
work exhibits two fundamental features: on the one hand, it
proposes a multiple time-scale model, through the integration
of minimal models of physical activity and progression
models; on the other hand, it introduces the effects of a
particular protein with anti-inflammatory action [26]–[28],
which is produced during training sessions: Interleukin-6
(IL-6), on the dynamics of beta cells replication and death.
With respect to the existing literature, our contribution is
two-fold. First, we show that the simulation of the short-
term effects of single bouts of exercise sessions, repeated
over a time span of years, is not sufficient to capture the
benefits of physical activity in delaying the progression of
the disease: to do this, we merged a short-term model of
physical activity with a progression model of type-2 diabetes
in a two-timescale model. Second, we formalize the effect
of IL-6 (by adding new state variables, new parameters and
reformulating the long-term dynamics) and show how, with
this new mathematical formulation, the two-timescale model
is able to explain the benefits produced by physical activity
on diabetes progression. The most important result of the
work is to show that the benefits produced by physical
exercise on the progression of diabetes are mediated by the
key action of this involved protein. We finally remark again
that the dynamics of low grade systemic inflammation are
very complex, and they are mediated by many proteins, of
which IL-6 represents indeed a key component, but surely
not the only one. To this regard, IL-6 can be seen as a way, in
our model, to mathematically represent this cumulative effect
in a simple-enough manner to render the model amenable to
control purposes. In fact, the one we propose is the first
model formulation that takes into account the role of IL-
6, possibly paving the way to novel model-based control
techniques.

The remainder of the paper is organized as follows:
Section II illustrates the development of the work, clarifying
the methodology followed for the definition of the model and
highlighting the original contribution achieved. Section III
and IV show, respectively, the simulation scenarios and the
results we obtained in the different stages of implementation
and, finally, in Section V we summarize our results and
mention further extension of the proposed work.

II. MODEL FORMULATION

As discussed in the Introduction, with the aim of deriving
a control-oriented dynamical model, we propose a two-
timescale model. The proposed two-timescale approach is
defined by integrating the fast dynamics of physical activity
described by the model by Roy and Parker [19] and the
glucose-insulin slow dynamics, suitably modified from the

model by Ha et al. [25]. With respect to [19], which adapts
and extends the minimal model by Bergman et al. [20], we
consider only those variables that are specifically introduced
to take into account the effect of physical activity, through
the oxygen consumption variable PV Omax

2 , that is

Ġprod = a1PVO
max
2 − a2Gprod, (1a)

Ġup = a3PVO
max
2 − a4Gup, (1b)

İe = a5PVO
max
2 − a6Ie, (1c)

˙PVO
max

2 = −0.8PVOmax
2 + 0.8u, (1d)

where:
- Gprod represents the rate of incremental hepatic glucose

production due to glucogenesis promoted to contribute
the increased glucose uptake by working tissues Gup

[mg/kg/min]; Ie represents the rate of incremental in-
sulin removal from the circulatory system induced by
physical activity [µU/ml/min];

- PVOmax
2 is the istantaneuos oxygen consumption dur-

ing exercise expressed as a fraction of the maximum
oxygen consumption;

- u represents the exercise intensity above the basal level;
- a1, a3, a5, a2, a4, a6 are parameters whose

values are taken from [19], and are respectively
0.00158 [mg/kg/min2], 0.00195 [mg/kg/min2], 0.00125
[µU/ml/min], 0.056 [1/min], 0.0485 [1/min], 0.075
[1/min].

For what concerns the model by Ha et al. [25], it is described
by the following equations

Ġ = R0 − (Eg0 + SII)G, (2a)

İ =
β

V
ISR− kI, (2b)

β̇ =
P (ISR)−A(M)

τβ
β, (2c)

γ̇ =
γ∞(G)− γ

τγ
, (2d)

σ̇ =
σ∞(ISR,M)− σ

τσ
, (2e)

ṠI =
−SI + SI,target

τSI
, (2f)

which involve the following state variables:
- G is the plasma glucose concentration [mg/dl];
- I is the serum insulin concentration [µU/ml];
- β is the beta cell mass [mg]; P (·) and A(·) represent

beta cells replication and death as sigmoidal functions
of the Insulin Secretion Rate (ISR) and of the beta cell
Metabolism (M), respectively, see [25] for the details;

- γ is dimensionless and models the shift of the glucose
dependence of insulin secretion;

- σ represents the insulin secretion capacity per unit of
mass [µU/µg/ d];

- SI is the insulin sensitivity [ml/µU/d].
For what concerns the parameters, we have

- R0 is the basal hepatic glucose production (R0 = 864
[mg/dl/d]);
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- Eg0 is the glucose effectiveness at zero insulin (Eg0 =
1.44 [1/d]);

- V is the insulin distribution volume (V = 5000 [mL]);
- k is the insulin clearance rate (k = 432 [1/d]);
- τγ is gamma time constant (τγ = 2.14 [d]);
- τσ is sigma time constant (τσ = 250 [d]);
- τβ is beta cells time constant (τβ = 7000 [d]);
- τSI is the insulin sensitivity time constant (τSI = 250

[d]).
We remark that the two models above are well accepted

and have been validated by clinical data [19], [25]. Our idea
is to stem from these models, and couple the fast dynamics
of (1) with the slow one of (2), to simulate training sessions
over a span of years. To this end, we propose a new dynamics
of beta cells by introducing a new state variable, in order
to consider the dependence of beta cells replication and
death on the total volumes of IL-6 produced during training
sessions. In this way, a mathematical formalization of the
alteration of the mass of beta cells induced by physical
exercise is reached thanks to the intermediate role played
by IL-6.

In more detail, we merge the equations (1) of the model
by Roy and Parker [19] with a modified version of the
equations of the model (2) by Ha et al. [25], which leads to
the following original formulation, involving two new state
variables and a new definition of beta cells dynamics:

Ġ = R0 +
W

Vg
(Gprod −Gup)− (Eg0 + SII)G, (3a)

İ =
β

V
ISR− kI − Ie, (3b)

β̇ =
P̄ (ISR)− Ā(M)

τβ
β, (3c)

γ̇ =
γ∞(G)− γ

τγ
, (3d)

σ̇ =
σ∞(ISR,M)− σ

τσ
, (3e)

ṠI =
−SI + SI,target

τSI
, (3f)

˙IL6 = SR · PVOmax
2 −KIL6 · IL6, (3g)

V̇ l = IL6 − ksV l, (3h)

where
- the glucose, insulin and IL6 dynamics are driven by

physical activity by means of the u variable, as ex-
plained below, thus allowing to couple the short-term
dynamics (1) with the long-term progression (2);

- W is the average body weight of the subject (W = 70
[kg]), Vg is the glucose distribution volume (Vg = 117
[dl]), from [19];

- IL6 represents the concentration of IL-6 in the muscle
compartment expressed in [pg/ml], due to the short-term
IL-6 release induced by physical exercise; for Eq. (3g)
reference is made to [28];

- V l is a new state variable to describe the integral effect
of IL-6 released during exercise sessions [(pg/ml)min];

- parameter ks was set equal to 2.76 · 10−6 [1/min] to
account for the typical times needed for the training
induced benefits to decline progressively. Specifically,
as described in [29], it has been supposed a 20% decline
in the first 8 weeks (80640 in minutes) of detraining and
then a complete reversal after long-term inactivity. As
a consequence ks = − ln(0.8)

80640 .
As described in [19], u represents the set point for the
sovrabasal oxygen consumption. It is a continuous variable
describing a percent value that can span from 0 to 0.92. By
varying u, different exercise levels can be simulated: from
less intensive training to more intensive ones (for instance
u = 0.3 for mild exercise like walking, u > 0.5 for intensive
exercise sessions like intense running). When u = 0, no
sovrabasal oxygen consumption is required to the individual.
More precisely, when u = 0 basal oxygen consumption for
routine activities is experienced by the individual but it does
not contribute to fast dynamics in [19] as its contribution
is negligible. When u > 0 (i.e., during exercise), the fast
variables associated with physical activity (i.e. Gprod, Gup,
Ie) perturb the slow dynamics, whereas when the exercise
session is over (u = 0) those variables, after a transient, go
to zero. This allows to couple a fast dynamics of minutes
associated with single bouts of exercise session with the
overall slow progression. With u switching from 0 to a given
continuous value (and vice versa) for each of the exercise
sessions, the dynamics of the involved variables is governed
by the continuous transient of PV Omax

2 , which takes into
account all the intermediate phases of adaptation of the
individual to the physical activity.

Dealing with beta cells, a new dynamics is introduced, by
modifying the equations of the auxiliary functions P (ISR)
and A(M) as described in the original formulation [25] to
take into account the integral effect of IL-6 on beta cell
replication and death in the following way:

P̄ (ISR) = P (ISR) + ζ1
V l2

k2n + V l2
(4a)

Ā(M) = A(M)− ζ2
V l2

k2n + V l2
(4b)

where P (ISR) and A(M) are inherited from [25], as well as
γ, σ and SI dynamics. The use of Hill functions is motivated
by the fact that these functions allow to represent a saturation
of the effect of the benefit produced by physical exercise
in the long term. Due to this property, these functions are
widely employed in modeling of biological systems and, in
particular, of the glucose regulation [22], [23]. Parameters
ζ1, ζ2 and kn have been set equal to 0.5, 0.5 and 3500
[(pg/dl)min], respectively, based on preliminary simulations.
These parameters quantify the rate and time of acquisition
of the benefits of physical activity on beta cells and could
be linked to the individual. These parameters, together with
the parameter W , can be used for a more accurate charac-
terization of the individualized response to exercise.

The proposed model represents the formalization of the
long-term effect of physical activity on diabetes progression
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and it is, to the best of our knowledge, the first model in the
literature to take into account this effect.

TABLE I
OUTLINE OF SIMULATIONS

Case Physical activity Model
1 No Ha et al. [25] (HSS)
2 Yes Ha et al. [25] + Roy-Parker [19] (HSS+RP)
3 Yes Proposed model (HSS+RP+IL6)

The proposed formulation of equations (4) is linked to the
“memory” and benefits that physical activity exerts on beta
cells in the long term, promoting their replication and reduc-
ing their death, due to the “cumulative” anti-inflammatory
effect produced by the total volumes of IL-6 released during
training sessions.

III. SIMULATION SCENARIOS

Using the model structure defined in the previous section,
it is possible to simulate recurrent sessions of physical
activity at varying frequency, over a given range of five-
year progression. The simulations are performed under the
assumption that at time t = 0 conditions predisposing to type
2 diabetes arise, with a significant and progressive reduction
of insulin sensitivity, which passes from an initial value of
0.8 to a final value in the five years of 0.3 following an
exponential decay, as in [25], with time constant τSI = 250
[d]. Physical activity is introduced in the simulations in
terms of periodic training sessions performed every four
days, each lasting two hours, with an exercise intensity
u = 0.7, corresponding to the 70% of the maximum oxygen
consumption, thus simulating exercise sessions performed at
intensive level. Initial conditions for glucose concentration,
insulin concentration and beta cell mass are set equal to 100
[mg/dl], 5.7 [µU/ml] and 1533.91 [mg], respectively [25].
Simulations have been performed in three different cases
described in the following and summarized in Table I.

• Case 1. The first case concerns the natural progression
of the disease as described by the model by Ha et al.
(2) [25] without any intervention of physical activity.

• Case 2. It includes regular training sessions by mod-
eling only their short-term effect in the course of the
five years. That means, the model equations (1) by Roy
and Parker [19] merged to the model equations (2) by
Ha et al. [25], with the input u different from zero
(specifically, u = 0.7) during exercise sessions and u
set to zero otherwise, but without IL6 and V l dynamics,
i.e. both set equal to zero. This case is aimed at showing
how the simulation of regular training sessions, reported
on a progression of years using the two-timescale model
through the coupling of Eqs. (1) and (2), is not sufficient
to capture the effects of physical exercise.

• Case 3. It concerns the simulations obtained by the
proposed model, introducing the modification due to
IL-6 and its effects on the dynamics of beta cells on
the model described in Case 2.

IV. SIMULATION RESULTS

The results of the simulations carried out assuming a
progressive reduction in insulin sensitivity, as described in
Section III, are shown in Fig. 1-4.

Fig. 1 shows the observed dynamics of G obtained with
the three models here used. The model by Ha et al. (HSS),
due to the fact that it does not reproduce physical activity,
represents only the trend of the basal glucose concentration
during the five-year progression. Vice versa, the other two
models, with physical activity, show the oscillating effect
produced by repeated exercise sessions in the fast-slow dy-
namics. The sessions of physical activity locally disturb the
progression and generate oscillations, that are more distinctly
observable in Fig. 1, right-hand panel. Specifically, during
each session, glucose concentration drops and, at the end of
the exercise, after a transient, it approximately returns to its
quasi-stationary value.

The glycemic trends, sampled before each exercise ses-
sion, are shown in Fig. 2. During the progression, the
basal glucose concentration in Ha et al. + Roy and Parker
(HSS+RP) substantially overlaps with the basal glucose con-
centration of HSS, out of the transient provided by physical
activity, exceeding the diabetic threshold of 126 [mg/dl] [30]
before the end of the third year of simulation. Therefore, the
scenario including only the short-term dynamics of physical
activity (HSS+RP) does not seem to capture the progressive,
long-term beneficial effects of physical exercise. On the
contrary, the basal glucose concentration curve associated
with the proposed model (HSS+RP+IL6) remains at nor-
moglycemic levels for almost the entire duration of the
simulation, approaching the hyperglycemia threshold of 126
[mg/dl] only in the fifth year. By modeling the action of IL-6
on the dynamics of beta cells, the simulation suggests that
physical activity can significantly delay the progression of
diabetes, as reasonably expected from a real-world scenario.
Similar results, regarding the action of physical activity in
delaying the progression of the disease, are found in [21].

For what concerns insulin concentration, it is also subject
to the oscillating effect of physical activity in the fast-slow
dynamics. However, for the sake of clarity, only the basal
trends (i.e., sampled pre-exercise), are illustrated in Fig. 3.
The results in Fig. 3 confirm what has already been observed
in the glycemic curves in Fig. 2 and they can be explained
by also observing the trends of beta cells, as shown in
Fig. 4. In the proposed model (HSS+RP+IL6), the increased
proliferation and the reduced apoptosis of cells promoted
by the effect of IL-6 allow the mass of cells to grow,
thus increasing the production of insulin and preventing the
onset of glucotoxicity, which, in the first two models, is
conversely at the basis of the progressive death of the cells
and consequently of the reduced insulin production [22]. It
is to note that the beta cell mass obtained at the end of
the simulation of model HSS+RP+IL6 (i.e., approximately
2000 [mg]) represents a reasonable mass for the human
pancreas, which can have a total beta cell mass, depending
on individuals, up to 8000 mg, as explained in [23].
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Fig. 1. Left-hand panel: plasma glucose concentration in the fast-slow dynamics as a function of time observed in Ha et al. (HSS, blue), in Ha et al.
+ Roy and Parker (HSS+RP, yellow) and in the model proposed in this paper (HSS+RP+IL6, red). Right-hand panel: zoom showing the effect of single
training sessions in the same models.
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Fig. 2. Plasma basal glucose concentration as a function of time observed
in Ha et al. (HSS, blue), in Ha et al. + Roy and Parker (HSS+RP, yellow)
and in the model proposed in this paper (HSS+RP+IL6, red).

V. CONCLUSIONS AND OPEN ISSUES

The model proposed in this study is the first, to the best
of our knowledge, which links the long-term benefits of
physical activity to a specific protein, IL-6, so introducing a
completely new player in the control of diabetes progression.
The results here shown are preliminary but encouraging as
they suggest that the proposed model may be used to describe
the progressive benefits of physical activity on diabetes pro-
gression. Indeed, the next and immediate development of the
work will be to implement model-based control techniques
based on the model presented here and the validation of the
model through data (e.g. Diabetes Prevention Program data
[31]). Moreover, it would be interesting in our context to
express the dependence on IL-6 of the reduction of insulin

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Insulinemia
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HSS + RP

HSS + RP + IL6

Fig. 3. Serum basal insulin concentration as a function of time observed
in Ha et al. (HSS, blue), in Ha et al. + Roy and Parker (HSS+RP, yellow)
and in the model proposed in this paper (HSS+RP+IL6, red).

resistance, since the already cited clinical literature [26], [27]
suggests the beneficial action of physical activity and IL-
6 also on insulin sensitivity. Ultimately, it will be useful
to characterize the benefit under different scenarios: for
example different levels of insulin sensitivity decay, different
oxygen consumption dynamics, as suggested in [32]–[34],
and also for varying physical activity programs, such as for
different frequency, duration, and intensity of exercise.
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