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Abstract— This paper investigates the universal approx-
imation capabilities of Hamiltonian Deep Neural Networks
(HDNNs) that arise from the discretization of Hamiltonian
Neural Ordinary Differential Equations. Recently, it has
been shown that HDNNs enjoy, by design, non-vanishing
gradients, which provide numerical stability during training.
However, although HDNNs have demonstrated state-of-the-
art performance in several applications, a comprehensive
study to quantify their expressivity is missing. In this re-
gard, we provide a universal approximation theorem for
HDNNs and prove that a portion of the flow of HDNNs can
approximate arbitrary well any continuous function over a
compact domain. This result provides a solid theoretical
foundation for the practical use of HDNNs.

I. INTRODUCTION
Deep Neural Networks (DNNs) have been crucial for the

success of machine learning in several real-world applications
like computer vision, natural language processing, and rein-
forcement learning. To achieve state-of-the-art performance,
a common approach in machine learning is to increase the
Neural Network (NN) depth. For instance, Convolutional Neu-
ral Networks (CNNs) AlexNet [1], Visual Geometric Group
(VGG) network, GoogLeNet/Inception [2], Residual Network
(ResNet) [3], or recently developed transformers such as
ChatGPT, contain hundreds to thousands of layers. It has
been empirically demonstrated that deeper networks yield
better performance than single-hidden-layer NNs for large-
scale and high-dimensional problems [4], [5]. However, a
rigorous characterization of the approximation capabilities of
complex NNs is often missing. Moreover, the understanding
of how NN architectures (depth, width, and type of activation
function) achieve their empirical success is an open research
problem [6].

To quantify the representational power of NNs, researchers
have focused on studying their Universal Approximation Prop-
erties (UAPs), namely their ability to approximate any desired
continuous function with an arbitrary accuracy. To this aim,
several UAP results for various classes of NNs have been
proposed. The UAP of Shallow NNs (SNNs), i.e. with single
hidden layer has proven in the seminal works of Cybenko [7]

This research is supported by the Swiss National Science Foundation
under the NCCR Automation (grant agreement 51NF40 180545).

Muhammad Zakwan and Giancarlo Ferrari Trecate are with
the Institute of Mechanical Engineering, Ecole Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
{muhammad.zakwan, giancarlo.ferraritrecate}@epfl.ch.
Massimiliano d’Angelo is with Sapienza University of Rome, Rome,
00185, Italy, and with the National Research Council of Italy (IASI-
CNR), Rome, 00185, Italy, massimiliano.dangelo@iasi.cnr.it.
Corresponding author: M. d’Angelo.

and Hornik [8]. Exploiting the latter arguments, researchers
have provided several results on UAPs for DNNs. For instance,
in [4] it is proved that a DNN with three hidden layers and
specific types of activation functions has the UAP. The paper
[5] demonstrates that a very deep ResNet, with stacked mod-
ules having one neuron per hidden layer and rectified linear
unit (ReLU) activation functions, can uniformly approximate
any integrable function. However, extending these results to
other classes of activation functions is not straightforward. We
defer the interested readers to [9] for a detailed survey on the
subject.

Recently, an alternate representation of DNNs as dynamical
systems has been proposed [10]. This idea was later popu-
larized as Neural Ordinary Differential Equations (NODEs)
[11]. By viewing DNNs through a dynamical perspective,
researchers have been able to utilize tools from system theory
in order to analyze their properties (e.g., Lyapunov stabil-
ity, contraction theory, and symplectic properties). Similar to
DNNs, there are some contributions on UAPs for NODEs. It
has been shown in [12] that capping a NODE with a single
linear layer is sufficient to guarantee the UAP, but exclusively
for non-invertible continuous functions. Furthermore, in [13],
differential geometric tools for controllability analysis were
used to provide UAPs for a class of NODEs, while in [14],
the compositional properties of the flows of NODEs were
exploited to obtain UAPs. In [13] certain restrictions on the
choice of activation functions are present, whereas [14] impose
constraints on the desired target function. Finally in [15],
some interesting tools, such as composition of contractive,
expansive, and sphere-preserving flow maps, have been used
to prove a universal approximation theorem for the flows of
dynamical systems.

Although DNNs tend to empirically perform well in general,
the increasing depth can also present challenges, such as
the vanishing/exploding gradient problem during the training
via gradient descent algorithms. These phenomenon happen
when the gradients computed during back-propagation either
approach to zero or diverge. In such cases, the learning process
may stop prematurely or become unstable, thereby limiting the
depth of DNNs that can be utilized and consequently prevent-
ing the practical exploitation of UAP in DNNs. Practitioners
have proposed several remedies to address these challenges,
including skip connections in ResNet [3], batch normalization,
subtle weights initialization, regularization techniques such as
dropout or weight decay, and gradient clipping [16]. However,
all of these ad hoc methods do not come with provable formal
guarantees of non-vanishing gradients. Recently, a class of
DNNs called Hamiltonian Deep Neural Networks (HDNNs)
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have been proposed in [17]. These DNNs stem from the dis-
cretization of Hamiltonian NODEs, and enjoy non-vanishing
gradients by design if symplectic discretization methods [18]
are used [17]. Moreover, the expressivity of HDNNs has been
demonstrated empirically on several benchmarks in classifica-
tion tasks. Nevertheless, the theoretical foundation on the UAP
of HDNNs has yet to be explored.

A. Contributions

In this paper, we present a rigorous theoretical framework
to prove a UAP of HDNNs. First, with a slight modification,
we generalize the class of HDNNs considered in [17] without
compromising the provable non-vanishing gradients property1.
Second, we prove that a portion of the flow of HDNNs can
approximate any continuous function with arbitrary accuracy.
To the best of our knowledge, this is the first UAP result for
a class of ResNets enjoying non-vanishing gradients which
are essential for numerically well-posed training. The proof is
based on three essential features i.e. symplectic discretization
through the Semi-Implicit Euler (SIE) method, a careful choice
of initial conditions, and an appropriate selection of the flow.
It is important to note that general DNNs, such as deep Multi-
Layered Perceptrons (MLPs) or recurrent NNs, can suffer from
vanishing gradients and might fail to approximate arbitrary
functions if the training stops early. Third, since DNNs arising
from the discretization of ODEs are automorphic maps – they
do not alter the dimension of the input data – based on
the composition of functions, we extend the main result to
approximate maps, where the dimensions of domain and co-
domain are different. Finally, we provide a characterization of
the approximation error with respect to the depth.

Organization: Section II provides preliminaries on Hamilto-
nian NODEs, the employed discretization scheme, definitions
of UAPs, and the problem formulation. In Section III, we
prove the UAP for HDNNs (Theorem 1), we investigate the
case when the desired function is not an automorphic map
(Corollary 1), and provide some remarks on the approximation
error (Proposition 2). We discuss a numerical example in
Section IV. Finally, conclusions are drawn in Section V.

B. Notation

We denote the set of non-negative reals with R+. For a
vector x ∈ Rn, its 2-norm is represented by ∥x∥ and its 1-
norm ∥x∥1 :=

∑
j |xj |. Given an L2-function f : Rn → Rn

the L2 norm over the compact set Ω ⊂ Rn is denoted by
∥f∥L2(Ω) and the (essential) supremum norm by ∥f∥L∞(Ω) =
supx∈Ω ∥f(x)∥. |A| stands for the determinant of a squared
matrix A. We represent with 0n the zero vector in Rn and
with 0n×n the matrix with all entries equal to zero in Rn×n.
We denote the column vector of ones of dimension n with 1n.
Given Ω ⊂ Rn, C(Ω;Rn) stands for the space of continuous
functions f : Ω → Rn. Given T ∈ R+, we refer to
P([0, T ];Rp) as the space of piecewise constant function
θ : [0, T ] → Rp. Functions that cannot be represented in

1For the sake of simplicity, we retain the same name and also refer to the
proposed modified version as HDNNs.

the form of a polynomial are referred to as non-polynomial
functions.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Hamiltonian Neural Ordinary Differential Equations
A Neural ODE [11] (NODE) is represented by the dynam-

ical system for t ∈ [0, T ] given by

ẋ(t) = F (x(t), θ(t)) with x(0) = x0 ∈ Ω , (1)

where x(t) ∈ Rn is the state at time t of the NODE with
initial condition x0 in some compact set Ω ∈ Rn, and F :
Rn × Rp → Rn is such that F (x, θ) is Lipschitz continuous
with respect to x and measurable with respect to the weights
θ. We further assume that θ(t) ∈ P([0, T ];Rp). When used in
machine learning tasks, the NODE is usually pre- and post-
pended with additional layers, e.g., x0 = Ψα(z), with z ∈
Rnz the input and Ψα a NNs (e.g. a convolutional layer) with
parameters α ∈ Rnα , and the output y is computed as y =
ϕβ(x(T )), where ϕβ is a NNs with parameters β ∈ Rnβ .

In this paper, we consider a class of NODEs inspired by
Hamiltonian systems. In particular, we consider the Hamilto-
nian function H : R2n × R+ → R given by

H(x, t) = σ̃(W (t)x+ b(t))⊤1n + η(t)⊤ x , (2)

where W : R+ → R2n×2n, b : R+ → R2n, η : R+ → R2n

are piece-wise constant, while σ̃ : R → R is a differentiable
map, applied element-wise when the argument is a matrix,
and such that σ(x) := ∂σ̃

∂x (x) is non-polynomial and Lipschitz
continuous. As explained below, σ will play the role of the
so-called activation function. Examples that satisfy the above
assumptions are provided in Table I. Note that if we set η(t) =
0 in (2), we recover DNNs proposed in [10], [17]. We define
the Hamiltonian system

ẋ(t) = J(t)
∂H(x(t), t)

∂x
, (3)

where J(t) is piecewise constant skew-symmetric matrix,
namely J(t) = −J(t)⊤, in R2n × R2n for any t ≥ 0. By
taking into account the expression of the Hamiltonian in (2),
we obtain the following dynamics

ẋ(t) = J(t)
(
W (t)⊤σ

(
W (t)x(t) + b(t)

)
+ η(t)

)
. (4)

Note that the latter equation can be written in the form (1),
when the weights are given by θ(t) = {J(t),W (t), b(t), η(t)}
for t ∈ [0, T ].
For the numerical implementation of NODE (4), we rely on the
SIE discretization [18] because it can preserve the symplectic
flow of time-invariant Hamiltonian systems and is crucial to
prove non-vanishing gradient property of the resulting HDNNs
(further details will be given in the next section). In particular,
splitting the state of the Hamiltonian systems into x = (p, q),
we obtain the HDNN[

pj+1

qj+1

]
=

[
pj
qj

]
+ hJj

[
∂H
∂p (pj+1, qj , tj)
∂H
∂q (pj+1, qj , tj)

]
, (5)

where h = T/N , with N ∈ N, is the integration step-size,
j = 0, . . . , N − 1 and pj and qj are the two state components

5515



Activation Function σ(x)
ReLU max{x, 0}

Sigmoidal (1 + exp(−x))−1

Softplus log(1 + exp(x))
Hyperbolic Tangent tanh(x)

Radial Basis Function 1√
2π

exp(−x2

2
)

TABLE I
EXAMPLES OF ACTIVATION FUNCTIONS.

in Rn. Moreover, by taking into account the expression of the
Hamiltonian in (2), namely the dynamics (4), we obtain the
following difference equation[

pj+1

qj+1

]
=

[
pj
qj

]
+ hJj

(
W⊤

j σ

(
Wj

[
pj+1

qj

]
+ bj

)
+ ηj

)
.

(6)

Clearly, the set of weights is given by θj = {Jj ,Wj , bj , ηj}
with j = 0, . . . , N−1. With a little abuse of notation we write
θj ∈ Rp with j = 0, . . . , N − 1 and appropriate p ∈ N. Al-
though, in general, one has to compute the update (pj+1, qj+1)
of (6) through an implicit expression, it is possible to rewrite
it in an explicit form, when the matrices Jj and Wj satisfy
some assumptions, e.g., by choosing Jj block anti-diagonal
and Wj block diagonal [17].

B. Universal Approximation Property

In this section, we present some essential definitions per-
taining to universal approximation properties.

Definition 1 (UAP of a function): Consider a function gθ :
Rn → Rn with parameters θ ∈ Rp and a compact subset
Ω ⊂ Rn, then gθ has the Universal Approximation Property
(UAP) on Ω ⊂ Rn if for any f ∈ C(Ω;Rn) and ε > 0, there
exists θ ∈ Rp such that

sup
x∈Ω

∥f(x)− gθ(x)∥ ≤ ε . (7)

We provide the following fact which descends from [19].
Proposition 1: Let σ ∈ C(R;R) be non-polynomial, then

for any f ∈ C(Ω;Rn), where Ω ⊂ Rn, and ε > 0, there exist
N ∈ N, Aj ,Wj ∈ Rn×n and bj ∈ Rn such that the function
g : Rn → Rn given by

g(x) :=

N−1∑
j=0

Aj σ(Wjx+ bj) , (8)

satisfies

sup
x∈Ω

∥f(x)− g(x)∥ ≤ ε . (9)

Some examples of activation functions σ, such that g in (8)
satisfies the UAP, are given in Table I.

In the sequel, we refer to the UAP with bound ε > 0 to
quantify the estimation error in equations (7), and (9). This
value is typically a function of N , n, and the desired f , and
it is characterized in Proposition 2.

C. Problem formulation
The goal of our paper can be formulated as follows. Problem

1: Let f : Rn → Rn be a continuous function, Ω ⊂ Rn

be a compact set, and ε > 0 be the desired approximation
accuracy. Find N ∈ N and weights θj = {Jj ,Wj , bj , ηj} with
j = 0, . . . , N − 1 of (6), such that a portion φ : Rn → Rn of
the flow ΦN : R2n → R2n at time N ∈ N of (6) has the UAP
on Ω.
We recall that the flow at time N ∈ N of (6) is the
corresponding unique solution at time N ∈ N. In particular,
ΦN : R2n → R2n is the flow at time N as function of
the initial condition. The flow φ will be precisely defined in
Theorem 1.

Moreover, motivated by real-world applications, we are also
interested in approximating arbitrary continuous functions f :
Rn → Rr where r is not necessarily equal to n. For instance,
in classification tasks, typically r < n, as r corresponds to the
number of classes to be classified and n represents the number
of features. We address this problem in Corollary 1.

III. MAIN RESULTS

In this section, we present our main results whose proofs
are given the Appendix. We address the Problem 1 in Theorem
1, which is a universal approximation theorem for the HDNN
(5).

Theorem 1: Consider the discrete-time system (6) with ini-
tial condition (p0, q0) = (ξ, 0n), for some ξ ∈ Ω with Ω ⊂ Rn

compact. Then, the restricted flow φ : ξ 7→ qN has the UAP
on Ω.

In other words, Theorem (1) states that given the system
(6) with initial condition (p0, q0) = (ξ, 0n), for any f ∈
C(Ω;Rn) and ε > 0, there exist N ∈ N and weights
θj = {Jj ,Wj , bj , ηj} with j = 0, . . . , N − 1 such that the
function φ : ξ 7→ qN satisfies

sup
ξ∈Ω

∥f(ξ)− φ(ξ)∥ ≤ ε . (10)

Remark 1 (Key ingredients for UAP): The proof of Theo-
rem 1, besides exploiting arguments from [7], [8] for showing
UAPs, it is based on three critical key steps: i) the SIE dis-
cretization scheme, ii) the initial condition (p0, q0) = (ξ, 0n),
and iii) the focus on the restricted flow ξ 7→ qN , which refers
to map the initial condition of the p state to the flow of the q
state.

In particular, the choice of the SIE discretization scheme
together with the initial condition (p0, q0) = (ξ, 0n) allows
one to exploit the framework of Cybenko [7] to express the
function φ : ξ 7→ qN as (8) (see equation (21) in the Proof of
Theorem 1 in Appendix B).

Remark 2 (Feature augmentation): By defining the flow
ΦN of the discrete-time system (6) (evolving in R2n), we note
that (10) can be written as

sup
x∈Ω

∥f(x)− π ◦ ΦN ◦ ι(x)∥ ≤ ε , (11)

where ι : Rn → R2n is the injection given by ι(z1, . . . , zn) =
(z1, . . . , zn, 0, . . . , 0) and π : R2n → Rn is the projec-
tion π(x1, . . . , xn, xn+1, . . . , x2n) = (xn+1, . . . , x2n). This
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is equivalent to the common practice in machine learning
of augmenting the size of the feature space [20]. It has
been demonstrated that this technique can improve DNN
performance in several learning tasks. Moreover, it is also
closely related to the idea of extended space [16], which
suggests that by increasing the dimensionality of the feature
space, one can capture more complex relationships.

We note that the UAP results in [13] do not apply in our
framework because of the skew-symmetric matrix J multiply-
ing the partial derivative of the Hamiltonian in (3). Moreover,
we provide UAPs directly for implementable discrete-time
layer equations (6) instead of the continuous-time NODEs.
Indeed, an arbitrary discretization method may not conserve
the desired properties, making it challenging to prove the UAP
of discretized NODEs in general.

Untill this point, we focused on automorphisms on Rn. The
next result presents the UAP of a general map from Ω ⊂ Rn

to Rr.
Corollary 1: Consider the discrete-time system (6) with

initial condition (p0, q0) = (ξ, 0n), for some ξ ∈ Ω with
Ω ⊂ Rn compact, and the restricted flow φ : ξ 7→ qN .
Let h : Rn → Rr be a Lipschitz continuous function such
that f (Ω) ⊆ h (Rn). Then, for any ε > 0, the function
h ◦ φ : Ω → Rr, satisfies

sup
ξ∈Ω

∥f(ξ)− h ◦ φ(ξ)∥ ≤ ε. (12)

A typical example that satisfies the necessity condition
f (Ω) ⊆ h (Rn) is h(φ) = W⊤

o φ + bo, Wo ∈ Rn×r, and
bo ∈ Rr, which is common in classification problems. It
is straightforward to see that h(·) is Lipschitz continuous,
surjective, and satisfies the condition f (Ω) ⊆ h (Rn).

It is worth mentioning that unlike other papers [4], [5], [13],
our results do not impose restrictive conditions on activation
functions, which expands their potential applicability.

A. Auxiliary properties of HDNNs
In the following, we highlight a few associated properties of

HDNNs. First, we provide a bound on the desired accuracy of
the approximation error with respect to the depth of HDNNs.
Second, we state a remark on their non-vanishing gradients
property.

Let us define the first absolute moment Cf of the Fourier
magnitude distribution of a desired function f . Thus, given
f : Rn → Rn, with a Fourier representation of the form
f(x) =

∫
Rn eiω

⊤xf̃(ω)dx, we define

Cf :=

∫
Rn

∥ω∥1∥f̃(ω)∥dω . (13)

The condition (13) is usually interpreted as the integrability of
the Fourier transform of the gradient of the function f , and a
vast list of examples for which bounds on Cf can be obtained
are given in Section IX of [21].

Proposition 2: Consider the discrete-time system (6) with
sigmoidal2 σ and initial condition (p0, q0) = (ξ, 0n), for some

2The function σ(x) is assumed to be a sigmoidal function, if it is a bounded
function on the real line satisfying σ(x) → 1 as x → ∞ and σ(x) → −1
as x → −∞ [22].

ξ ∈ Ω = [−1, 1]n. Then, the restricted flow φ : ξ 7→ qN has
the UAP on Ω with bound 2

n
2

Cf√
N

.
Proposition 2 states that for any f ∈ C(Ω;Rn) with finite

Cf and N ∈ N, there exist parameters θj = {Jj ,Wj , bj , ηj}
with j = 0, . . . , N − 1, such that the function φ : ξ 7→ qN
satisfies

sup
x∈Ω

∥f(x)− φ(x)∥ ≤ 2
n
2
Cf√
N

. (14)

Further remarks on the evaluation/approximation of this bound
can be found in [21] and [22].

As mentioned earlier, it has been shown that HDNNs
considered in [17] are endowed with non-vanishing gradients
or in a special case, non-exploding gradients [23], i.e., they
ensure numerically well-posed training. We defer the reader
to those papers for a formal discussion of the non-vanishing
gradients property.

Remark 3 (Non-vanishing gradients): The HDNN given by
the discrete-time system (6) enjoys the non-vanishing gradients
property when optimizing a generic loss function. In particular,
this property is related to the Backward Sensitivity Matrix
∂xN

∂xN−j
=
∏N−1

ℓ=N−j
∂xℓ+1

∂xℓ
, where x = (p, q), at layer N−j for

j = 1, . . . , N −1. Although the considered Hamiltonian (2) is
different from the one of [17] (because of the linear term),
one is able to prove the non-vanishing gradients property
(by establishing a lower bound for the Backward Sensitivity
Matrix) by following the same arguments of [17, Theorem 2]
which relies specifically on the symplectic property of the flow
and not on the Hamiltonian structure.

IV. NUMERICAL EXAMPLE

In this example, our goal is to approximate the function
y(x) = 2(2 cos(x)2− 1)2− 1 considered in [24]. The training
set comprises 5000 datapoints generated by sampling y(t)
randomly for x ∈ [−2π, 2π]. We choose the mean square
error as the loss function and compare the following NN
architectures:

i) The SNN ŷ = Woσ(Wx + b), with Wo ∈ R1×Nh ,
W ∈ RNh×1 and b ∈ RNh , where Nh is the number
of hidden neurons. We use the values of Nh in the set
{400, 800, 1200, 1800, 2400}.

ii) an HDNN, called HDNN-1, with forward equation (6)
and weight matrices (19) for j = 0, 1, · · · , 6.

iii) an HDNN, called HDNN-2, with forward equation (6),
where Wj is block-diagonal for j = 0, 1, · · · , 3 to match the
number of parameters in HDNN-1.

For HDNNs, we choose a sufficiently small step-size
h = 0.001, and the initial conditions as p0, q0 =
([x, 0M/2−1], 0M/2), where M is always an even integer.
Moreover, the output equation is given by ỹ = WoqN + bo,
where Wo ∈ R1×M/2 and bo ∈ RM/2. To have almost
the same number of parameters in the chosen HDNNs, we
choose M from the set {24, 36, 44, 54, 62} for HDNN-1 and
{26, 36, 44, 54, 64} for HDNN-2, respectively.

Fig. 1 shows that the training loss decreases when more
parameters are used for all three architectures. Moreover, we
can see that for the same number of parameters, the block
diagonal Wj matrices of HDNN-2 with half the number of
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Fig. 1. Averaged training loss and standard deviations over multiple
experiments for three architectures.

layers can be leveraged to further improve the performance
over HDNN-1.

V. CONCLUSION AND FUTURE WORK

We demonstrated the universal approximation property of
Hamiltonian Deep Neural Networks (HDNNs) that also enjoy
non-vanishing gradients during training. This result affirms
both the practicality and theoretical foundation of HDNNs.
In particular, we have demonstrated that a portion of the
flow of HDNNs can approximate any continuous function
in a compact domain. Also, we provide some insights on
the approximation error with respect to the depth of neural
network.

Our work opens doors to quantifying the expressivity of
other physics-inspired neural networks with special properties,
such as [25]. Future research will focus on leveraging differen-
tial geometric tools [13] to establish universal approximation
properties for HDNNs, where the Hamiltonian function is
parameterized by an arbitrary neural network.

APPENDIX

A. A preliminary lemma

In order to prove Theorem 1, we introduce a key auxiliary
result which relaxes the necessity of full-rank weight matrices
Wj in (8) assumed in [26, Theorem 2.6]. During the training
of NN (8), some entries of Wj in (8) might vanish and this
assumption cannot be satisfied. Therefore, the result in [26]
might not be of practical use. However, the following Lemma
shows that even if Wj in (8) are not full-rank, we can still
construct an approximation with full-rank matrices and apply
the results of [7], [19].

Lemma 1: Let g be the function in (8) with the UAP on
Ω. For any ε̃ > 0 we can find Ãj , W̃j ∈ Rn×n, with W̃j full
rank, and b̃j ∈ Rn for j = 0, . . . , N − 1, such that g̃(x) :=∑N

j=0 Ãj σ(W̃jx+ b̃j) satisfies ∥g̃ − g∥L∞(Ω) ≤ ε̃.

In other words, Lemma 1 allows us to assume, without loss
of generality, that the function g in (8) can be arbitrarily well-
approximated by using full-rank matrices Wj for any j =
0, . . . , N − 1.

Proof: Given the function g in (8) with the UAP on
Ω, we consider the case in which there exists the set K =
{κ ∈ {0, . . . , N − 1} : |Wκ| = 0} non-empty with cardinality
ñ. For κ ∈ K, let rank(Wκ) = n − rκ, with rκ > 0 the
number of dependent column vectors of Wκ so that, up to a
row permutation, assume Wκ is partitioned as

Wκ =
(
w(1)

κ , . . . , w(rκ)
κ , w(rκ+1)

κ , . . . , w(n)
κ

)⊤
, (15)

with the last n − rκ vectors linearly independent. Then, the
parameters Ãj , W̃j ∈ Rn×n and b̃j ∈ Rn of the function
g̃(x) =

∑N
j=0 Ãj σ(W̃jx+ b̃j) can be selected as follows. We

set Ãj = Aj , b̃j = bj for all j = 0, . . . , N − 1. Moreover,
W̃j = Wj for all j /∈ K and, for κ ∈ K, W̃κ = Wκ + Λκ,

where Λκ =
(
w̃

(1)
κ , . . . , w̃

(rκ)
κ , 0n, . . . , 0n

)⊤
, and the vectors

w̃
(ℓ)
κ , ℓ = 1, . . . , rκ, are selected such that |W̃κ| ≠ 0 and

∥w̃(ℓ)
κ ∥ ≤ ε̃

rκ ñ
√
nLσ ∥x∥L∞(Ω) max1≤p≤n ∥a(p)κ ∥

, (16)

where Lσ is the Lipschitz constant of function σ and a
(p)⊤

κ ,
p = 1, . . . , n, are the rows of the matrix Aκ

3. By noticing that
for x ∈ Ω we have∥∥∥(W̃κ −Wκ)x

∥∥∥ ≤ ∥x∥L∞(Ω)

rκ∑
ℓ=1

∥w̃(ℓ)
κ ∥, (17)

and by looking at the p-th component of the difference g̃− g,
by inequality (16), for x ∈ Ω, we have

∣∣∣g̃(p)(x)− g(p)(x)
∣∣∣ ≤ Lσ ∥x∥L∞(Ω)

∑
κ∈K

(
∥a(p)κ ∥

rκ∑
ℓ=1

∥w(ℓ)
κ ∥

)

≤
∑
κ∈K

ε̃

ñ
√
n
≤ ε̃√

n
, (18)

from which we obtain ∥g̃ − g∥L∞(Ω) ≤ ε̃.

B. Proof of Theorem 1

We prove the result by showing that the function φ :
ξ 7→ qN can be written in the form (8), and thus, satisfying
Proposition 1, it has the UAP on Ω. In fact, by restricting the
parameter space as follows

Jj =

[
0n×n −X
X 0n×n

]
Wj =

[
W̃j 0n×n

0n×n 0n×n

]
,

bj =

[
b̃j
0n

]
ηj =

[
0n
−η̃j

]
,

(19)

3The case Aκ = 0n×n is trivial since one can select any w̃
(ℓ)
κ such that

|W̃κ| ̸= 0 and ∥g̃ − g∥L∞(Ω) = 0.
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where X ∈ Rn×n, W̃j : R+ → Rn×n, b̃j : R+ → Rn,
η̃j : R+ → Rn, one can write (6) as[

pj+1

qj+1

]
=

[
pj
qj

]
+ h

[
X⊤η̃j

XW̃⊤
j σ(W̃jpj+1 + b̃j)

]
=

[
pj
qj

]
+

[
γ̃j

Ãjσ(W̃jpj+1 + b̃j)

] (20)

for j = 0, 1, · · · , N − 1, where γ̃j = hX⊤η̃j , and Ãj =
hXW̃⊤

j , respectively. From the initial condition (p0, q0) =
(ξ, 0n), ξ ∈ Ω, and by substituting the expression of pj+1

into the second equation of (20) we have that

qN =

N−1∑
j=0

Ãjσ(W̃j(pj + γ̃j) + b̃j)

=

N−1∑
j=0

Ãjσ(W̃jξ + d̃j) =: φ(ξ) , (21)

where d̃j = W̃j r̃j + b̃j with r̃j = r̃j−1 + γ̃j and r̃0 = γ̃0.
Notice that, because of Lemma 1, we can assume, without
loss of generality, that W̃j in (21) are full-rank. Consequently,
one can freely choose Ãj by setting X = 1

h ÃjW̃
−⊤
j for

all j = 0, . . . , N − 1, while d̃j is free by construction due
to the parameter b̃j . Thus, the map (21) has the UAP on Ω
(Proposition 1), i.e. ∥φ(ξ)− g∥L∞(Ω) ≤ ε̃, with g in (8).

Note that the zero patterns of matrices, i.e. W, η, b in (19)
is only assumed for proving Theorem 1. However, since
using more parameters4 in (19) cannot compromise UAPs,
the structure of the weight matrices in (19) is never used in
practice.

C. Proof of Corollary 1
In [14, Proposition 3.8] it is shown that there exists a

continuous function ψ(ξ) =
∑N

i=1 ziψi(ξ) for ξ ∈ Ω,
where zi ∈ h−1 (Fi), with {Fi}Ni=1 a partition of f(Ω), and
continuous functions ψi : Ω → [0, 1] such that ψi = 1 on Ai

and ψi = 0 on ∪j ̸=iAj . The sets Ai ⊂ Ωi, with {Ωi}Ni=1 a
partition of Ω, such that h ◦ ψ has the UAP on Ω (provided
that the desired function f is such that f (Ω) ⊆ h (Rn)). Now,
take ψ such that ∥f − h ◦ ψ∥L∞(Ω) ≤ ε/2 and, by Theorem 1,
take φ : ξ 7→ qN such that ∥ψ − φ∥L∞(Ω) ≤ ε/(2Lh). Then,
for any ξ ∈ Ω we have

∥f − h ◦ φ(ξ)∥ ≤ ∥f(ξ)− h ◦ ψ(ξ)∥
+ ∥h(ξ) ◦ ψ(ξ)− h ◦ φ(ξ)∥

≤ ε

2
+ Lh ∥ψ(ξ)− φ(ξ)∥ ≤ ε ,

and the proof is completed.

D. Proof of Proposition 2
The proof follows from [22, Theorem 1] by noting that

the function φ in (21) is the NN considered in [22], by
selecting the probability measure λ̃(·) := 1

2nλ(·) where λ
is the Lebesgue measure on Ω, and by recalling the norm
inequality ∥ · ∥∞ ≤ ∥ · ∥2.

4We recall that Jj should keep the sparsity structure (19) to maintain the
non-vanishing gradients property (see [17, Theorem 2]).
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