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Abstract—The emergent behavior of a distributed
system is conditioned by the information available to the
local decision-makers. Therefore, one may expect that pro-
viding decision-makers with more information will improve
system performance; in this letter, we find that this is not
necessarily the case. In multi-agent maximum coverage
problems, we find that even when agents’ objectives are
aligned with the global welfare, informing agents about
the realization of the resource’s random values can reduce
equilibrium performance by a factor of 1/2. This affirms
an important aspect of designing distributed systems:
information need be shared carefully. We further this under-
standing by providing lower and upper bounds on the ratio
of system welfare when information is (fully or partially)
revealed and when it is not, termed the value-of-informing.
We then identify a trade-off that emerges when optimizing
the performance of the best-case and worst-case equilib-
rium.

Index Terms—Game theory, agent-based systems, uncer-
tain systems, distributed algorithms.

I. INTRODUCTION

IN LARGE-SCALE systems, the prospect of distributing
decision-making to local entities is becoming increasingly

enticing as a method to reduce complexity while maintaining
some level of performance. This can take the form of swarm
control for robotic fleets [1], autonomous driving decisions in
mobility services [2], local task assignment decisions [3], and
many more. Taking a distributed approach entails assigning
each agent a decision-making algorithm, such as maximizing
an assigned local objective function [4], then analyzing the
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system’s equilibria [5]. As agents need not possess full knowl-
edge of the overall system; the local decisions (and, ultimately,
global behavior) are dependent on the information communi-
cated with and between the agents [6], [7]. In this letter, we
address how available information affects system performance.

We focus on maximum coverage problems: a class of
models in which each agent selects a set of resources from
a ground set, with the objective of maximizing the value
of covered resources. To solve this in a distributed fash-
ion, each agent is given a utility function to evaluate what
set of resources to cover; this forms a game played by the
agents with their resource selection as their action and the
evaluation of their assigned utility function as their payoff.
Existing work has focused on how to design these utility
rules and how well the resulting equilibria of the emergent
game approximate the optimal welfare [8], [9], [10]. In this
letter, we generalize this model to consider the case where
agents have uncertainty about the resources’ values. In this
setting, we ask how revealing information to local decision-
makers affects equilibrium performance. Interestingly, we find
that revealing truthful information about the system state can
worsen system performance. While this phenomenon has been
observed before in social systems [11], here we find that sim-
ilar conclusions hold even when the local decision-makers’
objectives are aligned with the global welfare.

To study this, we consider a Bayesian persuasion frame-
work, in which a well-informed system operator can strategi-
cally reveal information to agents using messages (or signals)
which contain partial information [12]. In this letter, we study
how this information revealing affects equilibrium welfare.
To this end, we introduce a new performance metric termed
the value-of-informing, which measures the ratio between the
equilibrium welfare under an information-revealing policy and
when no information is revealed. This measures the gain or
loss in welfare from revealing information.

The framework of Bayesian persuasion has gained traction
in the areas of economics, operations research, and engineer-
ing, but typically for settings concerned with the behavior
and beliefs of human users (e.g., traffic routing apps [13],
[14], [15], pricing/investing decisions [16], hybrid work poli-
cies [17], etc.). Results are typically restricted to a binary
classification on whether revealing full information helps or
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not [12], [18], or methods to compute optimal information
revealing policies in limited settings [15], [19], [20], often
with no guarantee on the magnitude of improvement. Here,
we adapt the ideas of information provisioning to the set-
ting of engineered systems, where designed decision-making
components can improve their estimate of the system state by
receiving relevant messages (e.g., a fleet of surveillance drones
receiving live map updates).

Revealing information to local decision-makers can obvi-
ously improve the welfare of emergent system equilibria;
however, in this letter, we find that this is not always the case.
In fact, system performance may degrade by a factor of 1/2
when revealing truthful information to local decision-makers.
The possible loss in system welfare from informing decision-
makers comes from two sources (1) the multiplicity of
equilibria and (2) the local objective assigned to each decision-
maker. We study the aforementioned value-of-informing when
considering the best-case and worst-case equilibria for dif-
ferent local objectives. Ultimately, we highlight a trade-off
between the possible loss from revealing information to best-
case and worst-case equilibrium guarantees when agents’ local
objectives are designed.

II. PROBLEM FORMULATION

A. Maximum Coverage Problem

Maximum coverage problems have been used to model
resource allocation, sensor coverage, job scheduling, and
more [21]. Consider the multi-agent maximum coverage
problem, in which R = {1, . . . , R} is a finite set of resources.
For each resource r ∈ R, let vr ≥ 0 be the value of that
resource; further, let v ∈ R

|R|
≥0 be the vector containing each

resource value. Let N = {1, . . . , n} be a set of agents, where
each agent i ∈ N can be assigned to cover a subset of resources
ai ⊆ R. The set of allowable assignments for each agent
is defined by Ai ⊆ 2R. When each agent is assigned, an
allocation of agents is denoted a = (a1, . . . , an) ∈ A =
A1×. . .×An. Let (G, v) define a maximum coverage problem
where G = (N,R,A).

In an allocation a, the system welfare is equal to the
total value of resources covered by at least one agent, i.e.,
W(a; v) = ∑

r∈∪i∈N ai
vr. However, finding an optimal allo-

cation aopt ∈ arg maxa∈A W(a; v) is NP-hard [9]. It is for
this reason, we consider a distributed solution technique to
approximate this optimal solution.

B. Distributed Decision Making

Let each agent i ∈ N possess a local objective function

Ui(a; v) =
∑

r∈ai

vrf (|a|r),

which depends on their own action and the actions of every
other agent. This local objective, or utility function, is parame-
terized by a local utility rule f :N → R that takes as argument
|a|r, the number of agents covering resource r in allocation a.
The system operator can adopt a utility rule f without exact
knowledge of the problem instance if needed.

When agents sequentially and repeatedly update their
assignment to one that currently maximizes their utility

Fig. 1. Depiction of information signaling in maximum coverage prob-
lems. On the left is the support of a random state variable v. At right
is a maximum coverage problem, to which we have assigned each
agent a local objective. The agents in the coverage problem possess the
prior distribution of the unknown state variable and receive some partial
information πk about the realization. The manner in which information is
revealed will alter how agents evaluate their objectives and change the
emergent behavior.

function, these best-response dynamics have fixed points that
are the Nash equilibria of the underlying game. The conver-
gence of best response dynamics in potential games to pure
Nash equilibria are addressed in [5], [9]. Nash equilibrium
allocations can be defined by

Ui(a
NE; v) ≥ Ui(a

′
i, aNE−i ; v) ∀a′

i ∈ Ai, i ∈ N, (1)

where a−i denotes the allocation of all agents but player i. Let
NE(G, v, f ) denote the set of states satisfying (1). These states
represent the possible solutions of the distributed dynamics,
and we will consider their welfare as an approximation of the
maximum coverage problem.

C. Uncertainty and Information Signaling

In this letter, we consider how uncertainty and information
can affect the efficacy of distributed decision-making. We
consider this uncertainty in the form of randomness for the
resources values. Let v ∈ R

|R|
≥0 (the vector containing the

value of each resource r ∈ R) be a discrete random variable
with prior distribution μ0. A realization of v determines each
resource’s value [v1, . . . , v|R|] = v, i.e., the resource values
may be correlated. Let the support of v be V := supp(v).

First, we consider the case where agents are uninformed
about the system state, i.e., they know the prior distribu-
tion μ0 but not the exact realization of v. In this setting, the
agents optimize their expected utility, which we will denote
Ui(a;μ0) = Ev∼μ0 [

∑
r∈ai

vrf (|a|r)]. Let NE(G, μ0, f ) =
NE(G,Ev∼μ0 [v], f ). Additionally, the objective of the maxi-
mum coverage problem is to maximize the expected welfare,
i.e., W(a;μ0) = Eμ0 [

∑
r∈∪i∈N ai

vr].
As a means to try and improve the performance of the

distributed decision-making agents, we may consider reveal-
ing information about the realization of the system state.
One option is to reveal full information (or let agents know
the realization exactly); however, either due to communi-
cation constraints or by design choice, it is often mean-
ingful to reveal only partial information as well. In line
with the broader Bayesian Persuasion framework, consider
revealing information with an information signaling policy
� = {π1, . . . , πm}, where πk ⊆ V , πj ∩ πk = ∅, and⋃m

k=1 πk = V . This signaling policy � forms a partition
over the support of our random state variable v. The signal
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π ∈ � is revealed to the agents when v ∈ π .1 The new
system operates as follows: A system operator adopts a sig-
naling policy � and utility rule f . A state v is drawn from
μ0, and all agents are informed of which element of � the
realization belongs to. The corresponding signal π is sent, and
each player i ∈ N computes the posterior belief on the real-
ization μπ(x) = P[v = x|v ∈ π ] = μ0(x)/(

∑
v′∈π μ0(v′)) if

v ∈ π and zero otherwise. The agents then seek to maximize
their expected utility with the posterior belief.

Agents may now condition their action on the received sig-
nal. Let α ∈ A� denote a joint strategy, where an element
αi(π) ∈ A captures the action agent i takes when they receive
signal π . In a strategy profile α, agent i has an expected pay-
off of Ui(α;μ0,�) = Ev∼μ0 [

∑
r∈αi

vrf (|α|r)]. Note that αi
is implicitly a function of the received signal π , which itself
is determined by the state variable v; as such, each of αi, π ,
and v are random variables. The expected welfare becomes
W(α;μ0,�) = Ev∼μ0 [

∑
r∈∪i∈Nαi

vr].
When agents follow best-response dynamics, the set of

fixed points becomes the set of Bayes-Nash equilibria,
BNE(G, μ0,�, f ). A strategy αBNE in this set satisfies

Ui(α
BNE;μ0,�) ≥ Ui(α

′
i, α

BNE−i ;μ0,�) ∀α′
i ∈ A�

i . (2)

The signaling policy � will alter this equilibria set and thus
the guarantees of our distributed solution to the maximum
coverage problem.

Our motivation for this letter is understanding how giv-
ing agents information can affect system welfare. Due to
the multiplicity of equilibria, we consider two perspectives:
the optimistic perspective in which the system designer cares
about the best attainable system performance, and the pes-
simistic perspective in which the system designer cares about
the worst possible performance. For the optimistic perspec-
tive, the system designer evaluates a signaling policy � by
its effect on the system welfare in the best-case equilibrium;
as such, let the optimistic value-of-informing with signaling
policy � be

VoI+(G, μ0,�, f ) = maxα∈BNE(G,μ0,�,f ) W(α;μ0,�)

maxa∈NE(G,μ0,f ) W(a;μ0)
,

which measures the gain in optimistic welfare by using policy
�. Similarly, for the pessimistic perspective, the system oper-
ator evaluates a signaling policy � by its effect on the system
welfare in the worst-case equilibrium; let the pessimistic
value-of-informing be

VoI−(G, μ0,�, f ) = minα∈BNE(G,μ0,�,f ) W(α;μ0,�)

mina∈NE(G,μ0,f ) W(a;μ0)
,

which is the same ratio but now with the worst-case
equilibrium strategy and allocation. These values inform a
system operator of how revealing information will affect
their equilibrium guarantees. They differ from the well-known
price-of-anarchy/stability measures in that they relate two
equilibrium performances rather than equilibrium to optimal.

1In this letter, we consider signaling policies that are deterministic mappings
from state to signal. In general, signal π could be drawn randomly based on
state v. Many of the results easily generalize to this setting, but for ease
of exposition and relevance to our problem setting of informing designed
decision-makers, we present the results for deterministic signaling by treating
� as a partition of V .

III. MAIN RESULTS

The main contribution of this letter is in lower and upper
bounding the value-of-informing for best- and worst-case
equilibria. These bounds depend on agents’ local decision-
making process. In Section III-A, we focus on the case where
agents’ payoffs are aligned with the system objective and
find that revealing information improves the best-case equilib-
rium (VoI+ ≥ 1) but can worsen the worst-case equilibrium
(VoI− ≤ 1). In Section III-B, we generalize these bounds
to any local utility rule f . In Section III-C, we observe a
trade-off in the lower bounds on VoI+ and VoI−; Fig. 2 char-
acterizes this trade-off and highlights the fact that altering
the local objectives of agents affects the efficacy of revealing
information.

A. Marginal Contribution

The first utility design we will consider is the marginal con-
tribution, where each agent makes decisions that maximize
their contribution to the system welfare, i.e., Ui(a) = W(a) −
W(a−i). This can be expressed by the local utility rule
f mc(x) := 1[x = 1]. When agents follow this utility rule, their
preferences are aligned with global welfare. This utility rule
has the property that it maximizes the best-case equilibrium
guarantee, known as the price-of-stability ratio [10]. However,
as of yet, the effect of revealing information to decision-
makers using this utility function has not been addressed.
In Theorem 1, we address this question by providing lower
and upper bounds on the value-of-informing for the best- and
worst-case equilibria.

Theorem 1: In a Bayesian Maximum Coverage problem
(G, μ0,�), with utility rule f mc, the value-of-informing for
the best-case equilibrium satisfies

1 ≤ VoI+(G, μ0,�, f mc) ≤ |�|, (3a)

and for the worst-case equilibrium satisfies

1/2 ≤ VoI−(G, μ0,�, f mc) ≤ 2|�|. (3b)

All of these bounds are tight, but the upper bounds on VoI−.
Before proving the statement, we discuss the consequences

of these results. We first see that revealing more information
(increasing the cardinality of �) provides significant oppor-
tunities for improvement in either perspective.2 However,
revealing information need not always have such a positive
effect. In the optimistic perspective, revealing information can
only improve performance (VoI+ ≥ 1); however, doing so
does not come without consequence, as revealing information
can reduce the quality of the worst-case equilibrium by a factor
of 1/2 (VoI− = 1/2). This fact affirms an important property
of information in a multi-agent system: revealing information
must be done carefully. The proof relies on the following
lemma characterizing Bayes-Nash equilibria and the expected
welfare.

Lemma 1: A joint strategy α is a Bayes-Nash equilibrium
if and only if (α1(π), . . . , αn(π)) ∈ NE(G,E[v | πk], f ) for
each π ∈ �. Additionally, the expected welfare of a joint

2A more refined understanding of this improvement can be attained by
considering the difference between the realizations and the prior mean.
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strategy α is a weighted average of the welfare of the joint
actions α(π) in the respective deterministic games, i.e.,

W(α;μ0,�) =
m∑

k=1

pkW(α(πk);E[v|πk]),

where pk = ∑
v∈πk

μ0(v).
Proof: Let α ∈ A� denote a joint strategy. We show the first

claim by observing the following transformation for any α,

Ui(α;μ0,�) = E

[
∑

r∈R
E[vr|π ]f (|α(π)|r)

]

(4a)

=
m∑

k=1

pkUi(α(πk);E[v|πk]), (4b)

where (4a) holds from the law of total expectation. Because α

can be any m-tuple of joint actions, (2) is satisfied if and only
if Ui(α(π);E[v|π ]) ≥ Ui(a′

i, α−i(π);E[v|π ]), for all a′
i ∈ Ai,

π ∈ �; or, that α(π) is a Nash equilibrium for the determin-
istic game G with values E[v|π ] for each π ∈ �. The second
claim follows (4) with welfare in place of utility.

Proof of Theorem 1: Best-case equilibrium - We will
make use of the function W�(v), which denotes the wel-
fare of an optimal allocation in G when the values are v.
We note that with the marginal contribution utility rule, each
optimal allocation aopt is an equilibrium; thus, the welfare
of the best Nash equilibrium is the optimal welfare [10], or
W�(v) = maxa∈A W(a; v) = maxaNE∈NE(G,v,f mc) W(aNE). We
first make several observations about the function W�. Observe
that W�(v) = maxa∈A

∑
r∈R vr1[|a|r > 0], is the point-wise

maximum of a set of affine (and thus convex) functions of v,
which is itself convex. Further, W� is positively homogeneous,
i.e., W�(λv) = λW�(v) for all λ ≥ 0 and v ≥ 0, and W� is
monotone in v, i.e., v � v′ ⇒ W�(v) ≥ W�(v′) where “�"
denotes the element-wise inequality.

Using the properties of W�, we will prove the bounds on
VoI+. First, the lower bound. Consider the Bayesian covering
game (G, μ0,�). Observe that

max
a∈NE(G,μ0,f mc)

W(a;μ0) = W�

(
m∑

k=1

pkE[v|πk]

)

(5a)

≤
m∑

k=1

pkW�(E[v|πk]) (5b)

= max
α∈BNE(G,μ0,�,f mc)

W(α;μ0,�),(5c)

where (5a) holds from the fact the maximum-welfare Nash
equilibrium is a system optimum with values Eμ0 [v] and
the law of total probability, (5b) holds from W� convex and
Jensen’s inequality, and (5c) holds from the second claim of
Lemma 1 and the first claim of Lemma 1 with the fact the
maximum-Nash is a system optimum. Rearranging terms gives
the first inequality in (3a). It is tight when |V| = 1. Now, we
consider the upper bound on VoI+.

max
α∈BNE(G,μ0,�,f mc)

W(α;μ0,�) =
m∑

k=1

pkW�(E[v|πk]) (6a)

=
m∑

k=1

W�(pkE[v|πk]) ≤
m∑

k=1

W�(Eμ0 [v]) (6b)

= |�|
(

max
a∈NE(G,μ0,f mc)

W(a;μ0)

)

, (6c)

where (6a) holds from the fact a Bayes-Nash joint strategy α

is an m-tuple of Nash equilibria, the maximum-welfare Nash
equilibrium is optimal in W(·; v) and the second claim in
Lemma 1. Eq. (6b) holds from W� positive homogeneous and
the monotonicity of W�; more specifically,

Eμ0 [vr] =
∑

k∈[m]

pkE[vr|πk]

= pkE[vr|πk] +
∑

k′∈[m]\k

pk′E[vr|πk′ ] ≥ pkE[vr|πk],

holds ∀ r ∈ R, πk ∈ �. Eq. (6c) holds from the definition W�.
To see this is tight, consider a problem with R resources

and one agent who can select a single one of them, i.e., A1 =
{1, . . . , R}. Each resource can take on one of two values: 0 or
1. The prior μ0 is that exactly one resource is ever of value 1
with equal probability; so the support of v has R elements, each
of which occurs with probability 1/R. When uninformed, the
single agent is indifferent over their actions and cannot attain
a payoff greater than 1/R. When informed, the single agent
can always select the resource of value 1. Thus VoI+ = R =
|V| = |�|.

Worst-case equilibrium - To focus on equilibrium strategies,
let aNE(v) denote a Nash equilibrium joint action in the game
G when the values are v. The following steps will hold for any
Nash equilibrium, and the proof will be completed by con-
sidering aNE(v) as the welfare minimizing Nash equilibrium.
Observe that the uninformed Nash welfare satisfies

W(aNE(Eμ0 [v]);Eμ0 [v]) ≤ W�(Eμ0 [v])

≤
m∑

k=1

pkW�(E[v|πk]) ≤
m∑

k=1

pk2W(aNE(E[v|πk]);E[v|πk]),

where the first inequality holds from the definition of W�, the
second holds from properties of W� shown in the first part of
the proof, and the third holds from the price-of-anarchy bound
of 1/2 [22]. Letting aNE(v) be the worst-case Nash equilibrium
when the values are v in each occurrence, the rightmost expres-
sion is the worst-case welfare in a Bayes-Nash joint strategy
via Lemma 1. This gives the first inequality in (3a).

To see that this bound is tight, consider a resource allocation
game with three resources, R = {1, 2, 3}, and two players,
N = {1, 2} with two actions each: A1 = {r1, r2} and A2 =
{r2, r3}. Let resource r1 have value v1 = 1 and r3 have value
v3 = 0. Let the value of resource r2 be a random variable,
where v2 = 1−ε with probability 1−p and v2 = 1+ε(1−p)

with probability p. When the agents are not informed of the
realization of v2, its expected value is E[v2] = 1−ε(1−p)2 <

1 and there is a unique Nash equilibrium of a = (r1, r2),
providing a welfare of W(a;μ0) = 2 − ε(1 − p)2. When the
full revelation signaling policy � = {{r1}, {r2}} is used, then
when v2 = 1−ε, there is a unique equilibrium of α1 = (r1, r2),
and when v2 = 1+ε(1−p) there are two equilibria, the worse
of which is α2 = (r2, r3). This gives an expected welfare of
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Fig. 2. Lower bounds on the value of revealing information for the best-
and worst-case equilibria. If the utility rule f is designed to lessen the
loss to worst-case equilibria (increasing VoI−), then there is a greater
possible loss to the worst-case equilibrium (decreasing VoI+). This
trade-off matches the tight bounds from Theorem 1 and Proposition 1,
which appear as the endpoints of this plot. The bounds are generated
by comparing the value-of-informing to the price-of-anarchy/stability
via Theorem 2 and the price of stability to the price-of-anarchy via
[10, Th. 4.1].

W(α;μ0) = (1 − p)(2 − ε) + p(1 + ε(1 − p)) and a gain of
informing agents of VoI−(�, f mc) = (1−p)(2−ε)+p(1+ε(1−p))

2−ε(1−p)2 .

Letting p → 1 and ε → 0 we get VoI−(�, f mc) → 1/2.
Finally, we show the upper bound on VoI−. Observe that

the welfare of a Bayes-Nash strategy α = {aNE(E[v|π ])}π∈�

under the signaling policy � satisfies

m∑

k=1

pkW(aNE(E[v|πk]);E[v|πk]) ≤
m∑

k=1

pkW�(E[v|πk])

≤ |�| · W�(Eμ0 [v]) ≤ 2|�| · W(aNE(Eμ0 [v]);Eμ0 [v]),

where the first term is the expected payoff of α, and the first
inequality holds from W� being the optimal welfare, the sec-
ond holds from the upper bound on VoI+, and the third holds
from the price-of-anarchy bound.

B. Utility Design & Informing Efficacy

In Section III-A, we considered the special case in which
agents’ local objectives were aligned with the global objec-
tive using the marginal cost utility rule f mc. In this section,
we generalize this result to any utility rule by leveraging a
connection to the price-of-stability and price-of-anarchy.

In the deterministic setting, the price-of-stability/anarchy are
used to quantify how the best-case and worst-case equilibria
approximate the system optimal. These metrics can be gen-
eralized to the Bayesian setting but need not be informative
or insightful on the effects revealing information within a sin-
gle problem instance [23] (i.e., failing to capture the benefits
and consequences or comparing bounds derived from different

problem instances). Let PoA(G, v, f ) = minaNE∈NE(G,v,f ) W(aNE;v)
maxaopt∈A W(aopt;v)

denote the price-of-anarchy for a deterministic maximum cov-

erage problem, and let PoS(G, v, f ) = maxaNE∈NE(G,v,f ) W(aNE;v)
maxaopt∈A W(aopt;v)

denote the price-of-stability.
Though not immediately apparent, we establish a connection

between the price-of-stability/anarchy in deterministic cover-
ing games and the value-of-informing in Bayesian covering

games. In Theorem 2, we leverage this connection to generate
bounds on VoI+ and VoI− for any utility design.

Theorem 2: Let ψ := infv∈conv(V) PoS(G, v, f ) and ρ :=
infv∈conv(V) PoA(G, v, f ), then the value of informing for the
best-case equilibrium satisfies

ψ ≤ VoI+(G, μ0,�, f ) ≤ ψ−1|�|, (7a)

and for the worst-case equilibrium satisfies

ρ ≤ VoI−(G, μ0,�, f ) ≤ ρ−1|�|. (7b)

Proof of Theorem 2: The proof will rely on the function
W�(v) = maxa∈A W(a; v) and several of its properties shown
in the proof of Theorem 1. First, we prove the bounds on VoI+.
Let a ∈ NE(G,Eμ0 [v], f ) be an arbitrary Nash equilibrium in
the deterministic game G with values Eμ0 [v] and utility rule
f , and let α ∈ BNE(G, μ0,�, f ) be an arbitrary Bayes-Nash
equilibrium in G with prior μ0 on v and information signaling
policy � and utility function f . Observe that the expected
welfare of α satisfies

W(α;μ0,�) =
m∑

k=1

pkW(α(πk);E[v|πk]) (8a)

≤
m∑

k=1

pkW�(E[v|πk]) (8b)

≤ |�|W�(Eμ0 [v]) (8c)

≤ ρ−1|�|W(a;Eμ0 [v]), (8d)

where (8a) holds from Lemma 1, (8b) holds from the defi-
nition of W�, (8c) holds from the monotonicity and positive
homogeneity of W� (previously shown in (6b)-(6c)), and (8d)
holds from the definition of ρ.

Similarly, we can show that the expected total welfare of
the uninformed equilibrium a satisfies

W(a;μ0) ≤ W�(v) (9a)

≤
m∑

k=1

pkW�(E[v|πk]) (9b)

≤
m∑

k=1

pkρ
−1W(α(π);E[v|πk]) (9c)

= ρ−1W(α;μ0,�), (9d)

where (9b) holds from the convexity of W�, (9c) holds
from the definition of ρ, and (9d) holds from Lemma 1.
Because (8) and (9) hold for any a ∈ NE(G,Eμ0 [v], f ) and
α ∈ BNE(G, μ0,�, f ), it holds for each being the respec-
tive welfare minimizing equilibria. If we consider only the
case where a and α are the welfare maximizing equilib-
ria, i.e., a ∈ arg maxa′∈NE(G,Eμ0 [v],f ) W(a′;Eμ0 [v]) and α ∈
arg maxα′∈BNE(G,μ0,v,f ) W(α′;μ0,�)

C. Optimistic/Pessimistic Trade-Off

Theorem 2 highlighted the fact that altering the utility
design will change the impact of information revealing; how-
ever, the given bounds need not be tight. It appears that using
a utility design with a higher price-of-anarchy in the determin-
istic setting will lead to an improved lower bound on VoI−.
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As such, we will more closely consider the price-of-anarchy
maximizing rule

f g(x) := (x − 1)!
1

(n−1)(n−1)! + ∑n−1
i=x

1
i!

1
(n−1)(n−1)! + ∑n−1

i=1
1
i!

,

when x > 0, and f g(0) = 0, proven optimal in [9]. In
Proposition 1, we show tight lower bounds on VoI with f g.

Proposition 1: While using the price-of-anarchy maximiz-
ing rule f g, the value-of-informing for the best-case equilib-
rium satisfies

1 − 1

e
≤ VoI+(G, μ0,�, f g), (10a)

and for the worst-case equilibrium satisfies

1 − 1

e
≤ VoI−(G, μ0,�, f g), (10b)

Further, each of these lower bounds is tight.
Proof of Proposition 1: Theorem 2 can be used to show that

each of (10a) and (10) are valid lower bounds. To see these
bounds are tight, consider a maximum coverage problem with
resource set R = {rpi}n−1

i=1

⋃{rsj}z
j=1 where z = �1/(f g(n)−ε)�.

The first n − 1 players can select a single resource from the
public resources {rsj}z

j=1 or their respective private resource
rpi for player i, i.e., Ai = {rs1, . . . , rsz , rpi}, ∀i ∈ N \ {n}.
The final player has exactly one action to use all the shared
resources simultaneously An = (rs1 , . . . , rsz). Each private
resource rpi has value vrpi

= f g(n) − ε with probability one
where ε > 0. The value of the shared resources are random;
each takes on value 1 w.p. 1/z < f g(n) − ε and 0 otherwise,
and follow distribution μ0 such that exactly one is ever the
high value. When uninformed, each of the first n − 1 players
strictly prefers their private resource, giving a unique equilib-
rium welfare of W(aNE;μ0) = 1 + (n − 1)(f g(n) − ε). Under
the full information reveal policy �, each of the n − 1 agents
strictly prefer to use the one shared resource of value 1, giving
an expected welfare of W(αBNE;μ0,�) = 1. Because each of
the informed and uninformed equilibria are unique, this gives
VoI+(μ0,�) = VoI−(μ0,�) = 1

1+(n−1)(f g(n)−ε)
→ 1 − 1

e as
ε → 0 and n → ∞.

Comparing the lower bounds of Theorem 1 and
Proposition 1 highlights a trade-off between revealing
information in the optimistic and pessimistic perspectives. We
further examine this trade-off in Fig. 2. Using Theorem 2 and
recent results of [10], we can characterize lower bounds on
VoI+ and VoI− for different utility rules.

IV. CONCLUSION AND FUTURE WORK

We addressed the possible benefit and consequences of
revealing information to local decision-makers in a distributed
system. By lower and upper bounding the value-of-informing,
this letter (1) quantified the possible effects of information
revealing and (2) identified a trade-off between the guaran-
tees of revealing information in the optimistic and pessimistic
perspective. Future work will answer the design question and
develop methods to solve for information signaling policies
that optimize expected system welfare.
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