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Abstract— We consider a simplified version of the Taylor
model, typically used in the collective dynamics of continuous
exchange of opinions, to describe the properties of swarm
formation in the presence of external sources of influence
or prejudices affecting a number of agents in the network.
Such external sources are responsible for the breakdown of
the consensus equilibrium and directly influence certain other
individuals in the network, which we denote as quasi-stubborn
agents. These quasi-stubborn agents participate in consensus
with other individuals, but are able to indirectly influence the
opinions of the entire system. In particular, we show that the
swarm in steady-state moves towards the convex hull of the
opinions of the quasi-stubborn agents. This is an interesting
result that allows a more accurate estimation of the final
opinions in a social network. In the case of two prejudiced
agents, an explicit expression of the stationary opinions is
provided in terms of the Moore-Penrose inverse of the Laplacian
of the graph. Numerical simulations are presented to illustrate
the properties of the considered model.

I. INTRODUCTION

Opinion formation represents an interesting dynamic pro-
cess that can be used to explain most real-world situations:
influence maximisation, link prediction, discovery of influ-
ential nodes, community detection, trend detection, to name
a few [1], [2]. For these reasons, much attention is paid to
the analysis of the emergence, evolution and diffusion of
opinions in society. In particular, opinion dynamics leads
to an interdisciplinary field of research that combines el-
ements of economics, control theory, applied mathematics
and computer science to study how opinions evolve starting
from the interactions of agents [3], [4]. The influence of
neighbours on users’ opinions is described, for example,
in [5] by using evolutionary game theory and introducing
a mechanism to change or maintain opinions in order to
maximise the gain for the user. Various models have been
developed, inspired by those used in physics, to incorpo-
rate many of these elements and identify the mechanisms
involved in the opinion formation process, with the practical
aim of simulating the formation and propagation of opinions
under different conditions [6]. The basic idea of all models
of opinion dynamics is that nodes or actors in a social
network have a variable representing their opinion, which
is updated according to some predefined rules. Of course,
they represent a simplification of real opinion dynamics,
but they are useful to illustrate aspects of real opinion
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formation such as agreement, fragmentation, formation of
clusters of people with the same opinion [7]. The various
models proposed in the literature fall mainly into two cate-
gories: macroscopic and microscopic. Macroscopic models
are usually based on high-dimensional stochastic models
and consider individuals as a continuous mass rather than
discrete particles. In this framework, mean-field theory is
used to approximate the behaviour of the original model by
averaging [8], [9]. Microscopic models, on the other hand,
mainly use agent modelling and define a set of rules by
which individuals interact [10], [11]. Sociologist John R. P.
French and statistician M. H. DeGroot introduced one of
the earliest and most well-known models. They proposed
a simple process that allows agents to reach consensus by
repeatedly integrating their opinions. The model assumes
that each member of a population has an opinion, encoded
with a real scalar, which is updated synchronously as a
weighted average of his or her opinion and that of his or her
neighbors (see [12], [13]). While the French-DeGroot model
is formulated in discrete-time, its continuos-time counterpart
was proposed by Abelson [14] and an extension in presence
of stubborn and prejudiced agents was developed by Taylor
[15]. Since the work of [14], many contributions have
focused on the dynamics of opinions in continuous-time.
For example, the work in [16] examines two continuous-
time opinion dynamics models where individuals discuss
opinions on several logically interdependent topics. In [17], a
continuous-time mean-preserving opinion model is proposed
in which each agent considers another agent as a neighbour
if their opinions differ by less than 1, and the opinions of
the agents are continuously attracted to the opinions of their
neighbours. [18] presented sufficient conditions to achieve
modulus consensus over time-varying signed networks. In
[19], control of a continuous-time opinion dynamics model
with a leader is proposed, where interactions between indi-
viduals can be both state- and time-dependent.

In the field of opinion dynamics, particular attention
has traditionally been paid to consensus formation and the
emergence of heterogeneous (non-consensual) states [20].
Indeed, there can be persistent fluctuation of opinions and
disagreement if there are obstinate agents in a society with
conflicting views who never update their opinions. These
obstinate agents may represent leaders, political parties or
media sources who try to influence the beliefs of the rest
of society [21]. The difficulty of identifying the properties
of social networks is highlighted in [22], where a model of
online opinion dynamics is used to numerically simulate and
predict the extent to which people hold their own opinions
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or accept other people’s opinions in discussions about a hot
topic.

In this paper, we use the properties of the Taylor model to
study how individuals’ opinions are altered by the presence
of external biases. More specifically, we consider a society
of interacting agents (or individuals) who communicate and
exchange information with each other, where some indi-
viduals participate in the joint formation of opinions but
are additionally influenced by biases (initial prejudices) or
external sources of influence. While it is known that the
final opinions tend to be in a convex combination of the
initial biases, less research has been done on the opinions
of the agents who are directly influenced and whether it
is possible to set a less restrictive boundary on the final
opinions of the individuals. With this in mind, this paper aims
to show that the final opinions of individuals tend to be a
convex hull of the final opinions of agents who are directly
influenced by external opinions (these agents are denoted
as quasi-stubborn agents). In the case of two quasi-stubborn
agents, the final opinion is explicitly expressed by the Moore-
Penrose inverse of the Laplacian of the graph defining the
connections between the individuals. For the general case
with m quasi-stubborn agents, an expression for the final
state of the entire social network is given.

The paper is organized as follows. We start with the
main features of the simplified Taylor model in Section II.
In Section III, we examine the influence of quasi-stubborn
agents to the social network, discussing some properties
about their stationary opinions. An explicit expression of the
final opinions of the agents is given in Section IV. Some
simulated examples are given in Section V. The last section
is devoted to concluding remarks and future developments.

Notations

We use ep ∈ Rn to denote a standard basis vector, where
the pth element is 1 while the rest are zeros. The vector of
ones in Rn is denoted by 1n while Ip denotes the identity
matrix of order p and 0p×q the p×q matrix with zero entries.
The j-th element of the vector vi is indicated as vji .

II. THE TAYLOR SOCIAL BEHAVIOR MODEL

We consider a social network with n individuals, described
by a graph G = (V,E) where V = {1, ..., n} is the
set of nodes and E ⊆ {(i, j) : i, j ∈ V, i ̸= j} (no self-
loops are allowed) is the set of unordered pairs of vertices
defining the edges of the graph. Agents are the vertices of
the graph while edges indicate the pair of agents that have
interactions. The set of neighbors of agent i is indicated by
Ni = {j | (i, j) ∈ E} and represents the set of agents that
individual i interacts with. G is encoded by the Laplacian
symmetric matrix L. Since it is assumed that G is connected,
L has the following properties [23]: L has one simple zero
eigenvalue, i.e. λn = 0, with the associated eigenvector 1n;
the second smallest eigenvalue λn−1 > 0.

In this section we consider a simplified version of the
model proposed in [15] and show some properties about the
stationary positions of agents. For the reader’s convenience,

we briefly describe the Taylor model in the case of a social
network encoded by a graph with unit-weighted edges. The
Taylor model involves n agents with opinions x1, ..., xn ∈ R
and m ≥ 1 communication sources providing static opinions
s1, ..., sm ∈ R. The opinions of the agents obey to the model

ẋi(t) =
∑
j∈Ni

(xj(t)− xi(t)) +

m∑
k=1

bik(sk − xi(t)) (1)

with bik ≥ 0, i = 1, ..., n, k = 1, ...,m. Some agents are
free of the external influence, in this case bi1 = ... = bim =
0, while others with

∑m
k=1 bik > 0 can be influenced by one

or more sources. Unlike the Abelson model [14], the system
(1) is usually asymptotically stable and converges to the
unique equilibrium determined by s1, ..., sm. An equivalent
representation of the Taylor model can be found in [24]

ẋi(t) =
∑
j∈Ni

(xj(t)− xi(t)) + γi(ui − xi(t)) (2)

where γi ≥ 0. If γi =
∑

k bik, ui =
1
γi

∑
k biksk, the model

(2) reduces to (1). The quantity ui is called the prejudice,
or bias, of the agent i; moreover the agent i is prejudiced
if γi > 0, otherwise ui = 0. The stability properties of the
Taylor model were discussed in [24] where it is shown that
the final opinion of any agent is in a convex hull of the
external opinions.

The importance of the Taylor model (1) generalised to the
multidimensional case is also related to the problems of con-
tainment, where multiple leaders interacting with the other
agents (followers) aim at driving and holding the followers
into the convex hull imposed by their states (opinions). The
convex hull then represents the domain that contains the
opinions of the followers [25]. In this frame, the opinions
of agents xi ∈ Rd, i = 1, ..., n represent, for example, the
positions of mobile robots or vehicles, while s1, ..., sk ∈ Rd

represent the positions of k static leaders. The containment
problem is to control the agents to reach the convex hull
spanned by the leaders, i.e. the region S ⊂ Rd, which is
defined as S :=

{∑k
p=1 αpsp, αp ≥ 0,

∑k
p=1 αp = 1

}
.

III. THE INFLUENCE OF THE QUASI-STUBBORN AGENTS

We consider the model (2) where the agents influenced
by external opinions are referred as quasi-stubborn agents
and, without loss of generality it is assumed that the subset
of quasi-stubborn agents is Q = {i : i ≤ m}. As a conse-
quence, γi = 1 if i ∈ Q and γi = 0 otherwise.

From (2) it can be seen that the last n−m agents strive
to minimise the differences of opinion with their connected
neighbours, while the opinions of the first m quasi-stubborn
agents are also influenced towards their bias ui.

Eq. (2) can be rewritten in matrix form as

ẋ(t) = −(L+W )x(t) +Bu (3)

where x =
[
x1, . . . , xn

]T ∈ Rn is the vector
containing the opinions of all agents, W ∈ Rn×n is the
diagonal matrix W =

∑m
k=1 eke

T
k , B ∈ Rn×m is the

input matrix B =
[
e1 e2 . . . em

]
and u ∈ Rm with
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u =
[
u1 u2 . . . um

]T
contains the bias opinions of

quasi-stubborn agents. Note that the matrix LW = L + W
is obtained from the perturbation of the graph Laplacian by
adding a diagonal matrix W with m elements of the diagonal
equal to one in position corresponding to the indices of quasi-
stubborn agents. As shown in the next result, the matrix LW

has positive eigenvalues.
Lemma 1: The smallest eigenvalue of LW is positive, i.e.

λn(LW ) > 0.
Proof: Because LW is positive semi-definite,

λi(LW ) ≥ 0. If an eigenvalue λ = 0 exists for LW with a
related eigenvector v, we have LW v = Lv+Wv = λv = 0.
When the above equality is multiplied by vT from left,
the result is vTLv + vTWv = 0. Considering that L and
W are positive semi-definite matrices, i.e. vTLv ≥ 0 and
vTWv ≥ 0, it must be vTLv = 0 and vTWv = 0. Then we
have v = 1n, but 1T

nW1n = m resulting in a contradiction;
this simply means that λ > 0.

Remark 1: Lemma 1 allows to infer that the matrix LW is
invertible and thus the opinions of the agents in steady-state
are given by x∞ = limt→∞x(t) = L−1

W Bu.
It is straightforward to note that the steady-state opinions

of the agents can be rewritten as

x∞ =

m∑
k=1

πkuk (4)

with πk ∈ Rn such that

LWπk = ek, k = 1, ...,m. (5)

The following three results provide some useful properties
of the matrix LW and vectors πk, k = 1, ...,m propaedeutic
to the main contribution of the paper.

Lemma 2: All the entries of vectors πk with k = 1, ...,m
in (4) are positive.

Proof: Since the matrix LW is a Z-matrix with positive
eigenvalues then it is an invertible M-matrix. Moreover it
is additionally irreducible because the graph is assumed
connected, then it has positive inverse [26]. Consequently
πk, k = 1, ...,m are vectors of positive elements.

Lemma 3: The solution of (5) satisfies the property∑m
k=1 πk = 1n.

Proof: Summing the two sides of (5) for k from 1 to m
yields to

∑m
k=1 LWπk = LW

∑m
k=1 πk =

∑m
k=1 ek. Since

LW is invertible and LW 1n = L1n +W1n =
∑m

k=1 ek the
thesis follows.

Lemma 4: Each vector πk with k = 1, ...,m, satisfies∑m
i=1 π

i
k = 1.

Proof: Rewrite (5) as Lπk = ek −Wπk. Multiplying
by 1T

n from left and considering that 1T
nL = 0 yields

0 = 1− 1T
nWπk = 1− 1T

n

m∑
i=1

eie
T
i πk = 1−

m∑
i=1

πi
k.

As a further result about the final opinions in the whole
network, the next proposition gives an insight into the final
average opinion of the agents.

Proposition 1: Agents evolving according to the model
(2) converge to a constant opinion in the convex hull of
u1, ..., um. Moreover, the mean of the final opinions of the
quasi-stubborn agents coincides with the mean of the biased
opinions.

Proof: From the steady-state opinions x∞ and from
Lemma 2 and 3 the first part is proved. Note also that from
LWx∞ = Bu and multiplying on the left by 1T

n , one has
1T
nWx∞ = 1T

nBu and
∑m

k=1 x
k
∞ =

∑m
k=1 uk.

The above result is common in various stubbornness-based
models in which agents’ opinions tend towards the convex
hull of the external sources of influence or prejudices affect-
ing the quasi-stubborn agents’ opinions (see, for example,
the containment problem briefly discussed in the previous
section). The following theorem represents one of the main
results of this paper and shows that the agents reach a
constant opinion within the convex hull of the opinions of
the quasi-stubborn agents in the steady-state. This property
makes it possible to have more details and to determine
the final opinions of the individuals more accurately and
less conservatively w.r.t. the case of the convex hull of the
prejudices.

Theorem 1: The steady-state opinions of the agents be-
long to the convex hull of the quasi-stubborn agents’ opin-
ions, namely

xk
∞ =

m∑
i=1

αi
kx

i
∞ (6)

with αk ∈ Rm such that
∑m

i=1 α
i
k = 1, αi

k ≥ 0, ∀k =
1, ..., n, ∀i = 1, ...,m.

Proof: By setting Λ = [α1 α2 . . . αn] ∈ Rm×n the
thesis in (6) can be expressed in matrix form as

x∞ = ΛTBTx∞.

By using (4) and (5), this turns out to be equivalent to

L−1
W Bu = ΛTBTL−1

W Bu.

Since this equation holds for every u, this means that

L−1
W B = ΛTBTL−1

W B. (7)

Using Lemma 3, we obtain ΛT 1m = 1m. Consider the
following block partitioning of LW and L−1

W :

LW =

[
H RT

R C

]
, L−1

W =

[
Π V T

V Z

]
where H = HT , Π = ΠT ∈ Rm×m, Z = ZT and
C = CT ∈ R(n−m)×(n−m), R and V ∈ R(n−m)×m. Observe
that, setting Γ = BTL−1

W , since Π = ΓB, the equality (7)
becomes

ΠΛ = Γ. (8)

Since Γ = BTL−1
W =

[
Π V T

]
, by substituting in (8)

one has Λ =
[
Im Π−1V T

]
.

The aim is to show that the matrix Π−1V T has all entries
greater or equal than zero. Note that HΠ+RTV = Im and
this implies HΠ = Im − RTV . H and Π are nonsingular
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being principal submatrices of the positive definite matrices
LW and L−1

W so that Im −RTV is nonsingular leading to

Π−1 = (Im −RTV )−1H.

Analogously In−m − V RT is nonsingular. The equality
V (Im −RTV )−1 = (In−m − V RT )−1V implies

VΠ−1 = V (Im −RTV )−1H = (In−m − V RT )−1V H.

Since V H + ZR = 0(n−m)×m then V H = −ZR.
Moreover V RT +ZC = In−m implies C−1Z−1 = (In−m−
V RT )−1. It follows that

VΠ−1 = −C−1Z−1ZR = −C−1R.

Since C−1 and −R are non negative matrices, VΠ−1 is also
non negative and the elements of the matrix Λ are all non
negative. Therefore Eq. (8) represents a set of n decoupled
linear systems, each of them consisting in m equations on m
unknowns. As a consequence the system (2) admits a unique
convex combination of the opinions as defined in (6).

Remark 2: Note that in the standard Taylor model [15],
[24], the opinions of the agents are known to tend towards the
convex hull of static biases, while the proposed framework
provides a more accurate description of the region containing
the final state of the social network. Indeed, the opinions in
the social network are now directed towards the convex hull
of the final opinions of the quasi-stubborn agents.

IV. EXPLICIT FORMULA FOR STEADY-STATE OPINIONS: A
CONSTRUCTIVE PROOF

In this section we consider Eq. (5), whose solution pro-
vides the weight vectors that give the stationary opinions of
the individuals as a convex combination of the biases, and
we give an explicit expression for the weight vectors. As
expected, individuals’ final opinions depend strongly on the
topology of the influence network. In particular, we show that
the final opinions depend on the inverse of a matrix whose
dimension is equal to the number m of quasi-stubborn agents
and the Moore-Penrose inverse of L, i.e. L† [27], where
L†L = LL† = In − 1n1T

n

n .
We obtain a direct relationship between the vectors

πk, k = 1, ...,m defined in (5) and the columns of L†. This
makes it possible to exploit the structure of the solution of
(5) to obtain explicit formulas for the stationary opinions in
the case of two quasi-stubborn agents.

Firstly, note that LW = L + BBT = J + QQT where
J = L− 1

n2 1n1T
n and Q =

[
B 1

n1n

]
, Q ∈ Rn×(m+1). By

considering that the inverse of J is J−1 = L† − 1n1T
n and

by using the Woodbury matrix identity, one has

L−1
W = (J +QQT )−1

= J−1 − J−1Q
(
Im+1 +QTJ−1Q

)−1
QTJ−1.

The above formula requires the inversion of a matrix of
order m+1, i.e.

(
Im+1 +QTJ−1Q

)−1
= M − 1m+11T

m+1

with

M =

[
BTL†B + Im 0m×1

01×m 1

]
.

By using the Sherman–Morrison formula, it follows that(
Im+1 +QTJ−1Q

)−1
= M−1 +

M−11m+11T
m+1M

−1

1− 1T
m+1M

−11m+1

from which it results that the inverse of LW requires the
inversion of the matrix BTL†B+Im with dimension m and
the pseudo-inverse of L.

It is worth noting that

L−1
W Q = (J +QQT )−1Q

= J−1Q
(
Im+1 +QTJ−1Q

)
=

[
(L†−1n1T

n )B −1n

](
M−1+

M−11m+11T
m+1M

−1

1− 1T
m+1M

−11m+1

)
.

According to Eq. (5) the first m columns are of interest,
since they are related to the vectors uk, k = 1, ...,m. Then,
by defining S =

(
BTL†B + Im

)−1
it follows that

L−1
W B = L†BS − L†BS1m1T

mS

1T
mS1m

+
1n1T

mS

1T
mS1m

. (9)

The above formula can be exploited to compute the mean
opinion of the network as x̄∞ =

∑m
k=1 π̄kuk where π̄k is

the mean of πk. From (9), the vector of means of πk, k =

1, ...,m can be computed as
[
π̄1 ... π̄m

]
=

1T
mS−1

1T
mS−11m

.

A. Steady-state opinions in the case of two quasi-stubborn
agents

In this subsection we consider the case of two quasi-
stubborn agents. The importance of an explicit formula
for the final opinions in a social network with two quasi-
stubborn agents is highlighted in [20], where this high-
level description of opinion associations allows a closer look
at emerging non-consensus states by also determining the
maximum spread of opinions and relating it to the structure
of the social network. If we consider two quasi-stubborn
agents, the following result, starting from (9), gives further
explicit expressions for π1 and π2 in a simpler formulation.

Theorem 2: In the case of two external biases, i.e. u1 and
u2, an explicit expression of π1 and π2 is

π1 =
L†(e1 − e2) +

(
1− eT2 L

†(e1 − e2)
)

1n

2 + (e1 − e2)TL†(e1 − e2)
, (10)

π2 =
L†(e2 − e1) +

(
1− eT1 L

†(e2 − e1)
)

1n

2 + (e1 − e2)TL†(e1 − e2)
. (11)

Proof: For the sake of simplicity, the proof consists of
verifying that (10) and (11) satisfy (5). Let us consider the
case of u1, then it must be true that

(L+ e1e
T
1 + e2e

T
2 )π1 = e1.

Note that

Lπ1 =
LL†(e1 − e2) +

(
1− eT2 L

†(e1 − e2)
)
L1n

2 + (e1 − e2)TL†(e1 − e2)

=
(e1 − e2)

2 + (e1 − e2)TL†(e1 − e2)
, (12)

eT1 π1 =
1 + (e1 − e2)

TL†(e1 − e2)

2 + (e1 − e2)TL†(e1 − e2)
,
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eT2 π1 =
1

2 + (e1 − e2)TL†(e1 − e2)

resulting in

(e1e
T
1 + e2e

T
2 )π1 =

e1 + e2 + (e1 − e2)
TL†(e1 − e2)e1

2 + (e1 − e2)TL†(e1 − e2)
.

(13)
By summing (12) and (13) the proof follows. Using the

same reasoning, we obtain the proof for π2.
When analysing social networks, one of the most inter-

esting questions is how to evaluate and possibly maximise
the influence of certain opinions. For example, m potential
individuals are selected to be convinced to adopt a product
and use the word-of-mouth effect to spread the information
widely and successfully create further adoptions in the net-
work [28]. From the Theorem 1 we know that the two most
extreme opinions are held by quasi-stubborn agents. Thus,
to find the maximum spread of opinions it is sufficient to
consider the final opinion distance between x1

∞ and x2
∞.

From Eq. (4), which is specialised for the case of two
persistent opinions, it follows that x1

∞ = π1
1u1 + π1

2u2,
x2
∞ = π2

1u1+π2
2u2. The maximum spread can consequently

be defined as Dmax = x1
∞ − x2

∞, i.e.

Dmax =
∣∣(π1

1 − π2
1)u1 + (π1

2 − π2
2)u2

∣∣
and by using (10) and (11), it follows that

Dmax =
(e1 − e2)

TL†(e1 − e2)

2 + (e1 − e2)TL†(e1 − e2)
|u1 − u2|. (14)

It is also worth noting that the mean opinion can be easily
computed as x̄∞ =

1T
nπ1

n u1 +
1T
nπ2

n u2 and considering that
1T
nL

†(e1 − e2) = 0, it follows that

x̄∞ =
(1− eT2 L

†(e1 − e2))u1 + (1− eT1 L
†(e2 − e1))u2

2 + (e1 − e2)TL†(e1 − e2)
.

V. NUMERICAL RESULTS

In this section, numerical simulations are presented to il-
lustrate the effectiveness of theoretical results in the previous
sections. We consider a network of n = 20 nodes that are
connected via 60 undirected edges (see Fig. 1).

A. Example 1

The opinions of each agents is considered to be a vector
in R2. In particular the biases of the first m = 4 quasi-
stubborn agents are set as u1 = [−1 0]T , u2 = [1 0]T , u3 =
[1 1]T , u4 = [−1 1]T . Note that all the provided results can
be extended to the multidimensional case by considering a
model (3) for each element of the opinion vector. Therefore,
as expected, the final opinions will be in the convex hull of
the biases and more precisely in the convex hull (polytope)
of the final opinions of the quasi-stubborn agents. Fig. 2
depicts the trend of the opinions close to the steady-state.
Specifically, the biases of the quasi-stubborn agents are
depicted by black circles and labelled. The more accurate
containment area can be identified by considering the final
opinions of the quasi-stubborn agents (red crosses). Indeed,
the red polytope contains the final opinions of the individuals.

Fig. 1: Graph of the considered multi-agent system, n = 20.

Fig. 2: Example 1. Agents’ final opinions. Biases of the
quasi-stubborn agents (black circles). Steady-state opinions
of the quasi-stubborn agents (red crosses). The red polytope
contains the opinions of the other agents. Mean of the final
opinions of the quasi-stubborn agents (blue triangle).

Moreover, according to Proposition 1, the mean of the quasi-
stubborn opinions at steady-state is equal to the mean of the
initial prejudices (see the blue triangle in Fig. 2).

It is important to emphasise that the analysis can be used
for design purposes, for example in a containment problem.
More precisely, given a target polytopic region in R2 with
m vertices, m quasi-stubborn agents have to be used with
steady-state opinions xk

∞, k = 1, ...,m chosen as the vertices
of the polytope. Then the external influences uk, k = 1, ...,m
can be chosen as[

uT
1 , . . . , u

T
m

]T
=

(
BTL−1

W B ⊗ I2
)−1

[
x1T

∞ , . . . , xmT

∞

]T
where ⊗ represents the Kronecker product, so that to drive
the network in the prescribed region.
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Fig. 3: Example 2. Agents’ opinions (black lines). Quasi-
stubborn agents’ opinions (red lines). Biases (blue lines).
Maximum spread between the final opinions (cyan region).

B. Example 2

This example focuses on scalar opinions with two quasi-
stubborn agents. Starting from the topology in Fig. 1 and
considering as biases u1 = 3 and u2 = 50, the overall
opinions evolutions are depicted in Fig. 3 where the max-
imum spread Dmax obtained by Eq. (14) is shown and it
coincides with the distance between the two final quasi-
stubborn opinions (x1

∞, x2
∞).

VI. CONCLUSIONS

A symmetric social network, encoded by a graph with unit
weighted edges and with the presence of external biases, has
been analysed by exploiting the Taylor model. In addition to
the well-known property that the final opinions of the agents
lie in the convex hull of the external opinions, it has been
shown that the quasi-stubborn agents, i.e. the individuals
who are directly influenced by these opinions, move the
entire network in the convex hull of their final states. This
result improves the understanding of the model of opinion
diffusion under consideration. An explicit expression for the
final opinions in terms of the Moore-Penrose inverses of the
Laplacian matrix was also provided. Future studies will go in
two directions. First, an attempt will be made to extend the
obtained results to the case of a social network encoded by
a directed weighted graph. Then, an attempt will be made to
extend the proposed analysis to the case with time-varying
persistent opinions.
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