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Abstract— This paper addresses the problem of distributed
optimization, where a network of agents represented as a
directed graph (digraph) aims to collaboratively minimize the
sum of their individual cost functions. Existing approaches
for distributed optimization over digraphs, such as Push-Pull,
require agents to exchange explicit state values with their
neighbors in order to reach an optimal solution. However, this
can result in the disclosure of sensitive and private information.
To overcome this issue, we propose a state-decomposition-based
privacy-preserving finite-time push-sum (PrFTPS) algorithm
without any global information, such as network size or graph
diameter. Then, based on PrFTPS, we design a gradient descent
algorithm (PrFTPS-GD) to solve the distributed optimization
problem. It is proved that under PrFTPS-GD, the privacy of
each agent is preserved and the linear convergence rate related
to the optimization iteration number is achieved. Finally, nu-
merical simulations are provided to illustrate the effectiveness
of the proposed approach.

Index Terms— Distributed optimization, privacy-preserving,
finite-time consensus, directed graph.

I. INTRODUCTION

In this paper, we consider an optimization problem in a
multi-agent system of n agents. Each agent ¢ has a private
cost function f;, which is known to itself. All agents aim to
collaboratively solve the following optimization problem

TERP

min F(z) := Z fi(x), (1)
i=1

where = is the global decision variable. The agents are
connected through a communication graph and can only
transmit messages to their neighbors. By local computa-
tion and communication, each agent seeks a solution that
minimizes the sum of all the local objective functions.
Such a distributed paradigm facilitates breaking large-scale
problems into sequences of smaller ones. That is why it has
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been widely adopted in several applications, such as power
grids [1], sensor networks [2] and vehicular networks [3].

To solve problem (1), decentralized gradient descent
(DGD) is the most commonly used algorithm, requiring
diminishing stepsizes to ensure optimality [4]. To overcome
the challenge of slow convergence caused by diminishing
stepsizes, Xu et al. [S] adopted the dynamic average con-
sensus [6] to propose a gradient tracking (GT) method with
a constant stepsize. Recently, Xin et al. [7] and Pu et al.
[8] devised a modified GT algorithm called AB/Push-Pull
algorithms for distributed optimization, which can be applied
to a general digraph. A comprehensive survey on distributed
optimization algorithms is provided by Yang et al. [9].

The aforementioned distributed algorithms share state val-
ues in each iteration, which can compromise the privacy
of agents if they have private information. By hacking into
communication links, an adversary potentially could access
to transmitted messages and gather private information using
an inferring algorithm. Mandal [10] presented theoretical
analysis of privacy disclosure in distributed optimization,
where the parameters of cost functions and generation power
can be correctly inferred by an adversary. As the number of
privacy leakage events is increasing, there is an urgent need
to preserve privacy of each agent in distributed systems.

Recently, many results have been reported on the topic of
privacy-preserving distributed optimization. One commonly
used approach is differential privacy (DP) [11] due to its rig-
orous mathematical framework, proven privacy preservation
properties and ease of implementation [12]. However, DP-
based approaches face a fundamental trade-off between pri-
vacy and accuracy, which may result in suboptimal solutions
[13]. To address this challenge, Lu et al. [14] combined dis-
tributed optimization methods with partially homomorphic
encryption. Nonetheless, this approach has limitations due
to high computation complexity and communication costs.
To overcome these limitations and achieve accurate results,
Wang [15] proposed a privacy-preserving average consensus
using a state decomposition mechanism that divides the state
of a node into two sub-states.

It is worth noting that none of the aforementioned ap-
proaches is suitable for agents over digraphs. To preserve pri-
vacy of nodes interacting on a digraph, Charalambous et al.
[16] proposed an offset-adding privacy-preserving push-sum,
and Gao et al. [17] protected privacy by adding randomness
on edge weights, both of which are only effective against
honest-but-curious nodes (see Definition 3). To improve
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resilience to external eavesdroppers (see Definition 4), Chen
et al. [18] extended the state decomposition mechanism
to digraphs and introduced an uncertainty-based privacy
notion. In terms of privacy-preserving distributed optimiza-
tion over digraphs, Mao et al. [19] designed a privacy-
preserving algorithm based on the push-gradient method with
a decaying stepsize, lacking a formal privacy notion. Wang
and Nedi¢ [20] designed a DP-oriented gradient tracking
based algorithm (DPGT) that can ensure both differential
privacy and optimality. However, it adopted a diminishing
stepsize to ensure convergence, resulting in a slow conver-
gence rate. To speed up the convergence, Chen et al. [21]
proposed a state-decomposition-based push-pull (SD-Push-
Pull) algorithm, which guarantees both linear convergence
and differential privacy for digraphs. Nevertheless, SD-Push-
Pull only converges to a suboptimal value.

Inspired by recent results that privacy can be enabled
in consensus over digraphs by state decomposition [18]
and that finite-time push-sum can be used in distributed
optimization to deliver the optimal solution [22], this paper
presents a novel PrFTPS algorithm that accurately computes
the average value for digraphs in a finite time, as opposed
to the asymptotic average consensus achieved in [18]. Then,
combined with gradient decent, PrFTPS-GD is proposed to
solve problem (1) allowing each node in a digraph to achieve
optimal value linearly while preserving its privacy. The main
contributions of this paper are summarized as follows:

1) We propose PrFTPS based GD algorithm to solve prob-
lem (1) over digraphs. Moreover, we show that PrETPS
can compute the exact average value in finite time and
PrFTPS-GD guarantees the linear convergence to the
optimal value of problem (1) (Theorem 1).

2) We analyze the privacy-preserving performance of
PrFTPS-GD against honest-but-curious nodes and
eavesdroppers (Theorem 2). Specifically, we adopt the
uncertainty-based privacy notion [18] and show that the
adversary has infinite uncertainty about agents’ private
information under certain topological conditions.

3) PrFTPS-GD performance is evaluated via simula-
tions and compared with other state-of-the-art privacy-
preserving approaches (e.g., [20], [21]) over digraphs.
It is shown that our approach apart from adopting an
easily tuned constant stepsize (unlike the diminishing
stepsize in [20]), it computes the optimal solution
instead of the suboptimal one in [21].

Notations: In this paper, R™ and R™*P represent the set of
n dimensional vectors and n X p dimensional matrices. Z
denotes the set of positive integers. 1,, € R", I,, € R™*™ and
0,, € R™"*" represent the vector of ones, the identity matrix
and the zero matrix, respectively. For an arbitrary vector x,
we denote its ith element by x;. For an arbitrary matrix
M, we denote its element in the ¢th row and jth column by
[M];;. ® denotes the Kronecker product. The spectral radius
of matrix A is denoted by p(A). Matrix A is called row-
stochastic/column-stochastic if the sum of each row/column
equals to 1 and the entries of A are non-negative.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. Network Model

We consider a digraph G £ (V,€) with n nodes, where
the set of nodes and edges are V = {1,...,n} and £ C
VY x V, respectively. A communication link from node 7 to
node j is denoted by €;; = (j,i) € &, indicating that node
¢ can send messages to node j. The nodes who can send
messages to node ¢ are denoted as in-neighbours of node 7
and the set of these nodes is denoted as N, = {j € V |
€;; € E£}. Similarly, the nodes who can receive messages
from node ¢ are denoted as out-neighbours of node i and the
set of these nodes is denoted as N;” = {j € V | ¢;; € £}.
The cardinality of NV ;“ , is called the out-degree of node j
and is denoted as D;F =|N j+|. A digraph is called strongly
connected if there exists at least one directed path from any
node i to any node j with i # j.

B. Push-Sum Algorithm

The push-sum algorithm, introduced originally in [23],
aims at achieving average consensus for each node com-
municating over a digraph which satisfies the following
assumption.

Assumption 1: The digraph G is strongly connected.

Consider a network of n nodes, where each node has a
private initial state, termed as x;(0). The push-sum algorithm
introduces two auxiliary varaibles, z; 1(k) and x; »(k), and
assumes the out-degree is known for each node. The details
are as follows: for each node 7,

zatk+1) = Y pyk)zjalk),

JENT U{i}

k>01=1,2,

where p;;(k) = 1/(1 +D;r),Vz' € Nj+ U{j} and x;1(0) =
.’L’Z(O),.’EZ’Q(O) =1forie .

Proposition 1. [23] If a digraph G(V,€&) with n nodes
satisfies Assumption 1, then the ratio r;(k) = z;1(k +
1)/xi2(k + 1) asymptotically converges to the aver-
age of the initial values, i.e., we have khﬁnolo ri(k) =

Y ey i(0)/n, Vi e V.
C. Information Set and Privacy Inferring Model

Before defining privacy, we first introduce the privacy
inferring model. The adversary set A is assumed to obtain
some online data by eavesdropping on some edges &, C £
and nodes V, C V. The information set accessible to A at
time k is denoted as Z 4(k), which contains all transmitted
information accessible to A.

Then all the information accessible to A at time iteration
K is denoted as Z4(0: K) £ {Z4(0),Z4(1),...,Z4(K)}.

With the above model, we adopt an uncertainty-based
notion of privacy, which is proposed in [18]. Denote

the private information of node i as z,; € RP and
define a set AZu(xp;) as AZa(zp:) = {ZTpi |
the adversary’s information set = Z4(0 : K)}, which

contains all possible states that can correspond to x,; when
the information set accessible to A is Z4(0 : K).
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defined as

|Tpi — T

The diameter of
Diam{AZ4(z,;)} =

AIA(CEP,Z‘) is
sup
T, € ATa(p,)
are two different states that belong to

pyil
pyil?

/

where z,,; and 7, ;

set AZq(xp;).

Definition 1: The privacy of x,; is preserved against A
if Diam{AZ A(xp )} = 0.

In this paper, we consider distributed optimization prob-
lems, where local gradients usually carry sensitive informa-
tion. For example, in distribited-optimization-based localiza-
tion and rendezvous, exchanging the gradient of an agent
leads to disclosing its position [13]. Recent work shows that
gradients are directly calculated from and embed sensitive
information of training learning data [24]. Hence, the private
information is the gradient of each agent at all time iteration.
Then, we define the privacy preservation of each agent as
follow.

Definition 2: For a network of n agents in distributed
optimization, the privacy of agent j is preserved against A
if the privacy of its gradient value V f;(z;) evaluated at any
point x; is preserved.

We consider two types of adversaries, defined as follows.

Definition 3: An honest-but-curious adversary is a node
or a group of nodes which knows the network topology and
follows the system’s protocol, attempting to infer the private
information of other nodes.

Definition 4: An eavesdropper is an external adversary
who has the knowledge of network topology, and is able to
eavesdrop on some coupling weights and transmitted data.

III. MAIN RESULTS
A. Privacy-Preserving Finite-Time Push-Sum Algorithm

The main idea of our privacy-preserving approach is a
state decomposition mechanism.

Decomposition Mechanism: Let each node decompose its
state x; (k) into two substates x{;(k) and w?l(k), 1=1,2.
The initial values x{,(0) and :Lf ,(0) can be randomly chosen
from the set of all real numbers under constraint: mf 1(0) +
2§, (0) = 22;(0), 255 (0) = 0,2,(0) = 2,Vi € V, where
2;(0) denotes the private initial state of node s.

Under the state decomposition mechanism, the overall
dynamics become

b+ = 3 py(k)aguk) +ai ()l k),
JENT U{i}
oy (k1) =l (R)afy (k) + o (k)] (k).

2
with ¢ € V, I = 1,2. In this decomposition scheme, the
substate x{'; (k) is exchanged with other nodes while xf (k)
is never shared with other nodes. The coupling weights
between the two substates ¢, (k) and xf , (k) are asymmetric

and denoted as a2’ (k) and a? (k). The update weights for
substate xf ,(k) is denoted as af #(k). The outgoing link
weight from agent i to agent j is denoted as p;;(k). These
are design parameters and will be designed in the following

weight mechanism (Section III-A.1).

1) Weight mechanism: For k = 0,Vi € )V, we set
a?P(0) = 0,a2(0) = 1 and p;;(0) = 0,Vj ¢ N;". Also,
we allow p;;(0),Vj € N;-U{i} and a?**(0) to be arbitrarily
chosen from the set of all real numbers under the constraint
> i1 p5i(0) + af’a(()) = 1. For k > 1, we let pj;(k) =
1/(2+Dj) for j € N;" U {i} and p;i(k) = 0, otherwise.
Also, a?®(k) = 1/(2+ D), d?P (k) = a®P (k) = 1/2.

Remark 1: Under the above weight mechanism, the state-
decomposition-based push-sum (2) still preserves the prop-
erty of conventional push-sum. Rigorous theoretical analysis
will be provided in Section III-C.

To obtain the exact average value in finite time, we use
the minimal polynomial associated with iteration (2), in
conjunction with the final value theorem [25], [26].

Definition 5: (Minimal Polynomial of a Matrix.) The min-
imal polynomial of matrix P, denoted by Q(t) = tP+1 +

D .
> at’, is the monic polynomial of minimum degree D + 1

;he?t satisfies Q(P) = 0,, and «; is the polynomial coefficient.
Definition 6: (Minimal Polynomial of a Matrix Pair.) The
minimal polynomial associated with [P, ejT], denoted by
Qj(t) = thitl ZlD:JO Oéj,iti 0,a;; € R, is the
monic polynomial of minimum degree D; + 1 that satisfies
In what follows, we will show how to use the co-
efficients of the minimal polynomial to obtain the final
value in finite time. By using the iteration in (2), we
have ZiD:le ajizfq(k +1i) = 0,Vk € Zi;, where
ajp;+1 = 1. Thus, the minimal polynomial of a matrix
is unique due to the monic property. We denote the Z-
transform of x;1(k) as X,;1 = Z(z;1(k)). By the time-
shift property of the Z-transform, it is easy to obtain that
Xja(2) = (2 ag0 X251 (0271)/Q4(2). Since the
communication topology of the networked system is strongly
connected, the minimal polynomial @);(z) does not have
any unstable poles apart from one. Hence, we can define
polynomial p;(z) £ Q;(2)/(z — 1) £ ZiD:jO ﬂi(J)zi.

By the final value theorem [25] and [26], the final state
values of (2) are computed as ¢3 (j) = lim z%,(k) =

@5, )T, k— o0
lim(z — 1)X7(2) = 11175 where (2, )" =
(z$ (1), 25, (1), ..., 25 (Dj + 1)),1 = 1,2, and By is the
coefficient vector of the polynomial p;(z).

Denote the following vectors of 2k+1 successive discrete-
time values for the two iterations z%;(k),! = 1,2 at node j
as (zf'y,) " = (9,(1),2%,(1),..., 2%, (2k + 1)), = 1,2.

Moreover, define the associated Hankel matrix and the
difference vectors for [ = 1,2 as

T{(27') "}
z5,(1) 5(2) e af(k+1)
z,(2) z$,(3) o af(k+2) .
= . . . » Ll 2k
) (k+1) %k +2) z$,(2k + 1)
£ (25(2) — 23, (1), ... 202k + 2) — 25, (2k + .
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It is shown in [26] that for arbitrary initial values z; (1)
and x§,(1), B; can be computed as the kernel of the first
defective Hankel matrices F{(i‘f’%)T} and F{(fg"%)T},
except a set of initial conditions with Lebesgue measure zero.

From above analysis, we know 3; and D; can be different
for node j. Thus, in existing works [22], [25], all nodes are
assumed to know the upper bound of the network size. To
relax this assumption, Charalambous and Hadjicostis [27]
proposed a distributed termination mechanism, allowing all
nodes to agree when to terminate their iterations, given they
have all computed the average. The procedure is as follows:

o Once iterations (2) are initiated, each node j initiates

two counters c;, ¢;(0) = 0, and 7, 7;(0) = 0. Counter
¢; increments by one at every time step, i.e., ¢;(k+1) =
¢;(k)+1. The way counter r; updates is described next.

« Alongside iterations (2) a max-consensus algorithm is

initiated as well, given by

0;(k+1)= max max{0;(k),c;(k)}},  (3)
1) = s {max{, (k). ()}
with 6;(0) = 0. Then, r; is updated as follows:

_J0, if 6;(k+1) #0;(k),
k1) = {w(k) +1,

« Once Hankel matrices I'{(z{ 5, )"} and T{(z5 )"}
lose rank, node j saves the count of the counter c; at that
time step, denoted by k¢, as cf, i.e., cf £ ¢; [k;’], and it
stops incrementing the counter, i.e., Vk' > k¢, c[k'] =
cj[k9] = c§. Note that ¢ = 2(D; + 1) + 1.

« Node j can terminate iterations (2) when r; reaches cf.

Therefore, based on the distributed termination mechanism

[27], [28], we design a privacy-preserving finite-time push-
sum algorithm (PrFTPS) as presented in Algorithm 1, which
guarantees the minimum number of iteration steps to obtain
the exact average without any global information.

4)

otherwise.

Algorithm 1 A Privacy-Preserving Finte-Time Push-Sum
Algorithm (PrFTPS)

1: Input: Initial state z;(0), step ¢, graph G(V,E).

2: if t =0 then

3: Run the privacy-preserving iteration (2) and the max-
consensus algorithm (3), store the vectors (7§ Dj)T
(79 Dj)T, increment the value of the counter ¢;(k) and
find the value of the counter r;(k) via (4).

4: Increase the dimension k of the Hankel matrices
I‘{(:E‘f‘_’Dg)T} and I‘{(E%Dg‘)—r} until k% at which they
lose rank. Once this happens, store the kernel 3; of the
first defective matrix and the value c¢§ = 2(D; +1) + 1.

5: Continue iteration (2) until iteration Fk;; where
7j(kj) = ¢} and store Diax = (kj —2D; —2)/2 — 1.

6: else

7: Run the privacy-preserving algoirthm (2) for kp.x =
Dinax + 2 steps with the same 3;.

bl

. (% p,) " B;
8: Compute the average value as £9V¢ = L ML
J (x2,Dj) Bj

9: Output: Node j € V outputs 7.

Remark 2: Compared to existing state-decomposition-
based privacy-preserving average consensus in [15] and [18],
PrFTPS is applicable to general digraphs, while the method
in [15] is limited to undirected graphs with doubly-stochastic
matrices. Moreover, our innovative weight mechanism (Sec-
tion III-A.1) maintains constant weights in iteration (2) for
k > 1, as opposed to time-varying weights in [15] and [18].
These constant weights play a crucial role in the final value
theorem [26], allowing PrFTPS to compute an exact average
consensus in finite time. In contrast, the weight mechanisms
in [15] and [18] only permit asymptotic average consensus,
which limits their application to solving distributed optimiza-
tion problems. Our proposed weight mechanism overcomes
this limitation and facilitates the application of our PrFTPS
algorithm to solve distributed optimization problems while
preserving privacy, as shown in Algorithm 2.

B. Finite-Time Privacy-Preserving Push-Sum based Gradi-
ent Descent Algorithm

In this subsection, we design a PrFTPS based gradient
method to address problem (1). We first assume the following
conditions about Problem (1).

Assumption 2: Each objective function f; is p—strongly
convex with L—Lipschitz continuous gradients, i.e.,

(Vfi(x) = Vfily).x —y) > pllx = yI]%,
IVfi(x) = Vi) < Lix -yl vxyeR"

Under Assumption 2, Problem (1) has a unique optimal
solution z* € R? [8].

To address problem (1) distributively, we propose the fol-
lowing PrFTPS based GD algorithm inspired by distributed
structures in [7], [8], [22]. Starting from the initial condition
x;(0) € RP and y;(0) = V f;(x;(0)), for all ¢ > 0, we have

yi(t) < Algorithm 1(V f;(z;(¢)), 1),

zi(t+1) = Z

JENT U{i}

(5a)

aijr;(t) — nyi(t), (5b)

where 7 is the stepsize and A = [a;;] € R™ is row-stochastic.
The details are summarized in Algorithm 2.

Algorithm 2 guarantees that the number of iterations
needed at each step ¢ > 1 is the minimum. Fig. 1 shows
the number of iterations needed at every optimization step.

Algorithm 2 A Privacy-Preserving Finite-Time Push-Sum
based GD Algorithm (PrFTPS-GD)

1: Initialization: Stepsize 7, maximum optimization itera-
tion number 7, graph G(V, E).

2: Input: Node 7 € V sets the initial value x;(0),y;(0) =
V fi(x;(0)) and ¢t = 0.

3: for t <7T do
Put Vf;(z;(t)),t as input to Algorithm 1 and get

output  £¢; design y;(t) = Z*v°.

5: Compute x;(t + 1) using (5b) with y;(#).

: t—t+1

7: Output: Node ¢ € V obtains the solution z*.

»
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k 1 kmax .

. kmax

t=20 1

Fig. 1: The finite-time consensus algorithm is terminated
after k1 = 4(Dpax + 1) iterations at ¢ = 0. For ¢t > 1,
the consensus is terminated after kp,x = Dmax + 1 iterations.

Remark 3: Compared to conventional distributed opti-
mization algorithms, such as AB [7] and Push-Pull [8],
PrFTPS-GD requires additional communication rounds for
each optimization step, as illustrated in Fig. 1. Although
the separate time-scales for optimization and consensus steps
may slow down the convergence speed, they are crucial for
ensuring privacy preservation and accuracy of PrFTPS-GD,
as demonstrated in Sections III-C and III-D.

C. Convergence Analysis

From the weight mechanism, it can be seen that for k > 1,
the coupling weights are constants. Hence, iteration (2) can
be written by using matrix-vector notation as follows:

xy(k+1) = Pxy(k), Vk>1,01=1,2, (6)
where (k) = (25 (), ... a8 (k)2 (K), ..., 2l (k)]
~ _ P *In T B’a B7a _ .
P=1\ gIn A =diag(ay?, ..., ay%), P = [p;].

Moreover, equation (5b) can be rewritten as
x(t+1) = Az(t) — ny(1), @)

where A = A®L,z(t) = [z1()7,...,2,(t)"]" and
y(t) = [yi(®)7,...,yn(t)T]"T. Before showing Theorem 1,
the following lemmas are needed.

Lemma 1: (Theorem 8.4.4 in [29]) Under Assumption 1,
the matrix A has a unique nonnegative left eigenvector u '
(with respect to eigenvalue 1) with u 1., = np.

Lemma 2: (Adapted from Lemma 4 in [8]) Under As-
sumptions 1, there exists a matrix norm || - || 4, defined as
||[M||a =AM A~ forall M € R"P*"P where A € R"P*"P
is invertible, such that o4 = ||A — %HA < 1, where
A is the update matrix defined in (7), aTnd 0 4 is arbitrarily

close to the spectral radius p(A — IPT") <L

Now, we present Theorem 1 in the following.

Theorem 1: Under Assumptions 1 and 2, for node j € V,

1) Algorithm 1 outputs the exact average of initial values
of all nodes, i.e., Vj € V, 9" = L5 ey i(0).

2) When 0 < 5 < ﬁ, where p, L are defined in
Assumption 2, Algorithm 2 converges linearly related to
the optimization iteration number to the global optimal, i.e.,
[|x(t) — 1 ® x*||2 converges to O linearly.

Proof: Due to the space limitation, details of the proof
can be found in our technical report [30]. |

D. Privacy-preserving Performance Analysis

In this subsection, we analyze the privacy-preserving per-
formance of Algorithm 2 against honest-but-curious nodes
and eavesdroppers. First, the following assumption is needed.

Assumption 3: Considering a digraph G(V, &), each agent
i, Vi € V, does not know the structure of the whole network,
i.e., the Laplacian of the network.

This assumption shows that agent ¢ has no access to the
whole consensus dynamics in (2), which is very natural in
distributed systems since agent ¢ is only aware of its outgoing
link weights p;;(k),j € N, U {:}. Without other agents’
weights, matrix P in (6) is inaccessible to agent 1.

Note that only local gradient information is exchanged in
Algorithm 1, and the outputs of Algorithm 1 are the same for
each agent. Hence, if Algorithm 1 is able to preserve privacy
of each agent in the network, we can deduce that Algorithm
2 can preserve privacy of each agent.

Next, we show the privacy preservation of Algorithm 1.

Under Algorithm 1, the information set accessible to the
set of honest-but-curious nodes N at time k can be defined
as (k) = {22, (k), 2, (k), pja(k), pap(k), 25, (), | p €
Ny,aeN,jeV,i=1,2}

Similar, an eavesdropper R is assumed to eavesdrop some
edges €;; € &g and its information set is denoted by
IR(]{J) £ {J);{'l(k‘),pi]‘(k) | Veij elr,jeV,I= 1,2}.

Theorem 2: Under Assumptions 1 and 3, for node 5 € V,
under Algorithm 1, the privacy of agent j can be preserved:

1) Against a set of honest-but-curious nodes N if at least
one neighbor of node j does not belongs to N, i.e., N f U
Ny ZN.

2) Against eavesdropper R if there exists one edge €,,; or
€;m that eavesdropper R cannot eavesdrop, where m € N j+

ormé€ N ;-
Proof: Due to the space limitation, details of the proof
can be found in our technical report [30]. |

IV. SIMULATIONS

Consider a strongly connected digraph containing n = 5

agents and the following distributed least squares problem:
_ 1 & 1 )

min F(z) = — ;fz(x) =< ; | Aiz — b,
where A; € R?7*P is only known to node i, b; € R? is the
measured data and z € R? is the common decision variable.
In this simulation, we set ¢ = p = 3 and n = 0.1. All
elements of A; and b; are set from independent and iden-
tically distributed samples of normal distribution N(0, 1).
The finite-time consensus (Algorithm 1) stage consists of
k1 =64 (t = 0) and kpax = 17 (¢ > 1) communication
steps inside each PrFTPS-GD optimization iteration, i.e., the
optimization variable x(0) takes 64 steps to become x(1)
and then z(t) is updated every 17 iterations for ¢ > 1.

The normalized residual Zf(| |z; () — 2*||/]]2: (0) — z*||)
is illustrated in Fig. 2 to compare PrFTPS-GD with DPGT
[20] and SD-Push-Pull [21]. Notice that as we have multiple
consensus steps in Algorithm 1 inside our PrFTPS-GD while
there is only one step in DPGT and SD-Push-Pull, we have
scaled each PrFTPS-GD optimization iteration number to
include the consensus number (i.e., k1 and kp,x) directly.
It is shown that the proposed PrFTPS-GD converges linearly
related to optimization iteration number. The stepsizes of
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Fig. 2: Performance comparison among our proposed
PrFTPS-GD, DPGT [20] and SD-Push-Pull [21].

all algorithms are manually tuned to obtain the correspond-
ing best convergence performance. For SD-Push-Pull, the
stepsize is set to be n = 0.1 and it can be seen that SD-
Push-Pull only converge to suboptimality while PrFTPS-
GD can converge to the optimal point. In terms of DPGT,
we choose the stepsize with the diminishing sequence as

E _ _0.02 E _ 1 Eo_ 1 :
A= o M T Toawsr 2 = Tyoqpes Fig 2
demonstrates clearly that PrFTPS-GD converges faster to the

optimal solution than DPGT.
V. CONCLUSION AND FUTURE WORK

In this paper, a privacy-preserving finite-time push-sum
based gradient descent algorithm is proposed to solve the
distributed optimization problem over a directed graph. Com-
pared to existing privacy-preserving algorithms in the liter-
ature, the proposed one can converge linearly to the global
optimum. Moreover, privacy of each agent is preserved via
a state decomposition mechanism.

Future work includes considering constrained optimization
problems in large-scale and considering privacy-preserving
algorithms with quantization communication.
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