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Abstract— This paper examines the dynamic properties of a
hybrid momentum observer for mechanical systems, extending
the previously-reported results. The observer estimates the
momentum vector from measurements of the configuration
vector and is shown to be input-to-state stable with respect to
external perturbations. In the absence of external perturbation
the observer is shown to be globally exponentially stable,
converging at a user-controlled rate. The observer is constructed
from a port-Hamiltonian representation of mechanical systems
and exhibits a passivity property with respect to an input-output
port that can be utilised for subsequent control design. The
theoretical results are demonstrated via numerical simulation
on a 2-link vertical manipulator.

I. INTRODUCTION

Energy-based methods for control have proved effective
for developing solutions to a wide variety of multi-domain
physical systems [1]. The approach considers the underlying
physical structure of the system under study to derive con-
trol laws that have a large or global region of attraction.
Mechanical systems exhibit rich structure that has been
successfully exploited for a wide variety of control tasks
such as stabilisation, tracking and path following [2], [3],
[4].

These approaches, however, typically assume complete
knowledge of the system’s state vector for implementation.
For mechanical systems, this corresponds to complete knowl-
edge of both the configuration and momentum of the system
under control. In practice it is often reasonable to assume the
existence of high-fidelity position measurements, but direct
measurement of the velocity or momentum is typically more
difficult to obtain. To obtain this information observers are
implemented that combine the configuration measurements
with the system model to estimate the momentum of the
system under control.

Several authors have considered observers to estimate
the momentum or velocity of nonlinear mechanical systems
using configuration measurements. Several smooth solutions
to the observer problem have been proposed using the
Immersion & Invariance (I&I) technique [5]. The technique
was first applied to nonholonomic systems in [6] and then
extended to a class of mechanical systems that are ‘partially
linearisable via change of coordinates’ (PLvCC) in [7], [8].
This class was extended to general mechanical systems in
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the works [9], [10], [11] by considering a coordinate trans-
formation that results in the kinetic energy being described
independent of the configuration. The alternate approach of
using hybrid observers to detect velocities from configuration
measurements were considered in [12], [13]. In both cases,
the hybrid dynamics were introduced to resolve the topology
of the considered rotation spaces.

In this work we consider the hybrid momentum observer
that was previously reported in [14]. The analysis is extended
to include an unknown perturbation acting on the system
under observation. It is shown that the observation error
is input-to-state stable (ISS) with respect to the unknown
perturbation. It is additionally shown that, in the absence
of an external perturbation, the observation error is globally
exponentially stable. In contrast with observers constructed
with I&I, the proposed observer has significantly lower state
dimension and is computationally simpler.
Notation. Function arguments are declared upon definition
and are omitted for subsequent use. 0n×m denotes a n×m
matrix where each entry is equal to zero and In is a n× n
identity matrix. For a map H : Rn → R we denote the
transposed gradient as ∇H :=

(
∂H
∂x

)⊤
. For a real matrix A ∈

Rn×n, we denote the symmetric component as symm(A) =
1
2 (A+A⊤). For a discrete event occurring at time T and a
time-varying parameter ϕ(t), ϕ− = limt→T− ϕ(t) whereas
ϕ+ = limt→T+ ϕ(t). R+ indicates positive real numbers
whereas Z+ indicates positive integers.

II. BACKGROUND AND PROBLEM FORMULATION

In this section the considered system model is introduced
and some relevant properties of hybrid systems are revised.

A. System model
In this note we consider the class of mechanical systems

described in the port-Hamiltonian framework[
q̇
ṗ0

]
=

[
0n×n In
−In −D0(q)

] [
∇qH0

∇p0H0

]
+

[
0n×n

G0(q)

]
u−

[
0n×1

δp0(t)

]
y = G⊤

0 (q)∇p0H0

H0(q, p0) =
1

2
p⊤0 M

−1(q)p0 + V (q),

(1)

where q ∈ Rn is the configuration, p0 ∈ Rn is the
momentum, V (q) ∈ R+ is the potential energy, M(q) =
M⊤(q) ∈ Rn×n is the uniformly positive definite mass
matrix satisfying

mIn ≤ M(q) = M⊤(q) ≤ mIn, (2)
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for some m > m > 0 and all q ∈ Rn, H0(q, p0) ∈ R+ is the
Hamiltonian, G0(q) ∈ Rn×n is the full rank input mapping
matrix, D0(q) = D⊤

0 (q) ∈ Rn×n is the open-loop damping
matrix which is positive semi-definite and u, y ∈ Rn are the
input and natural passive output, respectively. We addition-
ally assume that the mass matrix M(q) is differentiable for
all q and has continuous derivatives. The term δp0

(t) ∈ Rn

is an unknown time-varying force disturbance with upper
bound given by

γ = sup
t

∥δp0(t)∥ , (3)

for some γ ≥ 0. This force disturbance can represent
the effects of external forces, input signal quantisation or
modeling errors. Note that the bound γ does not need to be
known for the observer implementation.

As design of the input term in (1) is not considered in
this work, we cannot guarantee the existence of the forward
solution for all time. For example, the input or disturbance
could be such that the system exhibits a finite escape time.
With this in mind we make the following assumption on the
system solution.

Assumption 1: There exists a solution (q(t), p0(t)) to the
system (1) which is defined for all time on the domain DL =
[0, TL), where TL ≤ ∞.

B. Hybrid systems

A hybrid system with state x ∈ Rn and input (disturbance)
term w ∈ Rm is described by

ẋ = f(x,w) for (x,w) ∈ C

x+ = g(x,w) for (x,w) ∈ D,
(4)

where C,D ⊂ Rn × Rm that describe the domains of
continuous and discrete dynamics, respectively. Solutions of
hybrid systems, x(t, j), are defined on hybrid time domains
E ⊂ R+ × Z+ where E = ∪J−1

j=0 ([tj , tj+1] , j) for some,
possibly infinite, sequence of times 0 = t0 ≤ t1 ≤ t2 ≤
· · · ≤ tJ [15, Definition 2.3].

Solutions to hybrid systems combine the behaviours of
continuous and discrete-time systems, with the possibility
that the solutions are purely continuous or discrete. In this
work we consider the design of a hybrid momentum observer
for the system (1) which has a solution on the domain DL. As
such, we are interested in ensuring that the proposed hybrid
observer produces a solution on the same time domain. Given
a hybrid time domain E we define

sup
t

E = sup {t ∈ R+ : ∃j ∈ N such that (t, j) ∈ E} . (5)

Other properties of solutions such as Zeno and eventually
discrete behaviours can be found in [15, Chapter 2].

C. Passivity

Passivity for hybrid systems follows analogously from the
standard continuous time definition. Considering the hybrid
system (4), we introduce a storage function S : Rn → R and
output y(x) ∈ Rm.

Definition 1: [16, Definition 9.4] The hybrid system (4)
with storage function S and output y is flow passive if

Ṡ(x) ≤ −ρ(x) + y⊤w for (x,w) ∈ C

S+(x) = S−(x) for (x,w) ∈ D,
(6)

where ρ(x) is a positive semi-definite function of x. It is
flow strictly passive if ρ(x) is positive definite.

D. Problem statement and contributions

In this work we consider the momentum observer reported
in [14] which estimates the momentum vector of mechanical
systems described in the form (1) using measurements of the
configuration vector q(t). Here we significantly extend the
previously-reported analysis to establish the following:

• An unknown disturbance term δp0(t) is added to the
system description and it is shown that the observer
estimation error is ISS with respect to the disturbance.

• A technical assumption related to the underlying system
dynamics has been removed, verifying that the origin of
the observer error dynamics is globally exponentially
stable for all mechanical systems of the form (1).

III. MOMENTUM OBSERVER

In this section we review the hybrid momentum observer
for the system (1), which was previously reported in [14].
The analysis is significantly extended when compared to that
work, considering the effects of unmodeled disturbances and
removing the previously-used the technical assumption.

A. Momentum transformation

The momentum observer for (1) is defined in a non-
canonical set of coordinates with the property that, under
the transformation, the kinetic energy can be described inde-
pendently of q. As M(q) is uniformly positive definite, there
exists a unique uniformly positive definite matrix square root
T (q) ∈ Rn×n satisfying

M−1(q) = T 2(q) = T (q)T (q), (7)

where

m− 1
2 In ≤ T (q) = T⊤(q) ≤ m− 1

2 In. (8)

A momentum transformation is defined using the matrix
T (q) as

p := T (q)p0, (9)

which normalises the kinetic energy’s dependence on the
configuration q.

As the mapping f : T → TT︸︷︷︸
M−1

is differentiable and

invertible, we note that the inverse map f−1 : TT → T
is differentiable for all positive definite T by the inverse
function theorem [17, Theorem C.34]. Consequently, T (q)
and T−1(q) are differentiable due to the differentiability of
M(q). As M(q) has continuous derivatives, T (q) must have



continuous derivatives also. Noting this, the dynamics (1)
can be written in the coordinates (q, p) as[

q̇
ṗ

]
=

[
0n×n T (q)
−T (q) S(q, p)−D(q)

] [
∇qV
p

]
+

[
0n×n

G(q)

]
u

−
[
0n×n T (q)

]⊤
δp0

H(q,p) =
1

2
p⊤p+ V (q),

(10)

where

D(q, p) = T (q)D0(q)T (q)

S(q, p) = T (q)

[
∂⊤

∂q
(T−1(q)p)− ∂

∂q
(T−1(q)p)

]
T (q)

G(q) = T (q)G0(q).

(11)

The matrix S(q, p) is linear in the second argument p.
Using this property we implicitly define a matrix S̄(q, p) ∈
Rn×n such that for any two vectors a, b ∈ Rn

S̄(q, a)b = S(q, b)a. (12)

While S(q, p) is skew-symmetric, S̄(q, p) does not have the
same property. The matrix S̄(q, p) is linear in its second
argument, implying that

S̄(q, a+ b) = S̄(q, a) + S̄(q, b). (13)

We additionally note that as the entries of the matrix S(q, p)
are continuous with respect to q, p the entries of S̄(q, p) are
continuous also.

Remark 1: From Assumption 1 and the bounds on T (q)
in (8), the solution (q(t), p(t)) for (10) exists on the domain
DL.

Remark 2: Implementation of the proposed observer re-
quires the terms T (q), S(q, p) and S̄(q, p), which are difficult
to compute in closed-form. The term T (q) can be evaluated
numerically point-wise as the matrix square root of M−1(q).
The partial derivatives ∂

∂qi

(
T−1(q)

)
, which are required to

evaluate S(q, p), can be evaluated point-wise as the solution
to the Lyapunov equation

∂

∂qi
(M(q)) =

∂

∂qi

(
T−1(q)

)
T−1(q) + T−1(q)

∂

∂qi

(
T−1(q)

)
.

(14)
Using the partial derivatives we can define the matrix A(q, p)
as

A(q, p) =
[

∂
∂q1

(
T−1(q)

)
p · · · ∂

∂qn

(
T−1(q)

)
p
]

(15)

which can be used to construct S(q, p) as

S(q, p) = T (q)
[
A⊤(q, p)−A(q, p)

]
T (q). (16)

Due to the linearity of S(q, p) it can be represented as

S(q, p) =

n∑
i=1

S(q, ei)pi. (17)

Using this representation, the matrix S̄(q, p) can be com-
puted as

S̄(q, p) =
[
S(q, e1)p S(q, e2)p · · · S(q, en)p

]
. (18)

B. Momentum observer
In this section we consider the hybrid momentum observer

previously reported in [14]. The momentum observer as-
sumes configuration measurements are available for control
purposes and generates an estimate for the momentum vector
p, denoted by p̂(t) ∈ Rn. The observer additionally utilises
a scalar piece-wise constant state ϕ(t) which acts to regulate
the rate of convergence of the observer.

The observer dynamics are given by the equations

[ẋp, ϕ̇] = [fxp(q, p̂, ϕ), 0], (xp, ϕ, q) ∈ C
[x+

p , ϕ
+] = [xp − κq, ϕ+ κ], (xp, ϕ, q) ∈ Cc

p̂(xp, ϕ, q) = xp + ϕq,

(19)

where
C :=

{
(xp, ϕ, q) | ϕT (q)− symm

(
S̄(q, p̂)

)
≥ κIn

}
fxp(q, p̂, ϕ, u, uo) := [S(q, p̂)−D(q)− ϕT (q)] p̂

− T (q)∇qV (q) +G(q) [u+ uo] ,

(20)

p̂ ∈ Rn is an estimate of the momentum vector p, xp ∈ Rn

is a piece-wise continuous observer state and ϕ ∈ R+

is a piece-wise constant observer state and Cc is the set
complement of C. The tuning parameter κ > 0 is chosen to
set the ISS bounds and the rate of convergence. The input u
is the same input used for the plant (10) whereas uo ∈ Rn is
an additional input that can be used for subsequent control
design. The solution to the observer (19) is defined on a
hybrid time domain denoted by Eo. It will be shown in
subsequent analysis that supt Eo = TL.

The stability properties of the momentum observer (19) are
now considered. It is shown that the error dynamics formed
by taking the difference of the momentum estimate and the
true momentum forms a set of passive hybrid dynamics
where the input signals uo, δp0

form passive inputs. It is then
shown that the estimation error is ISS and, in the absence
of any disturbance, converges to the origin at an exponential
rate. The proof is inspired by [18, Theorem 2].

Proposition 1: Consider the hybrid momentum observer
(19) for estimating the momentum of the mechanical system
(10). The resulting estimation error system has the following
properties:

1) The momentum estimation error p̃ := p̂ − p has the
dynamics

˙̃p = Fo(q, p, p̃, ϕ)∇p̃Ho +G(q)uo + T (q)δp0 ,

(xp, ϕ, q) ∈ C
p̃+ = p̃−, (xp, ϕ, q) ∈ Cc

Fo(q,p, p̂, ϕ) = S(q, p) + S̄(q, p̂)−D(q)− ϕT (q)

yo = G⊤(q)p̃

Ho(p̃) =
1

2
∥p̃∥2

(21)

and both p̃(t), Ho(t) are continuous on Eo.
2) The observer error dynamics (21) are flow strictly

passive with input-output pairs (uo, yo), (δp0
, yδ) and

storage function Ho(p̃), satisfying

Ḣo ≤ −2κHo + p̃⊤G(q)︸ ︷︷ ︸
:=y⊤

o

uo + p̃⊤T (q)︸ ︷︷ ︸
:=y⊤

δ

δp0 , (xp, ϕ, q) ∈ C

H+
o = H−

o , (xp, ϕ, q) ∈ Cc

(22)



3) If uo = 0n×1, the momentum estimate p̂(t) exists for
all t ∈ DL and the observer estimation error p̃(t) is
ISS with respect to an unknown input δp0 , satisfying
the bound

∥p̃(t)∥ ≤
√

2Ho(0)e
− 1

2κt +m− 1
2κ−1γ (23)

for all t ∈ DL. If δp0
= 0n×1, γ = 0 and p̃ = 0n×1 is

a globally exponentially stable equilibrium.
Proof: Claim 1 is similar to [14, Proposition 4] with

the additional disturbance δp0 . Consider time derivative of p̃
and substitute the expressions for ṗ, q̇ and ẋp, from (10) and
(19). The resulting dynamics can be simplified as

˙̃p = ˙̂p− ṗ

=ẋp + ϕq̇ − ṗ

=−
[
D(q) + ϕT (q)− S̄(q, p̂)− S(q, p)

]
p̃

+G(q)uo + T (q)δp0(t)

(24)

which agrees with (21).
To verify continuity of p̃(t), Ho(t), notice that on the set

C the dynamics are smooth so the claim holds on the same
set. On the set Cc the momentum estimate p̂ satisfies

p̂+ = x+
p + ϕ+q = x−

p − κq +
(
ϕ− + κ

)
q = p̂−. (25)

It then follows that

H+
o =

1

2

∥∥p̂+ − p
∥∥2 =

1

2

∥∥p̂− − p
∥∥2 = H−

o , (26)

verifying the claim.
Claim 2 can be verified by considering the flow dynamics

(21) and noting that on the set C the function Ho satisfies

Ḣo =
1

2
p̃⊤

[
Fo(·) + F⊤

o (·)
]
p̃+ p̃⊤G(q)uo + p̃⊤T (q)δp0

≤ −κ ∥p̃∥2 + y⊤o uo + y⊤δ δp0
.

(27)

Continuity of Ho through any jump event, verified in claim
1, completes the claim.

Now we turn our attention to Claim 3 where we must first
verify that supt Eo = TL to ensure that the solution of the
momentum observer exists for all t ∈ DL. This is done by
ensuring that only finitely many jump events can happen on
any closed subset of the time interval DL, ruling out any
Zeno or eventually discrete behaviours on the interior of the
time domain of interest. From the inequality (27) with uo = 0
we have that on the set C

Ḣo ≤ −κ ∥p̃∥2 + p̃⊤T (q)δp0

≤ −κ ∥p̃∥2 + c

2
p̃⊤T (q)T (q)p̃+

1

2c
δ⊤p0

δp0 ,
(28)

where c > 0 is an arbitrary positive constant resulting from
application of Young’s inequality. Recalling the definition (7)
and the bound (2) we take c = mκ, resulting in

Ḣo ≤ −κHo +
1

2mκ
∥δp0(t)∥

2
. (29)

By the comparison Lemma [19, Lemma 3.4] and the solution
to a LTI system [19, Chapter 4.9], Ho(t) satisfies

Ho(t) ≤ Ho(tj)e
−κ(t−tj) +

∫ t

tj

e−κ(t−τ) 1

2mκ
∥δp0(τ)∥

2 dτ

≤ Ho(tj)e
−κ(t−tj) +

1

2mκ
γ2e−κt

∫ t

tj

eκτ dτ

(30)

where j is the jump index, t ∈ [tj , tj+1] is a subset of Eo with
constant jump index and γ is the disturbance bound from (3).
A global bound for the full time domain is now established
via an induction argument. Suppose that for t ∈ [tj−1, tj ],
Ho(t) satisfies the bound

Ho(t) ≤ Ho(0)e
−κt +

1

2mκ
γ2e−κt

∫ t

0

eκτ dτ. (31)

It follows that at time t = tj , Ho must satisfy the bound

Ho(tj) ≤ Ho(0)e
−κtj +

1

2mκ
γ2e−κtj

∫ tj

0

eκτ dτ. (32)

Substituting this value into (30) recovers the bound (31),
but for the time interval t ∈ [tj , tj+1]. As this bound holds
interval t ∈ [0, t1] directly from (30), it follows by induction
that the bound (31) holds on the full hybrid time domain Eo.
By evaluating the integral in (31), it follows that any solution
to the observer must satisfy

Ho(t) ≤ Ho(0)e
−κt +

1

2mκ2
γ2 (33)

on Eo. Substitution of the expression for Ho in (21) and
applying the Minkowski inequality recovers (23) on Eo.

We now verify that supt Eo = TL by excluding the
possibility of Zeno or eventually discrete behaviours of the
observer on the interior of DL. Consider an finite time
interval Ta,b = [ta, tb] with 0 ≤ ta < tb < TL and note
from Remark 1 that (q(t), p(t)) exists on this interval. From
the definition of the flow domain in (20), the system is in
the flow domain C provided that ϕ satisfies

ϕT (q) ≥ κIn + symm
(
S̄(q, p̂)

)
≥ κIn + symm

(
S̄(q, p)

)
+ symm

(
S̄(q, p̃)

)
,

(34)

where the linearity of S̄(q, p) in its second argument has been
used to evaluate the second line. On the closed time interval
Ta,b the solutions q(t), p(t) exist and are bounded. As the
elements of S̄(q, p) are continuous functions of q, p and Ta,b

is closed, each element of symm
(
S̄(q, p̂)

)
is bounded on

Ta,b by the extreme value theorem. Applying Gershgorin’s
circle theorem, each eigenvalue of symm

(
S̄(q, p)

)
must be

contained within a disk with radius defined by one of the
matrix row sums [20, Theorem 6.1.1]. As each matrix entry
is bounded the row sums, and hence the eigenvalues, are
bounded also. Therefore there exists a value ϕ̄a,b such that
the inequality (34) holds for on the interval Ta,b for any
ϕ ≥ ϕ̄a,b. We conclude therefore that only finitely many
jumps can occur in Ta,b, ruling out any Zeno or eventually
discrete behaviour on the interval. As the interval Ta,b is
an arbitrary closed subset of DL, it follows that supt Eo =



Fig. 1. Vertical 2 degree-of-freedom manipulator.

TL the observer solution for p̂(t) exists for all t ∈ DL.
Consequently, the inequality (23) holds for all t ∈ DL. If
δp0

= 0n×1, we have that γ = 0 by (3). It follows from (23)
the p̃ = 0n×1 is a globally exponentially stable equilibrium,
verifying Claim 3.

Remark 3: The observer input uo is not directly used in
this work but has applications for control purposes as studied
in [14]. The passive input-output pair can be interconnected
with a mechanical system, resulting in the momentum esti-
mate being a passive output from the interconnected plant-
observer system.

Remark 4: As was reported in [14], the hybrid momentum
observer has dimension n + 1, which is significantly lower
than comparible I&I-based observers. For example, the so-
lution reported in [10] has dimension 4n+1. To understand
why this is possible, note that the observer requires ϕ to be
such that the inequality defining C in (20) is satisfied. This
inequality can be tested using only position measurements,
but the derivative of this expression requires knowledge of
q̇. Works that consider a smooth solution to the observer
problem employ higher dimensions to compensate with the
fact that q̇ is unavailable whereas the hybrid observer avoids
this difficulty by taking ϕ to be piece-wise constant.

Remark 5: Proposition 1 suggests that a large κ provides
performance benefits due to an increased convergence rate
and attenuation of force disturbances on the estimation error.
Note from the observer dynamics in (20), however, that
an increased κ will also increase sensitivity to imperfect
measurements of the configuration vector q. The authors
believe that there is a trade-off between sensitivity to external
disturbances and measurement noise that will be investigated
in future works.

IV. VERTICAL MANIPULATOR EXAMPLE

In this section, the proposed momentum observer is ap-
plied to a 2 degree-of-freedom manipulator (See Figure 1)
to demonstrate both the exponential convergence and ISS
properties. The system is driven by a known input torque
at each joint, but an unknown time-varying disturbance is
also assumed at each joint. This disturbance could represent
unmodelled forces, input signal quantisation and parameter
uncertainty. The Matlab code used to produce the presented
results is available at https://doi.org/10.24433/
CO.0241413.v1.

A. System model
The vertical manipulator can be described in the form (1)

with configuration q = (θ1, θ2), where θ1, θ2 describe the
orientation of the first and second links with respect to the
horizontal plane, respectively. The centre of mass of each
link is assumed to be at the mid-point of the link. The mass
matrix is described by

M0(q) =

[
J1 +

1
4
m1l

2
1 +m2l

2
1

1
2
l1l2m2 cos(θ1 − θ2)

1
2
l1l2m2 cos(θ1 − θ2) J2 +

1
4
m2l

2
2

]
,

(35)
where l1, l2,m1,m2, J1, J2 are the length, mass and mo-
ments of inertia of each link. The canonical momentum
vector is then described by p0 = M(q)q̇. The potential
energy is described by

V (q) = m2g

(
l1 sin θ1 +

1

2
l2 sin θ2

)
+

1

2
m1gl1 sin θ1, (36)

where g is the acceleration due to gravity. The damping
matrix is given by

D0(q) =

[
dj1(q) + dj2(q) −dj2(q)

−dj2(q) dj2(q)

]
, (37)

where dj1(q) and dj2(q) are the state-dependant coefficients
of friction of the first and second joints, respectively. Finally,
the input mapping matrix is described by

G0 =

[
1 −1
0 1

]
. (38)

Construction of the observer (19) requires the matrices
T (q), S(q, p), S̄(q, p), defined in (7), (11), (12), respectively.
For the presented example, these quantities were evaluated
numerically point-wise using the methods described in Re-
mark 2. This approach requires only a symbolic expression
for the mass matrix for computation. The interested reader
should refer to the linked simulation code for an example
implementation.

The following model parameters are used to generate all
subsequent simulation results:

m1 = 3

l1 = 1

J1 =
3

12

m2 = 3

l2 = 1

J2 =
3

12

dj1(q) = 1

dj2(q) = 1

g = 9.8.

For all simulations the system was initialised from the config-
uration q(0) = [0, 0]

⊤ with the initial canonical momentum
p0(0) = [−1, 2]

⊤. The manipulator and observer inputs were
set to

u =

[
8 sin(t)
4 cos(3t)

]
, u0 =

[
0
0

]
. (39)

B. Exponential convergence

First the observer was tested in the case that there is
no disturbance acting on the manipulator system (δp0

(t) =
02×1). From Proposition 1 the observer should converge at
an exponential rate, satisfying the bound (23) with γ = 0.
As the value κ is a tuning parameter in the observer, it is
expected that increasing values of κ should lead to a faster
rate convergence.

Simulation results for several choices of κ are shown in
Figure 2. The first plot shows the norm of the momentum
estimation error on a log scale. As expected, increasing
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Fig. 2. Observer performance for several tuning gains in the case of no
input disturbance. The first plot shows the square of the normed momentum
estimation error on a log scale. The second plot shows the piece-wise
constant observer state ϕ.
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Fig. 3. Observer performance for several tuning gains in the case of an
unknown input disturbance.

values of κ lead to an increased rate of convergence of
the observe. The second plot shows the piece-wise constant
observer state ϕ for each choice of κ. As the value of ϕ is
updated to satisfy (20), it is not surprising that larger values
of κ result in larger values of ϕ also.

C. ISS results

The observer was tested in the case that a input distur-
bance torque is acting on the robotic manipulator. The input
disturbance was chosen to be

δp0(t) =

[
1
2 sin(10t)
1
2 cos(20t)

]
(40)

and was unknown to the observer. From Proposition 1 it
is expected that the observer error is ISS with respect to
the unknown disturbance, satisfying the bounds (23). In
particular, increasing values of κ should increase the rate
at which the observer converges to some neighbourhood of
the true solution and decrease any perpetual error.

Simulation results for a variety of values for κ are shown
in Figure 3. The figure shows the norm of the momentum
estimation error, plotted on a log scale. As expected, increas-
ing the tuning parameter κ results in a faster initial transient
of the observer as it approaches a neighbourhood of the true
solution. From the inequality (23) it is additionally expected
that increasing the value κ should decrease the effect of the
disturbance on the momentum estimate. It can be seen that
after the initial transient, larger values for κ result in smaller
peak errors as expected.

V. CONCLUSION

In this work, analysis for the momentum observer pro-
posed in [14] was extended to verify that the observer
error dynamics are both globally exponentially stable and
ISS with respect to external perturbation. The results were
demonstrated numerically on a 2 degree-of-freedom verti-
cal manipulator, verifying the theoretical results. In future
works the additional passive port (uo, yo) will be utilised
for control purposes, interconnecting observer and controller
subsystems. It is expected that Lyapunov functions for the
joint observer/controller systems can be constructed without
the use of separation principles.
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