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Abstract— This paper studies the idea of “deception by
motion” through a two-player dynamic game played between
a Mover who must reach a goal to retrieve resources, and
an Eater who can consume resources from two candidate
goals. The Mover seeks to minimize the resource consumption
at the true goal it must reach, while the Eater tries to
maximize it without knowing which one the true goal is. Unlike
existing works on deceptive motion control that measures the
deceptiveness through the quality of inference made by a
distant observer (an estimator), we incorporate agents’ actions
to directly measure the efficacy of deception through the
outcome of the game. An equilibrium concept is then proposed
without the notion of an estimator. We further identify a pair
of equilibrium strategies and demonstrate that if the Eater
optimizes for the worst-case scenario, hiding the intention
(deception by ambiguity) is still effective, whereas trying to
fake the true goal (deception by exaggeration) is not.

I. INTRODUCTION

In competitive games with asymmetric information, play-
ers can sometimes leverage deception to alter the decisions
made by the opponent and achieve a higher payoff [1].
Common forms of deception include sensor jamming [2],
controlling shared information [3], etc. In this work we draw
attention to deception via direct perception, where a player
does not have a communication channel, but instead, tries to
deceive its opponent by moving in a particular way.

A number of existing works have considered deception
in the context of motion control. A typical formulation
optimizes the path of a moving agent to reach its goal
while minimizing the quality of the inference an observer is
trying to make about the location of the agent’s goal [4]–[7].
Specifically, [5] and [6] formalized the notion of ambiguity
(hiding information about true goal), and exaggeration (mov-
ing towards a decoy goal to send a false signal) as two ways
to measure deceptiveness.

A common assumption made in these works is that the
observing agent uses a prescribed estimator/inference policy,
and the deceiving agent leverages the knowledge of its
structure. The deceived agent is also often so naive that it is
not aware of the possibility of being deceived. Furthermore,
since no decision is made by the observing agent on its action
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Fig. 1. Illustration of the asymmetric information. (a) Perspective of
the Eater, who knows the most recent Mover’s action (blue arrow), (b)
Perspective of the Mover who knows the true goal gR.

or inference policy, such formulation normally boils down to
a one-sided optimization. The works on goal recognition by
a passive observer also fall into this category [8]–[14].

In this paper, we are interested in studying the possibility
of deception without making the assumptions discussed
above. We do not prescribe an estimator for the observing
player, but instead allow it to select its own policy, which
makes the problem a two-player game. Since the observing
agent must choose its action based on the observed motion
of the deceiver, the success of deception can be directly
measured through the influence on decisions of the observer,
and ultimately by the outcome of the game. While existing
works use observer’s belief in the objective function (making
deception itself to be the goal [4], [5], [7], [9]), our formu-
lation views deception as a tool to accomplish underlying
mission objectives (i.e., improve the game outcome).

The contributions of this work are: (i) the formulation of
a novel game that explores the effectiveness of deception
against an observing agent that actively takes actions; (ii) the
identification of equilibrium strategies, where the observer
does not utilize an estimator to predict the opponent’s
behaviors; and (iii) analytic characterizations of the asso-
ciated game outcome. Our results indicate that deception by
exaggeration does not work in our problem when the payoff
function for the observer captures the worst-case scenario.
Nevertheless, the deceiving agent can still use ambiguity
to improve its payoff. This result is the first step towards
investigating the existence of deception by motion when the
observing agent has the ability to select its own policy.

II. PROBLEM FORMULATION

We consider a two-player discrete-time dynamic game
with asymmetric information played in a grid world between
the Mover who controls its position and the Eater who
controls the amount of resources at the goal locations. At
the beginning of the game, two goal locations are specified
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⇡

Fig. 2. Illustration of the game timeline.

by nature: g1,g2 ∈ Z2. One is the true goal, gR, and the
other one is the fake goal, gF . Each goal is initialized with
sufficiently large number of resources (bananas). Although in
this formulation the Eater decreases the amount of resources,
the same analysis can be used when the resource increases.
Various strategic resource allocation scenarios fall under this
framework, where the observing player must stock up or
evacuate resources at an infrastructure in the face of an
incoming adversary.

States: The game evolves with two types of states. One
is the Mover’s position p(t)∈P where P=Z2. The positions
could be equivalently denoted as nodes on a graph that
represents the grid world. Although we restrict our analysis
to the grid world for simplicity and intuitive understanding,
we believe that the obtained results can be generalized to
more generic graphs, which could capture, e.g., Mover with
different dynamics and environments with obstacles. The
other state is the number of bananas at each goal location,
which the Eater consumes. We use bi(t) ≥ 0 to denote the
consumption of bananas from gi for i ∈ {1,2}, and define
b(t) = [b1(t),b2(t)] ∈ B as the consumption vector,1 where
B = R2

≥0 and b(0) ∈ Z2
≥0.

Actions: The Mover selects an action aM(t) from
its action space AM = {up, down, left, right} at
each time step, which updates its position from p(t) to
p(t + 1). The Eater’s action aE(t) is drawn from AE =
{[1,0], [0,1], [0.5,0.5]}, corresponding to eating one banana
from g1, eating one from g2, or eating half from both goals.2

The consumption vector has the following dynamics:

b(t +1) = b(t)+aE(t).

Terminal condition: The game terminates at time T ,
when the Mover reaches the true goal gR:

T = min
t∈Z≥0

{t|p(t) = gR},

which solely depends on the strategy used by the Mover.
Note that the true goal is specified by the nature and does
not change throughout the game. The Eater makes its last
action at t = T−1 and the banana consumption is updated for
one last time (see Fig. 2). The Mover receives the remaining
bananas at the true goal.

1The difference between the numbers of bananas at the two goals at t = 0
can be properly reflected by setting bi(0)> 0 for one of the goals.

2We assume that the bananas at both goals do not run out, but removing
this assumption does not significantly affect our analysis and the policies
since the Eater’s decision when one goal has no banana is trivial.

Information structure: The set of goal locations G =
{g1,g2} is common knowledge. We consider sequential
actions as illustrated in Fig. 2. When choosing an action at t,
the Mover has access to the states p(t) and b(t). The Mover
also has private information set I = {1,2} which indicates
the true goal. The Eater has access to the updated states
p(t + 1) and b(t), and the most recent Mover action aM(t)
(or equivalently, one-step memory p(t)).

Strategy sets: We use Gi, i ∈ {1,2}, to denote the game
where gi = gR. The strategy of the Mover for Gi is denoted
as: πM

i : P×B→ AM , where i ∈ {1,2}. The overall Mover’s
strategy uses I (the knowledge of true goal) as follows:

π
M =

{
πM

1 if gR = g1,

πM
2 if gR = g2.

(1)

On the other hand, the Eater’s strategy is a mapping
πE : P×AM×B→ AE . Note that the Eater deploys the same
strategy for both games, because it cannot differentiate the
true goal from the fake one.

Objective functions: We define the outcome of game Gi
induced by strategy pair (πM,πE) as

Ji(p,b;π
M
i ,πE) = bi(T (πM

i )), (2)
which denotes the banana consumed at the true goal when
the game terminates.The implicit dependency of bi on πE is
omitted. Since the Mover knows which game it is playing,
we let it directly minimize the consumption at the true goal,
and hence its objective function is

JM
i (p,b;π

M
i ,πE) = Ji(p,b;π

M
i ,πE). (3)

Although the Eater wants to maximize Ji as well, it cannot
tell which goal is real, or which game is being played.
Consequently, there are a variety of candidate metrics for
the Eater to optimize, e.g., average, best-case, or worst-
case performance. In this paper, we set the worst-case
performance as the Eater’s objective function and let the
Eater maximize the following:

JE(p,b;π
M
i ,πE) = min

i∈{1,2}
Ji(p,b;π

M
i ,πE). (4)

This Eater’s objective provides the worst-case guarantee
among the two possible games: G1 and G2. We will later see
that this objective prevents the Eater from being deceived
by exaggeration (Lem. 3). In the sequel, we will omit
the dependence of the objective functions on the initial
conditions p and b.

We consider the equilibrium concept defined as follows.

Definition 1. A pair of strategies (πM∗,πE∗) constitutes an
equilibrium, if for all πE ∈ΠE and πM ∈ΠM , it satisfies:

JM
1 (πM∗

1 ,πE∗)≤ JM
1 (πM

1 ,πE∗) (5a)

JM
2 (πM∗

2 ,πE∗)≤ JM
2 (πM

2 ,πE∗) (5b)

JE(πM∗,πE∗)≥ JE(πM∗,πE) (5c)

where ΠE and ΠM are the sets of admissible strategies for
the Eater and the Mover respectively.3

3In general, the choice of JE affects the equilibrium. For example, best-
case performance JE = maxi Ji leads to a trivial Eater behavior that simply
takes from the goal which gives higher JM

i in the full information game.

5238



In the following we propose a pair of strategies and prove
that they constitute an equilibrium.

III. MAIN RESULTS

A. Preliminary Analysis

We classify the Mover’s action based on the change in
the distances it induces. Let d(·, ·) : P× P → Z≥0 denote
the 1-norm (Manhattan distance) between two points on the
grid. For the case of a general graph, this metric would be
the length of the shortest path between two nodes. We use
di(t), d(p(t),gi), i∈ {1,2} to denote the distance from p(t)
to gi. We also denote the change in the distance as

δdi(t), di(t +1)−di(t). (6)

Based on δd1(t) and δd2(t), we categorize the Mover’s
action at time t into two classes: ambiguous and explicit.

Definition 2 (Ambiguous Move). An action of the Mover
aM(t) is an ambiguous move if δd1(t) = δd2(t).

Definition 3 (Explicit Move). An action of the Mover aM(t)
is an explicit move if δd1(t) 6= δd2(t).

Note that for the dynamics studied in this paper, we only
have explicit moves with δd1(t) = −δd2(t). However, the
above definition accommodates a more general case (e.g.,
with diagonal moves) where it is possible to have, e.g.,
δd1(t) = 0 and δd2 =−1.

Definition 4 (Number of Steps). For any given p(t), the
minimum numbers of ambiguous and explicit moves required
to reach gi are denoted as na(t) and ne

i (t).

Notice that the number of ambiguous moves for both
games is na(t), and hence na(t) does not have a subscript.
Also note that T ≥ na(0)+ne

R(0), where the equality holds
when the Mover follows a shortest path to gR. Although
shortest paths are non-unique, they all contain the same num-
ber of ambiguous and explicit moves. Finally, the numbers
na(t) and ne

i (t) are independent in the sense that a single
Mover action changes only one of them.

We define a quantity that describes the maximum possible
banana consumption when the Mover uses a shortest path.

Definition 5. Let ci(t) be defined as

ci(t), bi(t)+di(t), (7)

and c̃i(t) be the one measured between the Mover’s and
Eater’s action at time step t (also see Fig. 2):

c̃i(t), bi(t)+di(t +1). (8)

If the Eater had the knowledge of the true goal, it would
always eat from that location. Hence one can interpret ci(t)
as the value of the complete information game, in which the
Eater knows gR and always eats from the true goal.

Definition 6. Let ∆ci(t) and ∆c̃i(t) denote the difference
functions for ci(t) and c̃i(t) respectively:

∆ci(t), ci(t)− c−i(t) (9)

Fig. 3. Partition of the game environment.

∆c̃i(t), c̃i(t)− c̃−i(t), (10)

where −i = {1,2}\{i}.
We classify the environment into three regions (See

Fig. 3). R1 is the no-ambiguity region. Any move from
R1 to R1 is an explicit move. R2 is the partial-ambiguity
region. Among the two subsets {right, left} and
{up, down}, only one will be ambiguous in R2. R3 is the
full-ambiguity region, where any action the Mover takes is
ambiguous. Note that an action that transfers the Mover from
one region to another is always ambiguous.

Remark 1. For p(0) /∈ R1, there always exists a shortest
path to gi that uses all the necessary ambiguous moves first,
which takes the Mover to the boundary of R1.

B. Equilibrium Strategies and Outcome

We propose the following strategy pair.
The Mover’s strategy πM∗

i : Move on a path with the
following two properties.
• The path is one of the shortest paths to gi.
• All na(0) ambiguous moves are made before ne

i (0)
explicit moves.

The Eater’s strategy πE∗: Observe aM(t) and identify if it
was ambiguous or explicit based on Def. 2 and 3.
• If aM(t) was ambiguous, then use the conservative

action: take from the goal with higher risk (smaller c̃)

aE(t) =


[1,0], if ∆c̃1(t)< 0
[0,1], if ∆c̃1(t)> 0
[0.5,0.5], if ∆c̃1(t) = 0.

(11)

• If aM(t) was explicit then use an exploiting action: take
from the goal that the Mover approached

aE(t) =

{
[1,0], if δd1(t)< δd2(t),
[0,1], if δd1(t)> δd2(t).

(12)

Notice that πM∗
i does not explicitly use b(t), but πE∗ uses it

to compute ∆c̃1(t).

Theorem 1 (Equilibrium). The strategies πM∗ and πE∗ form
an equilibrium, i.e., they satisfy equations (5a), (5b) and (5c).

Proof. We prove this main result in three steps in Sec. IV.
Step I: We prove equilibrium for p(0)∈R1 (Lem. 1). Step II:
We prove the optimality of πM∗ outside of R1. Specifically,
we show that the Mover should use a shortest path (Lem. 2
and 3), and it has no incentive to use explicit moves before
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ambiguous ones (Lem. 4). Step III: Optimality of πE∗ outside
of R1 is proved (Lem. 5).

Before providing the equilibrium outcome, we present
observations that facilitate the analysis throughout the paper.

Remark 2. If aM(t) is ambiguous, then
∆c̃i(t) = ∆ci(t). (13)

Furthermore, if the Eater uses πE∗, then |∆ci(t)| approaches
zero by one for every ambiguous move: i.e.,

∆ci(t +1)−∆ci(t) =


1 ∆ci(t)< 0
−1 ∆ci(t)> 0
0 ∆ci(t) = 0.

(14)

Remark 3. If aM(t) is an explicit move toward gi, then
∆c̃i(t) = ∆ci(t)−2. (15)

Furthermore, if the Eater uses πE∗, then ∆ci(t) decreases by
one: i.e.,

∆ci(t +1) = ∆ci(t)−1 (16)

Theorem 2. The equilibrium outcome under (πM∗,πE∗) for
game Gi is: 4

V M∗
i (p,b) =

{
ci−0.5na(1+ sgn(∆ci)) na ≤ |∆ci|(17)
ci−0.5(na +∆ci) na > |∆ci|.(18)

The Eater’s performance at the equilibrium is then given by
V E∗(p,b) = mini∈{1,2}V M∗

i (p,b).
It is worth noting that the terms 0.5na(1+ sgn(∆ci)) and

0.5(na + ∆ci) in (17) and (18) are non-negative, and they
represent the reduction in consumption when compared to
the complete-information scenario, ci(0). In this sense, we
can interpret these quantities as the value of information.
Note that this value of information is zero if na ≤ |∆ci| and
∆ci < 0, which is the case when the real goal has higher
risk and there is not enough ambiguous moves to achieve
∆ci(t) = 0.

Proof. The proof is omitted due to page limit. One can easily
verify the claim by checking the two cases: na(0)≤ |∆ci(0)|
and na(0)> |∆ci(0)|.

IV. PROOF OF EQUILIBRIUM

A. Equilibrium in Region R1

Lemma 1. The strategy pair (πM∗,πE∗) forms an equilib-
rium in R1, i.e., equations (5a), (5b) and (5c) hold in R1.

Proof. Assuming that p(t) ∈ R1, we start by analyzing
Eater’s deviation in R1 (condition (5c)). From Thm. 2, Eater’s
outcome in R1 is given by JE(πM∗,πE∗) = mini∈{1,2} ci(0).
Consider a different Eater’s strategy πE ′ , which takes x ∈
{0.5,1} banana from g−i at least once, even if the Mover
is approaching gi. The Mover’s outcome under such strat-
egy is JM

i (πM∗
i ,πE ′) ≤ ci(t)− x, and therefore, we have

JE(πM∗,πE ′) ≤ mini∈{1,2}(ci(t)− x) = V E∗ − x, which im-
plies that the Eater has no incentive to deviate.

4The time arguments for p, b, ci, na and ∆ci are omitted for conciseness.

Next, we show that the Mover has no incentive to deviate
from πM∗

i in R1. From Thm. 2, the Mover’s outcome under
(πM∗

i ,πE∗) is given by JM
i (πM∗

i ,πE∗) = ci(t) = bi(t)+ne
i (t).

Consider a different strategy πM′ , which increases the path
length by adding additional explicit or ambiguous moves.5

In either case, the total number of explicit moves, ne
i (0),

can only increase but never decrease. Therefore, the banana
consumption increases, i.e., JM

i (πM′
i ,πE∗)≥ bi(0)+ne

i (0) =
V M∗

i , and thus the Mover has no incentive to deviate.

B. Mover’s Strategy

This section proves that the Mover has no incentive to
deviate from πM∗ when p(t) /∈ R1, if the Eater uses πE∗.

Lemma 2. The Mover has no incentive to deviate from
shortest path by moving away from both goals if the Eater
uses πE∗.

Proof. Consider Gi and p(0) /∈ R1. Under πM∗, the Mover
makes na(0)> 0 ambiguous moves first and ne

i (0)≥ 0 later.
Consider πM′ 6= πM∗, which makes at least one ambiguous
move away from both goals. Clearly, this strategy cannot
reduce the minimum number of explicit moves, ne

i (0). The
question then becomes: by making additional moves away
from both goals, can the Mover decrease the resource con-
sumption due to ambiguous moves?

We compare the Mover’s trajectory with na(0) ambiguous
moves and the one with na(0)+2m steps, where m∈N is the
number of ambiguous steps away from gR. For simplicity,
consider the case where πM′ makes the na(0) ambiguous
moves first. Rem. 2 implies that in the first na(0) steps,
∆ci(t) evolves in the same way for the two trajectories.
Therefore, the consumption in this phase is the same for
both trajectories. The trajectory with 2m additional steps
has either: (i) no additional consumption if ∆ci(t) > 0 for
t ≤ na(0)+2m, (ii) 2m additional consumption if ∆ci(t)< 0
for t ≤ na(0) + 2m, or (iii) somewhere between the above
two if ∆ci(t) = 0 is achieved at some point. In all these
three cases, the consumption at the true goal gi does not
decrease. This analysis extends to the case where πM′ does
not apply all na(0) ambiguous moves first. The detailed proof
is omitted due to page constraint.

One might expect the existence of a deceptive Mover
strategy that approaches gF at the beginning and misleads the
Eater to consume more from the fake goal. Such behavior is
known as an exaggeration [6]. The next lemma shows that
this is not effective under our problem setting.

Lemma 3 (No Exaggeration). The Mover has no incentive
to make any explicit moves towards gF if the Eater uses πE∗.

Proof. Without loss of generality consider Gi where real goal
is gi and fake goal is g−i. We assume p(0) /∈ R1 because we
already discussed R1 in Lemma 1. The Mover cannot make
any explicit move in R3, so we can restrict our attention to
the situation where p(0) ∈ R2.

5Additional ambiguous moves are possible when the Mover is at the
boundary of R1.
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Suppose that the Mover uses a different strategy πM′ 6=
πM∗ which makes at least one explicit move towards g−i in
R2. We can see that this “exaggeration” move will result in
c̃i(t) = ci(t)+1 and c̃−i(t) = c−i(t)−1. From Def. 6 we have
∆c̃i(t) = ∆ci(t)+ 2. Since πE∗ will respond by taking from
g−i, we will have ∆ci(t +1) = ∆ci(t)+1.

Although the change in ∆ci(t) has no effect on the Eater’s
behavior after an explicit move, notice that a larger ∆ci(t) is
favorable for the Mover based on (11): i.e., the consumption
after the ambiguous move. In this context, the exaggeration
move improved ∆ci(t) by 1. This increase either: (i) delays
a positive ∆ci(t) reaching 0 by one time step, (ii) makes
∆ci(t) = 0 increase to 1, or (iii) expedites a negative ∆ci(t)
reaching zero by 1 time step. Again, by recalling (11), we
can see that this translates to a reduced consumption from
gi after an ambiguous move by at most 1.

However, notice that the above “benefit” causes an in-
crease in the number of explicit moves remaining. Since
this always penalizes the Mover by 1 consumption from gi,
we can conclude that deception by exaggeration will at best
cancel the penalty, but never result into lower bi(T ).

Corollary 1 (Shortest Path). The Mover has no incentive to
use a non-shortest path if the Eater uses πE∗.

Proof. This result directly follows from Lem. 2 and 3.

Lemma 4 (Ambiguous Moves First). The Mover has no
incentive to deviate from making all the ambiguous moves
first, given that the Eater uses πE∗.

Proof. Without loss of generality suppose the Mover plays
Gi. From Cor. 1 we know that the Mover must stay on the
shortest path towards gi, which gives T = na(0)+ne

i (0).
We compare bi(T ) under the equilibrium sequence gener-

ated from πM∗, with the one under πM′ 6= πM∗, which takes
the same number of steps T , but in a different order: i.e., at
least one explicit move before the final ambiguous move.

Since πE∗ always takes from gi after explicit move towards
gi regardless of its timing, consumption due to explicit moves
under πM∗ and πM′ will be the same. Therefore, we focus
on the Eater’s behavior after the ambiguous moves. We will
prove that making explicit moves earlier will never reduce the
subsequent banana consumption from the real goal associated
to the ambiguous moves. Let t∗k and t ′k for k ∈ {1, ...,na(0)}
denote the times when the k-th ambiguous move is used by
πM∗ and πM′ , respectively. Trivially, t∗k = k−1 for all k. The
timing for t ′k is delayed by the number of explicit moves
used before the k-th ambiguous move, which we denote by
zk ≥ 0.

Now, we will analyze the difference in the banana con-
sumption under the two strategies by looking at ∆ci(t)
defined in (10). We will use ∆c̃∗i and ∆c̃′i to denote the ones
for πM∗ and πM′ , respectively. Recalling the discussion in
Rem. 2, we know that ∆c̃i(t)≤ 0 will result in consumption
from the real goal, gi. Therefore, all we need to show is that

∆c̃∗i (t
∗
k )≥ ∆c̃′i(t

′
k), ∀k ∈ {1, ...,na(0)}. (19)

The above inequality implies that for the k-th ambiguous
move, the one from πM′ will lead to the same or more
consumption on the real goal compared to the one from πM∗.

To see (19), recall Rem. 3 and see that an explicit move
towards gi at time t will always reduce ∆ci(t) by one. Also
recall that an ambiguous move will make ∆ci(t) approach
zero (either from positive or negative side). Therefore, if
∆ci(0)≥ 0, then we have

∆c∗i (t
∗
k ) = max{0, ∆ci(0)− k+1}, whereas (20)

∆c′i(t
′
k)≤max{0, ∆ci(0)− k+1− zk}. (21)

From Rem. 2, we know that ∆c̃∗i (t
∗
k ) = ∆c∗i (t

∗
k ), and from

Rem. 3, we have ∆c̃′i(t
′
k)≤ ∆c′i(t

′
k), where the equality holds

when aM(t ′k) is ambiguous.
Thus (19) holds for ∆ci(0)≥ 0. With a similar argument,

we can also show (19) for the case when ∆ci(0)≤ 0.

With Cor. 1 and Lem. 4, we have shown that the Mover
should stick to πM∗ if the Eater uses πE∗.

C. Eater’s Strategy

Now we study the optimality of πE∗ when p(t) /∈ R1.
Observe that πM∗ uses explicit moves only inside R1, which
implies that πE∗ will use the exploiting action (12) only in R1.
We therefore focus our attention to the conservative action.

Lemma 5. For p(t) /∈ R1, the Eater has no incentive to
deviate from its conservative action (11), given that the
Mover makes only ambiguous moves according to πM∗.

Proof. Consider the effect of Eater’s actions outside of R1.
The Eater must consider both Gi and G−i, but notice that the
Mover using πM∗ will make na(0) ambiguous moves in both
games. Without loss of generality, we assume ∆ci(0)≥ 0 and
examine the two cases presented in Thm. 2.

Case 1: na(0)≤ |∆ci(0)|. Note that ∆ci(0) must be positive
in this case. Under the equilibrium strategies, the Eater will
take only from g−i in the first na(0) steps, and based on
Thm. 2, we know the outcome is V E∗ = ci(0)−∆ci(0). Now,
we consider a deviation πE ′ 6= πE∗. Recalling Rem. 2, we
can state ∆c̃i(t) > 0,∀t ≤ na(0). The only way for πE ′ to
deviate from πE∗ is by eating x∈ {0.5,1} from the goal with
higher c̃(t) (gi in our case) at least once. Based on (17) the
Mover’s outcome under this strategy will be JM

i (πM∗
i ,πE ′)≥

ci(0)− na(0) + x and JM
−i(π

M∗
−i ,π

E ′) ≤ c−i(0)− x = ci(0)−
∆ci(0)−x. Since na(0)≤ |∆ci(0)| the Eater’s outcome results
in JE(πM∗,πE ′)≤ ci(0)−∆ci(0)− x <V E∗.

Case 2: na(0) > |∆ci(0)|. Notice that V M∗
i = V M∗

−i in
Case 2, which is easy to see from (18) and the fact that
ci(t) = c−i(t)+∆ci(t) and ∆ci(t) = −∆c−i(t). Now any de-
viation πE ′ 6= πE∗ in the first na(0) steps will only cause the
above equality to break: i.e., JM

i (πM∗
i ,πE ′) =V M∗

i +0.5x and
JM
−i(π

M∗
−i ,π

E ′) =V M∗
−i −0.5x for x ∈Z. Such deviation results

in JE(πM∗,πE ′) =V M∗−0.5|x|, which is suboptimal.

To summarize, the Eater has no incentive to deviate from
its conservative action after Mover’s ambiguous moves. This
concludes discussion of Eater’s and Mover’s equilibrium
strategies, and provides justification of Theorem 1.
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Fig. 4. The game outcome under different strategies: (a) V M∗
1 , (b) V M∗

2 , (c) V E∗; (d) JM
1 (πM∗

1 ,πE ′ ), (e) JM
2 (πM∗

1 ,πE ′ ).

V. NUMERICAL ILLUSTRATION

This section presents the numerical solution to the game
environment shown earlier in Fig. 1. Figures 4a and 4b
show the Mover’s performance under πM∗ and πE∗ calculated
based on Thm. 2. We highlight the boundary where the
minimum in (2) switches between G1 and G2. The area
between the two surfaces is where V M∗

1 = V M∗
2 . Figure 4c

shows the Eater’s equilibrium performance.
Suboptimal Eater: Figures 4e and 4d show the outcome

under an Eater strategy πE ′ that uses exploiting action
after explicit moves and aE = [0.5,0.5] after ambiguous
moves. This strategy may lead to higher banana consumption
than πE∗ in certain scenarios. For example, in G2, if the
Mover starts at the top left cell then JM

2 (πM∗
2 ,πE ′) = 7,

while JM∗
2 (πM∗

2 ,πE∗) = 6. However, if G1 is actually played,
JM

1 (πM∗
1 ,πE ′) = 1.5, which worse than JM∗

1 (πM∗
1 ,πE∗) = 3.

Since the Eater does not know which game is played, we
let the Eater optimize its worst-case performance as in (4),
and in this sense πE∗ indeed achieves a better worst-case
guarantee.
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Fig. 5. Mover’s paths starting with bR(0) = bF (0) = 0. (a) Trajectories
in the grid world. (b) Corresponding banana consumption from gR at each
time step under πE∗.

Suboptimal Mover: Figure 5 compares the performance
of three different Mover strategies against πE∗. Path (ii) is
the shortest path induced by πM∗. At the end of Path (ii),
the Eater consumed 4 bananas (see Fig. 5b), which is the
least amount among the three trajectories, demonstrating the
effectiveness of ambiguity. Path (i) is also a shortest path, but
the Mover makes explicit moves before the ambiguous ones,
which leads to 5 bananas consumed. Path (iii) corresponds
to an exaggeration strategy, which tries to deceive the Eater
by moving towards gF first but actually results in 6 bananas

consumed. This is an example of deviating from the shortest
path and is clearly suboptimal as discussed in Lem. 3.

VI. CONCLUSION

We introduce and solve the Eater and the Mover game,
which we use to explore the possibility of deception by
motion when the observer must take an action, thereby
allowing us to measure the effectiveness of the deception
through the game outcome and not prescribing an estimator
for the observer. The results demonstrate that the Mover
cannot deceive the Eater by exaggeration if the Eater op-
timizes its worst-case performance. However, the ambiguity
is still useful for the Mover to improve its performance. An
interesting and useful avenue for future work is to study
how the ideas of ambiguity and exaggeration generalize to a
broader class of problems: e.g., multiple goals, general graph
environments (which accommodates obstacles and different
dynamics), different payoff functions, and continuous space.

REFERENCES

[1] J. P. Hespanha, Y. S. Ateskan, and H. H. Kizilocak, “Deception in
non-cooperative games with partial information,” in Proceedings of
DARPA-JFACC Symp. on Advances in Enterprise Control, 2000.

[2] Y. Yavin, “Pursuit-evasion differential games with deception or in-
terrupted observation,” Computers & Mathematics With Applications,
vol. 13, pp. 191–203, 1987.
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