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Abstract— The problem of achieving consensus in a network
of connected systems arises in many science and engineering
applications. In contrast to previous works, we focus on the
system reactivity, i.e., the initial amplification of the norm of
the system states. We identify a class of networks that we
call minimally reactive, which are such that the indegree and
the outdegree of each node of the network are the same. We
propose several optimization procedures in which minimum
perturbations (links or link weights) are imposed on a given
network topology to make it minimally reactive. A new concept
of structural reactivity is introduced which measures how much
a given network is far from becoming minimally reactive by
link perturbations. The structural reactivity of directed random
graphs is studied.

I. INTRODUCTION

The consensus problem is relevant to all those applications
for which it is desired that the states of several dynamical
systems or agents reach an agreement, such as the distributed
control of multi-agent systems [1], formation control [2],
flocking [3], distributed sensor networks [4], and cyber
security [5].

In a general consensus problem, the goal is for agents
initialized from different initial conditions to converge to the
same state, also called the consensus state. Previous works
have established globally stable protocols to guarantee con-
vergence, see, e.g., [6]–[9]. These papers focus on the steady-
state behavior of consensus dynamics. A large body of work
studied the finite-time stabilizing consensus problems with a
prescribed performance, see, e.g., [10]–[12]. In engineering
applications, it is often required that the state trajectories
do not deviate from the consensus state in the transient
dynamics. Sometimes a monotonic decrease in the norm of
the state vector may be required.

An important characterization of the transient behavior of
a linear system (or linearized system about a fixed point) is
provided by the concept of ‘reactivity’ [13]. The reactivity
measures the rate of the change of the norm of the state
vector as time t → 0. Reference [13] showed that for an
LTI system in the form ẋ(t) = Ax(t), the reactivity R(A)
of the system dynamics is equal to the largest eigenvalue
of (A + A⊤)/2, also simply called the reactivity of the
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matrix A. Even if the matrix A is Hurwitz, its reactivity may
be positive, zero, or negative. A positive reactivity results
in the initial growth of the norm of the state vector. The
relationship between reactivity, non-normality, and transient
behavior has been the subject of study since the seminal work
by Threfthen [14], and more recent works such as [13], [15],
[16].

In this letter, we study the reactivity of the consensus
dynamics. We prove that ‘minimally reactive networks’ have
zero reactivity. We then propose optimizations in which
the weights of a given directed and weighted network are
adjusted so that the network becomes minimally reactive.
It is proven that only strongly connected networks can
become minimally reactive under weight perturbation. We
also propose an optimization method to add/remove links
from a given directed and unweighted network to make it
minimally reactive.

The rest of the paper is organized as follows. Notation
and background information are introduced in Sec. II. The
consensus problem is discussed in Sec. III. The weight
perturbation procedure is in Sec. IV. The link perturbation
procedures are presented in Sec. V. The conclusions are
provided in Sec. VI.

II. NOTATION AND BACKGROUND

Given a real square matrix B, we order its eigenvalues
such that Re[λn(B)] ≤ . . . ≤ Re[λ2(B)] ≤ Re[λ1(B)],
where he notation Re[·] indicates the real part of its argu-
ment. If B is symmetric, λi(B) ∈ R, ∀i. Given two matrices
A ∈ Rn×p and B ∈ Rm×q , the expression A⊗B ∈ Rnm×pq

denotes the Kronecker product of A and B. The vectorization
function vec(·) : Rm×n → Rmn takes a matrix and returns
a vector by stacking all the columns of the matrix on top of
each other.

Let G = (V, E , A) be a directed graph with set of nodes
V = {v1, v2, . . . , vn}, set of edges E ⊆ V × V , and
a adjacency matrix A = [Aij ] with non-negative entries.
If there is a link going from the node vj to node vi,
i.e., (vj , vi) ∈ E , then Aij > 0, otherwise Aij = 0. If
Aij ∈ {0, 1},∀i, j, then the graph G is called ‘unweighted’,
otherwise, ‘weighted’. The indegree and outdegree of node
vi are defined as degini =

∑
j Aij and degouti =

∑
j Aji,

respectively. A directed spanning tree of the directed graph
G rooted at r is a subgraph T of G such that T is a directed
tree and contains a directed path from r to any other vertex
in V .

Assumption 1. We assume the directed graph G has at least
one directed spanning tree.

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 2452



The Laplacian matrix corresponding to graph G is defined
as L = A − D where D is a diagonal matrix such that
Dii =

∑
j Aij . Since the sums of the entries in the rows of

the matrix L are equal zero, λ1(L) = 0 and its corresponding
normalized right eigenvector vvv1 = 1/

√
n111n, where 111n

is a vector of ones with length n. Thus, Re[λN (L)] ≤
· · · ≤ Re[λ2(L)] < λ1(L) = 0. The left eigenvector of
the matrix L corresponding to λ1(L) = 0 is denoted by
www1 = [w1 w2 · · · wn]

⊤ ∈ Rn.
The complement graph of the unweighted and directed

graph G = (V, E) is defined as H = (V,U − E), where
U = V × V .

III. CONSENSUS PROBLEM

The linear single-integrator consensus problem is defined
by the following set of equations that describe the time
evolution of the states of the the dynamical network [6],

ẋi(t) =

n∑
j=1

Aij (xj(t)− xi(t)) =
∑
j

Lijxj (1)

where xi(t) ∈ R is the state vector of the dynamical network,
A = [Aij ] and L = [Lij ] are the adjacency matrix and
the Laplacian matrix corresponding to the directed graph G,
respectively. The term xj(t)−xi(t) represents linear diffusive
coupling.

Based on Assumption 1, system (1) globally converges
to consensus x1 = x2 = · · · = xn = xc for t →
∞. The consensus state xc =

∑n
j=1 wjxj(0)/

∑n
j=1 wj if∑n

j=1 wj > 0 [6]. In this letter, we are mostly interested in
the transient dynamics towards the consensus state, and how
this is affected by the reactivity of the linear system (1) [13],
i.e., the largest initial amplification of the norm of the vector
XXX = [x1 x2 · · · xn]⊤, which is equal to:

R(L) := max
∥XXX∥≠0

[(
1

∥XXX∥
d∥XXX∥
dt

)
t=0

]
= max

XXX ̸=0

XXX⊤SXXX

XXX⊤XXX
= λ1 (S) ,

(2)

where S = (L+ L⊤)/2. A positive (negative) reactivity
R(L) indicates that the norm of XXX tends to grow (shrink) in
the limit of t→ 0. As already mentioned, the reactivity of a
matrix coincides with the largest eigenvalue of the symmetric
part of that matrix [13]. Here we are interested in minimizing
the reactivity R(L).

Theorem 1. The reactivity of the Laplacian L, R(L), is
non-negative.

Proof. The reactivity in (2) is,

R(L) = λ1(S)

= max
XXX ̸=0

XXX⊤SXXX

XXX⊤XXX
≥ vvv1

⊤Svvv1

= vvv1
⊤
(
L+ L⊤

2

)
vvv1

=
1

2
(vvv⊤1 λ1(L)vvv1 + λ1(L)vvv

⊤
1 vvv1) = 0.

(3)

Hence, R(L) ≥ 0. That concludes the proof.

Proposition 1. A network with Laplacian L∗ is minimally
reactive, R(L∗) = 0, if and only if the sums over the columns
of the matrix L∗ are zero.

Proof. Equation (3) suggests that the minimum possible
reactivity is achieved by a network with the Laplacian L∗,
which is such that R(L∗) = λ1(S

∗) = 0 where S∗ =
(L∗ + L∗⊤)/2. It is inferred that the inequality in (3) is
satisfied with the equal sign when S = S∗. This means
that XXX∗ = vvv1 becomes the maximizer in (3). Hence, the
corresponding eigenvector to λ1(S

∗) is vvv1 = 1/
√
n111n. We

thus conclude that a necessary and sufficient condition for
minimal reactivity, R(L∗) = 0, is that the matrix S∗ has
zero row-sum. This in turn implies that

0 =
∑
j

S∗
ij =

1

2

∑
j

L∗
ij +

∑
i

L∗
ij

 =
1

2

(∑
i

L∗
ij

)
,

(4)
i.e., that the sums over the columns of the matrix L∗ are
zero. That concludes the proof.

It follows that each node of a minimally reactive network
has equal indegree and outdegree, i.e., degini = degouti , ∀i.
Networks with nodes that all have equal indegrees and out-
degrees are often called ‘balanced’ networks. As an example,
the directed network with the Laplacian

L∗ =


−9 0 3 6
5 −5 0 0
0 5 −5 0
4 0 2 −6

 (5)

has minimal reactivity. It is easy to see that any undirected
network is minimally reactive.

A. Properties of minimally reactive networks

Next, we describe some of the properties of a minimally
reactive network.

Property 1. The consensus state xc in (1) is equal to the av-
erage over the initial conditions, i.e., xc = 1/n

∑n
j=1 xj(0).

This is due to the fact that the average over the states
1/n

∑n
j=1 xj is a constant of motion [6, Theorem 6]. This

also follows from the fact that the left eigenvector www1 =
1/
√
n111n.

Property 2. The norm of the time trajectory ∥XXX∥ does
not increase as time increases if the network is minimally
reactive.

This follows from (2). For minimally reactive networks
R(L∗) = 0, so d∥XXX∥/dt ≤ 0,∀t ≥ 0.

IV. WEIGHT PERTURBATION

In this section, we focus on the case of weighted graphs.
Given the Laplacian matrix L, we aim to find a perturbation
matrix P = [Pij ] with minimum

∑
i,j P

2
ij such that L∗ =
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[L∗
ij ] = P + L is minimally reactive. We require L∗ and L

to have the same structure, i.e.,{
L∗
ijLij = (Pij + Lij)Lij > 0 if Lij ̸= 0,

L∗
ij = Pij + Lij = 0 if Lij = 0,

∀i, j.

In order to satisfy R(L∗) = 0, L∗ should have sums over
its rows and sums over its columns equal to zero. Also, by
definition, a weight perturbation matrix P does not add links.
Hence, the following conditions must be satisfied:

n∑
j=1

Pij = 0, i = 1, . . . , n, (6a)

n∑
i=1

Pij = −
n∑

i=1

Lij , j = 1, . . . , n, (6b)

Pij = 0 if Lij = 0. (6c)

Then, we define ppp := vec(P ) as the vectorized matrix
P . Next, we evaluate the vectorized version of (6). The
constraint over the row sum, (6a), is rewritten as, K1ppp = 000n2

where K1 = 111⊤n ⊗ In, and 000n is a column vector of zeros
of length n. The constraint over the column sum, (6b) is
rewritten as, K2ppp = lll where K2 = In ⊗ 111⊤n and lll is the
right-hand side of the above equation. Finally, the constraint
over zero entries in P , (6c), can be written as K3ppp = 000m,
where m is the number of zero entries in L. K3 ∈ Rm×n2

is
a matrix with zero rows except for an entry equal to one in
each row that corresponds to each Pij that should be zero.
Hence, (6) is rewritten as,K1

K2

K3

ppp =
000n2

lll
000m

 , or equivalently Kppp = bbb. (7)

Now we deal with the condition that the nonzero entries of
the optimized Laplacian L∗ should have the same sign as
their corresponding nonzero entries of the Laplacian L, i.e.,
LijL

∗
ij > 0 if Lij ̸= 0, ∀i, j. This indicates that L∗

ij = Lij+
Pij > 0, ∀i ̸= j. Therefore, Pij + Lij ≥ ϵ, ∀i ̸= j, Lij ̸= 0,
where ϵ > 0 is a small tunable parameter. For i = j and
Lii ̸= 0, L∗

ii = Lii + Pii < 0, and thus, Lii + Pii ≤ −ϵ.
These conditions can be rewritten in the vectorized form as
Hppp ≤ hhh. To find P with this new constraint, we solve the
quadratic optimization in ppp,

min
ppp

ppp⊤ppp

subject to Kppp = bbb

Hppp ≤ hhh.

(8)

Theorem 2. The optimization problem from (8) has a so-
lution if and only if the initial graph corresponding to the
Laplacian L is strongly connected.

Proof. See Appendix I.

A. Example

Here we provide an example of the application of the
weight perturbation procedure to a network with positive
reactivity to make it minimally reactive. We start with a

0 1 2 3 4 5 6

Time

0

1

2

3

kXk

L
L$

Fig. 1. Time evolution of the norm of the states XXX(t) for two different
topologies with Laplacians L and L∗ in (9) and (10).

weighted network with n = 5 nodes, and the Laplacian
matrix

L =


−10 0 5 0 5
0 −2 0 2 0
0 0 −5 0 5
1 3 0 −4 0
0 0 0 1 −1

 . (9)

The optimized Laplacian corresponding to a minimally re-
active network obtained by solving the optimization in (8) is
equal to

L∗ =


−3.95 0 3.49 0 0.46

0 −1.76 0 1.76 0
0 0 −3.49 0 3.49

3.95 1.76 0 −5.71 0
0 0 0 3.95 −3.95

 . (10)

We compare the time evolutions of these two networks from
a randomly chosen initial condition from a standard normal
distribution, XXX(0) = [0.0505 0.7641 − 0.7397 0.4984 −
1.9546]⊤. When the matrix L is used, the consensus state
is xc = −0.1024, and when the matrix L∗ is used, the
consensus states is x∗c = −0.2763. Figure 1 shows the
time evolution of the norm of XXX(t) for the cases of L and
L∗. From Fig. 1, we see that ∥XXX(t)∥ increases at the initial
times for the original network, while the norm monotonically
approaches the norm of the consensus state for the minimally
reactive network.

V. LINK PERTURBATIONS

In this section, we study the following problem: given
a directed and unweighted graph G with the Laplacian L,
add/remove the minimum number of directed links such that
the graph becomes minimally reactive, i.e., R(L∗) = 0,
where L∗ is the modified Laplacian.

We discuss the solution to the above problem by only
link addition, only link removal, and both link addition and
removal in Sections V-A, V-B, and V-C, respectively. Integer
linear programs are introduced in their respective sections.
For each case, we will show that these problems always allow
for a ‘trivial’ solution, hence they always have solutions.

A. Link addition

Here we formulate an integer program to find the min-
imum number of links to be added to an unweighted and
directed graph to make it minimally reactive. We consider
an unweighted network with an adjacency matrix A and
introduce a minimal perturbation P such that the perturbed
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network with the adjacency matrix A∗ = A+P is minimally
reactive. We assume the initial and the optimized graphs do
not have self-loops. Then, the optimal Laplacian is L∗ =
A∗ −D∗, where D∗ is a diagonal matrix and entries on the
main diagonal are the sums over the rows of the matrix A∗.

We aim to find the perturbation matrix P = [Pij ], Pij ∈
{0, 1} such that A∗ = A + P is a balanced. This indicates
that the sums over the columns and the sums over the rows
of A∗ are equal, i.e.,

∑
j Aij+Pij =

∑
j Aji+Pji, ∀i. The

entries of Pij are restricted such that if a link is present, P
cannot add it. This means Pij = 0 if Aij ̸= 0. The following
linear integer optimization in P finds the minimum number
of links to be added,

min
Pij

∑
i

∑
j

Pij

subject to A∗ = A+ P∑
j

A∗
ij =

∑
j

A∗
ji, ∀i

Pij = 0 if Aij ̸= 0, Pij ∈ {0, 1}.

(11)

By vectorizing P , the above optimization can be rewritten
in the vectorized format. As a result, a set of linear equality
constraints Keqppp = kkkeq is obtained, and ppp = [pi] = vec(P ).
The following linear integer programming in ppp is solved,

min
ppp

111⊤n2ppp

subject to Keqppp = kkkeq

pi ∈ {0, 1}.

(12)

Remark 1. We call a trivial solution for P the one that
makes the adjacency matrix A symmetric by adding the
directed link (vi, vj), if (vj , vi) ∈ E and (vi, vj) /∈ E , ∀i, j.

B. Link removal

We can also consider an alternative procedure in which a
minimum number of links is removed from a given network
to make it minimally reactive, similar to the link addition
procedure described in Sec. V-A. We aim to find the matrix
Q = [Qij ], Qij ∈ {0, 1}, such that A∗ = A−Q is balanced.
The objective is to satisfy

∑
j Aij−Qij =

∑
j Aji−Qji, ∀i.

Also, when a link is absent in A, the corresponding entry in
Q should be zero, i.e., Qij = 0 if Aij = 0. The following
linear integer optimization in Q finds the minimum number
of links to be removed,

min
Qij

∑
i

∑
j

Qij

subject to A∗ = A−Q∑
j

A∗
ij =

∑
j

A∗
ji, ∀i

Qij = 0 if Aij = 0, Qij ∈ {0, 1}.

(13)

By vectorizing Q, the above optimization can be rewritten
in the vectorized format. Similar to the previous section, the
constraints in (13) can be rewritten in terms of a set of linear

equality constraints in qqq = [qi] = vec(Q), i.e., Keqqqq = kkkeq .
Hence, a linear integer program in qqq is obtained,

min
qqq

111⊤n2qqq

subject to Keqqqq = kkkeq

qi ∈ {0, 1}.

(14)

Remark 2. We call a trivial solution for Q the one that
makes the adjacency matrix A symmetric by removing all
the directed links (vj , vi) ∈ E if (vi, vj) /∈ E , ∀i, j.

C. Link addition and removal

Here, we aim to find P and Q such that A∗ = A+P −Q
is balanced. Hence, the condition

∑
j Aij + Pij − Qij =∑

j Aji+Pji−Qji, ∀i must be satisfied. Similarly, Pij = 0
if Aij ̸= 0 and Qij = 0 if Aij = 0. The following linear
integer optimization in P and Q finds the minimum number
of links to be either added or removed,

min
Pij ,Qij

∑
i

∑
j

Pij +Qij

subject to A∗ = A+ P −Q∑
j

A∗
ij =

∑
j

A∗
ji, ∀i

Pij = 0 if Aij ̸= 0, Pij ∈ {0, 1},
Qij = 0 if Aij = 0, Qij ∈ {0, 1}.

(15)

We form the variable vector [ppp⊤ qqq⊤]⊤, where ppp = vec(P )
and qqq = vec(Q). The above constraints are written in the
vectorized form as Keq[ppp

⊤ qqq⊤]⊤ = kkkeq . To find the optimal
P and Q, we solve

min
ppp,qqq

J =
[
111⊤n2 111⊤n2

] [ppp
qqq

]
subject to Keq

[
ppp
qqq

]
= kkkeq

pi, qi ∈ {0, 1}.

(16)

In general, the solution returned by (16) yields an optimal
value of the objective function that is lower or at worst equal
to those of the solutions returned by either (12) and (14).

Remark 3. The optimization in (16) may have more than
one optimal solution, all with the same objective value. It is
then possible to slightly modify the optimization problem to
have it select a solution among all the optimal solutions for
which adding links is more favorable than removing links.
That is,

min
uuu

[(111n2 − ϵ)⊤ (111n2 + ϵ)⊤]

[
ppp
qqq

]
subject to Keq

[
ppp
qqq

]
= kkkeq

pi, qi ∈ {0, 1},

(17)

where 0 < ϵ < 1
n2 is a tunable parameter.

Remark 4. Integer linear programs are known to be NP-
Hard, which means that an algorithm that runs in polynomial
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(a) (b)

(c) (d)

Fig. 2. Optimizing (a) the unweighted and directed graph with (b) link
addition, (c) link removal, and (d) link addition and removal. The added
links are shown in blue color and the removed ones are shown in red.

time in the worst case is unlikely to exist. This does not
imply that integer linear programs are unsolvable but that
solution times are unlikely to scale well with even the most
sophisticated of general solvers, see [17], [18]. We note this
does not necessarily imply that problems (12), (14), and (16)
are NP-Hard as they are specific versions of integer linear
programs and polynomial-time algorithms may exist that can
leverage their specific structure.

Convex quadratic programming is polynomial-time solv-
able which is the form of the problem (8). Determining
whether the problems have unique optimal solutions is diffi-
cult for problems (12), (14), and (16) and is only guaranteed
for convex quadratic programs when the problem is strictly
convex and possibly for problems when they have some
structure.

Remark 5. If the network topology and the weights asso-
ciated with the network connections cannot be changed, the
reactivity still can be modified through the coupling strength
σ > 0:

ẋi(t) = σ
∑
j

Lijxj . (18)

The effective reactivity and the entire spectrum of the Lapla-
cian matrix will then be rescaled by σ. This may lead to a
longer convergence time for reaching the consensus state.

D. Example

In this section, we provide an example of graph opti-
mization by link addition or removal, or both, in order to
make such graphs minimally reactive. Figure 2 (a) shows a
randomly generated unweighted directed graph. We use the
proposed link perturbation procedures to make the network
minimally reactive. Panels (b), (c), and (d) in Fig. 2 show
the resulting optimized topologies by link addition (12),
link removal (14), and link addition and removal (16),
respectively. We see in Fig. 2 (b) and (c) that optimal
topologies are generated by adding a minimum of three links
and removing a minimum of three links, respectively. The
trivial solutions for link addition and link removal require
seven link additions (by making all links bi-directional) and
seven link removals (by removing all uni-directional links,
respectively.) On the hand, the link addition and removal
optimization in panel (d) provides a solution in which a

0 0.2 0.4 0.6 0.8 1
p

0

1

2

3

4

5

A

n = 200 n = 130 n = 80 n = 40 n = 10

Fig. 3. The mean of the structural reactivity ψ is plotted against the
connection probability p of Erdős–Rényi graph (random graph) with n
nodes. For each pair of p and n, 100 random graphs are generated and
for each graph, ψ is calculated using (19), and here the mean value of ψ
over the 100 graphs is plotted. The shaded colored area corresponds to the
standard deviation of the data points.

minimally reactive network is generated by performing only
two link perturbations (i.e., one link addition and one link
removal.)

E. Structural reactivity

The optimization procedures proposed in Sec. V-C find
the minimum number of link perturbations (additions and/or
removals) that make a network minimally reactive. Here, we
introduce a practical measure ‘structural reactivity’ which
assesses how much a given network is far from becoming
minimally reactive by link perturbations.

Definition 1. The structural reactivity of a given graph G is
the ratio between the minimum number of link perturbations
and the number of nodes of the graph. Denoting the optimal
objective function value from (16) by J∗, then the structural
reactivity is

ψ =
J∗

n
. (19)

We study ψ for directed Erdős–Rényi graphs (random
graphs). Figure 3 shows ψ versus the connection probability
p of the random graph. When p = 0, the corresponding
graph is a null graph, which is minimally reactive since
degini = degouti = 0, ∀vi. Therefore, no links are added or
removed. We see that as p increases, the structural reactivity
ψ increases until around p ≈ 0.5 when ψ reaches its highest
value. For larger values of p, ψ decreases until eventually it
reaches 0 again when p = 1 (i.e., fully connected graph.)

We call G a graph and H its complement. We note that
H is balanced if and only if G is balanced. It requires J∗ =
a + r link perturbations to make G balanced, where a (r)
is the number of optimally added (removed) links. While
the graph H requires r (a) additional (removal) number of
links to become balanced (i.e., for each added (removed)
link in G, the corresponding link in H should be removed
(added).) Since the value of ψ for a graph and its complement
is the same, the curve of ψ vs. p should be symmetric about
p = 0.5 and, we expect the maximum to be achieved at
p = 0.5. This is consistent with what is seen in Fig. 3, i.e., the
shape of the curve ψ vs. p for directed unweighted random
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graphs is concave, reaches a maximum around p = 0.5, and
is symmetric about p = 0.5.

VI. CONCLUSIONS

In this letter, we have studied the consensus dynamics
of directed networks and shown that a class of networks
for which the indegrees and outdegrees of all the nodes
are the same is minimally reactive. Several optimization
procedures have been proposed to perturb a given graph by
either adjusting the weights or by adding/removing links.

A new measure of structural reactivity has been introduced
which determines how much a given graph is far from
becoming minimally reactive by link perturbations. A study
of random graphs has shown that their structural reactivity
is the largest when the connection probability is around 0.5.

APPENDIX I
PROOF OF THEOREM 2

(Necessity): Let L be given with G = (V, E) as its
associated graph. Recall from Assumption 1 that an out-
directed spanning tree rooted at a node r ∈ V exists. Assume
there is a solution P that satisfies (8). We first show that the
solution can be interpreted as a set of |E| directed cycles on
G. For each node i ∈ V , conditions (6a) and (6b) imply that∑

(i,j)∈E

(Lij + Pij)−
∑

(j,i)∈E

(Lji + Pji) = 0. (20)

By interpreting the weight of each directed edge as a flow, we
see these two conditions amount to ensuring that the flow into
a node is equal to the flow out of a node. Equation (20) are
also called flow-balance constraints [19]. Note that setting
Pij = −Lij for (i, j) ∈ E results in a zero flow that satisfies
(20) (and also (6a) and (6b)). However, note that such a
solution is not feasible to the condition that Lij + Pij ≥
ϵ. Then by the Augmenting Cycle Theorem [19], finding a
feasible solution to (8) is equivalent to finding a flow with
at least ϵ flow along each arc that can be decomposed into
at most |E| directed cycles with the positive flow. For the
remainder of the proof, let xij = Lij + Pij for (i, j) ∈ E
denote the flow associated with the feasible solution. Cycle
decomposition means that every arc is on a cycle.

Consider the root node r and let any node j ∈ V be given.
We claim there is also a directed path from j to r. Note that
this will then show the theorem as then, for any nodes i and
j, there is a path from i to r and another path from r to j,
i.e., the graph is strongly connected. Let {r, i1, . . . , ik = j}
denote the directed path from r to j. We prove there is a
j-r path by induction on k, the length of the path. As a base
case, i.e., i1 = ik = j note that (r, i1 = j) is on one of the
cycles formed by x which then forms the path from i1 to r.
For the inductive case, suppose that there is a directed path
back from all nodes on paths of length k ≥ 1 from r. If j is
on a path of length k + 1, consider the edge (ik, ik+1 = j).
This edge is also on a cycle so there is a path from ik+1 to
ik. Then, by the inductive assumption, there is a path from
ik to r which results in a path from j to ik to r. Thus, by
induction, there is a path from j to r for every node j in G.

(Sufficiency): Let L be given along with its associated
graph G = (V, E). We construct a solution P that is feasible
(but not optimal) to (8) using the following algorithm.
Initialize all perturbations, Pij to zero. We iterate over each
edge (i, j) ∈ E as follows. As G is strongly connected
there is a directed path from j to i which we denote by
{j = u0, u1, . . . , uk = i}. For t = 0 to k − 1, increment
Put,ut+1

by Lij . At the conclusion of the algorithm, we have
a new feasible flow composed of |E| directed cycles: one for
each edge (i, j) ∈ E , each with Lij flow.
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