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Abstract— We consider a multi-agent linear quadratic optimal
control problem. Due to communication constraints, the agents
are required to quantize their local state measurements before
communicating them to the rest of the team, thus resulting in
a decentralized information structure. The optimal controllers
are to be synthesized under this decentralized and quantized
information structure. The agents are given a set of quantizers
with varying quantization resolutions—higher resolution incurs
higher communication cost and vice versa. The team must
optimally select the quantizer to prioritize agents with ‘high-
quality’ information for optimizing the control performance
under communication constraints. We show that there exist a
separation between the optimal solution to the control problem
and the choice of the optimal quantizer. We show that the
optimal controllers are linear and the optimal selection of the
quantizers can be determined by solving a linear program.

I. INTRODUCTION

Networked control systems are widely used in various
applications, such as sensor networks, intelligent transporta-
tion systems, self-deriving vehicles, and robotics [1]. These
systems often employ quantization to reduce the communica-
tion bandwidth required to close the feedback loop from the
sensor to the controller [2]–[5]. For multi-agent systems with
multiple controllers and sensors, the need for quantization is
even more pronounced to judiciously utilize communication
resources. The quantization process aims to strike a balance
between control performance and communication constraints.
Higher resolution quantizers incur less quantization error,
leading to better control performance but at the expense of
larger communication bandwidth required to transmit their
output. Conversely, coarser quantizers require fewer bits to
be transmitted but result in degraded control performance.

While the trade-off between quantization bit-rate and
optimal control performance for single-agent systems has been
investigated [6]–[8], this trade-off for multi-agent systems is
not equally well understood. This knowledge gap primarily
stems from the fact that determining the optimal design for the
quantizer and the controller, even for a linear-quadratic single
agent, is a computationally intractable problem [5], [8]. For
multi-agent systems, the problem becomes significantly more
challenging due to the decentralized information structure
[9]–[11].

For a single agent, the primary challenge lies in designing
the quantizers. While LQG optimal control with quantized
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measurements has been extensively studied, the optimal
structure of the controller and the quantizer, as well as the
applicability of the separation principle, remain unknown.
Approximate solutions to the optimal quantizer and controller,
along with conditions under which the separation principle
holds, have been provided under restrictive assumptions on
the quantization schemes. For a comprehensive overview of
these works, see [12]. Recently, works such as [12], [13]
have considered a different formulation where quantizers are
not designed but rather chosen from a given set. These works,
primarily focusing on the single-agent case, aim to design
the optimal controller and then select the optimal quantizer
to minimize a weighted cost function that combines control
and communication costs.

In this paper, we adopt the framework of [12] and extend
it to the multi-agent case. Here, each agent must select
the optimal quantizer at each time instance to maintain a
balance between control performance and communication
constraints/costs. While the agents share quantized states
with the team, they retain the true state values to themselves,
thus resulting in a decentralized information structure.

The contribution and significance of this work lie in
deriving the optimal controller and the optimal selection
of the quantizers in decentralized settings. We show that the
optimal controller for each agent has two components: one
that depends on the common information communicated by
each agent to others, and another one that solely depends
on the local information of each agent. We show that the
optimal selection of the quantizers is time-varying for finite-
horizon problems, and it can be determined by solving a
linear program.

The rest of the paper is organized as follows: We formulate
the problem in Section II. We discuss the decentralized infor-
mation structure and the quantization scheme in Section III.
The optimal controller is derived in Section IV and the optimal
selection of the quantizers are obtained in Section V. Finally,
we conclude the work in Section VI.

A. Notations

Given a matrix A, A ⪰ 0 and A ≻ 0 denote that A
is positive semi-definite and positive definite, respectively.
vec(v1, . . . , vn) denotes the column vector formed by ver-
tically stacking the vectors vi’s. Given any vector-valued
process {yt}t≥0 and any time instances t1, t2 such that t1 ≤
t2, yt1:t2 is a shorthand notation for vec(yt1 , yt1+1, . . . , yt2).

II. PROBLEM FORMULATION

Consider a system of n agents (see Fig. 1) evolving in
discrete time with linear dynamics. Let xi

t ∈ Rdx denote
the state and ui

t ∈ Rdu denote the control action of agent
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Fig. 1. The n agent model with all-to-all communication framework.

i ∈ N := {1, 2, . . . , n} at time t. The dynamics of each agent
is given by

xi
t+1 = Aixi

t +Biui
t + wi

t, (1)

where Ai and Bi are matrices of compatible dimensions and
{wi

t}T−1
t=0 is a zero-mean i.i.d noise process with finite second

moment Σi
w. We do not assume that wi

t is Gaussian. The
initial state xi

0 is a random vector with zero mean and finite
second moment Σi

x. For convenience of notation, we often
use wi

−1 to denote xi
0.

Assumption 1: For all i, j ∈ {1, 2, . . . , n} and t, s ∈
{−1, 0, . . . , T − 1}, we assume that wi

t and wj
s are inde-

pendent for i ̸= j or t ̸= s.
By concatenating the linear dynamics for all of the agents,

we may write

xt+1 = Axt +But + wt, (2)

where A = diag(A1, . . . , An), B = diag(B1, . . . , Bn), and
wt = vec(w1

t , . . . , w
n
t ). In (2), xt = vec(x1

t , . . . , x
n
t ) and

ut = vec(u1
t , . . . , u

n
t ) are the vectors representing the states

and controls of all the agents.
Each agent perfectly observes its own state. However,

due to communication constraints (as we will discuss in
detail in Section II-A), the agents must use quantizers when
transmitting information to the other agents to reduce the
communication bandwidth. We assume that a set of M
quantizers are provided to quantize the state value for each
agent.1 The symbols of the m-th quantizer are denoted by
Qm = {qm1 , . . . , qmℓm}. Associated with the m-th quantizer,
let Pm = {pm1 , . . . , pmℓm} denote a partition in Rdx such that
pmj gets mapped to the symbol qmj for each j ∈ {1, . . . , ℓm}.
Thus, the m-th quantizer provides a mapping/encoding δm :
Rdx → Qm such that δm(x) = qmj if and only if x ∈ pmj .

A. System Performance
The control objective for these agents is to jointly minimize

the finite-horizon quadratic cost function

JControl = E
[
xT
TQxT +

T−1∑
t=0

(
xT
t Qxt + uT

t Rut

)]
, (3)

where Q ⪰ 0 and R ≻ 0. Let Qij ∈ Rdx×dx denote the ij-th
block element of Q that couples the states of agents i and j
via the term (xi

t)
TQijxj

t . Similarly, we define Rij to be the
ij-th block element of R.

1The analysis remains the same when different agents have different sets
of quantizers.

Although the agents’ dynamics are decoupled (see (1)), the
objective function (3) couples the states and control actions.
Hence, the optimal control for each agent depends on the
global state xt, which necessitates each agent to share its
local state information xi

t with the other agents. In this work,
we assume that agents can broadcast their messages to the
entire team (i.e., an all-to-all communication architecture), to
better coordinate and lower the control cost of the whole team.
However, the agents must use quantizers to judiciously use the
communication resources (e.g., bandwidth). In other words,
the agents must be prioritized to use the communication
resources based on how their state information helps in
reducing the global objective function (3).

The (communication) cost of using the m-th quantizer is
λm > 0. For instance, λm = log2(ℓ

m) denotes the number
of bits required to transmit the quantized message from the
m-th quantizer. Let us define the new decision variable

θimt =

{
1, agent i selects quantizer m at time t,

0, otherwise.
(4)

In general, the quantizer selection policy could be a random-
ized policy and, therefore, the outcomes θimt are random
variables. Hence, the expected communication cost for the
entire team at time t can be expressed as

JComm,t =

n∑
i=1

M∑
m=1

E[θimt ]λm =

n∑
i=1

(E[θit])Tλ, (5)

where θit = vec(θi1t , . . . , θiMt ) and λ = vec(λ1, . . . , λM ).
The total communication cost for the entire horizon therefore
becomes

JComm =

T−1∑
t=0

JComm,t. (6)

For the communication constrained control problem, we will
consider the following three variations.
Per-time communication constraint:

min JControl

subject to JComm,t ≤ ct, t = 0, . . . , T − 1,
(P1)

for given time-varying communication budgets ct’s.
Cumulative communication constraint:

min JControl

subject to JComm ≤ c,
(P2)

for a given cumulative budget c > 0.
Weighted cost formulation:

min JControl + αJComm, (P3)

where α ≥ 0 is a trade-off parameter between the commu-
nication and the control costs. The optimization problems
in (P1)-(P3) are carried out w.r.t the control variables (i.e.,
u1:n
0:T−1) and the quantizer selection variables (i.e., θ1:n0:T−1).
In this work, we assume that each agent may select only

one quantizer at any given time, which imposes the constraint
M∑

m=1

θimt = 1, (7)

for all i = 1, . . . , n and t = 0, . . . , T − 1.



III. INFORMATION STRUCTURE AND QUANTIZATION
SCHEME

We denote the quantized measurement of agent i at time
t as zit. If agent i uses the m-th quantizer to quantize xi

t,
then zit = δm(xi

t). Using the quantizer selection variables
θimt defined in (4), we may also express zit as

zit =

M∑
m=1

θimt δm(xi
t),

which explicitly shows how the choice of the quantizer (i.e.,
θimt ) affects zit.

While each agent shares its quantized state with others, it
retains the true state locally and may use it for synthesizing
its control inputs. Therefore, our problem formulation has
a decentralized information structure. At time t, agent i
observes its own state and selects the quantizer θit to broadcast
zit to all agents. Next, the agents use the broadcast information
to take optimal actions to solve (P1)-(P3). The information
available to agent i prior to quantization and communication
at time t is

Iit− = {xi
0:t, u

i
0:t−1, z0:t−1, θ0:t−1}; Ii0− = {xi

0}, (8)

where t− indicates that Iit− is the available information prior
to any decision taken (on control or quantizer selection) at
time t, and zt ≜ vec(z1t , . . . , z

n
t ) is the vector created by con-

catenating all communicated signals and θt ≜ vec(θ1t , . . . , θ
n
t )

is the concatenation of all quantizer choices. Agent i, selects
the quantizer (i.e., decides the optimal choice for θimt )
based on the common part of Iit− (i.e., {z0:t−1, θ0:t−1}),
and broadcasts the quantized measurement zit , along with its
choice for the quantizer, i.e., the θit variable to all agents.
After the quantized measurements are received by the agents,
the available information to agent i is

Iit = {xi
0:t, u

i
0:t−1, z0:t, θ0:t} = Iit− ∪ {zt, θt}. (9)

We may split the information Iit into two parts: The infor-
mation available to all agents, i.e., the common information,
and the information available to each individual agent, i.e.,
the local information. We denote the common and local
information as Ict and Ii,ℓt , respectively:

Ict = {θ0:t, z0:t}, (10)

Ii,ℓt = {xi
0:t, u

i
0:t−1}. (11)

Similarly, one may also divide the information Iit− into the
common and local parts.

Agent i’s controller is a measurable function of Iit , whereas
the quantizer selector is Ict−1 measurable. One may notice
that the information set Iit (similarly Iit−) is equivalent
to the information set {wi

−1:t−1, u
i
0:t−1, z0:t, θ0:t}, which is

expressed in terms of the primitive variables wi
t’s.

In this work, we restrict ourselves to the innovation quanti-
zation framework where each agent shares a quantized version
of wi

t−1 instead of xi
t at time t. When xi

t is quantized and
shared, the optimal controller synthesis becomes an intractable
problem even for a single agent case. This issue becomes
significantly more complicated for the decentralized multi-
agent case considered in this work. A detailed discussion on

quantization of wi
t instead xi

t can be found in earlier literature
[2] and in our recent works [12], [13]. Therefore, from this
point onward, for all t = 0, . . . , T − 1, we will consider

zit =

M∑
m=1

θimt δm(wi
t−1). (12)

Remark 1: Due to the restriction imposed by (12) (i.e.,
quantizing wi

t−1 instead of xi
t) we may lose optimality. It

is noteworthy that there is no such loss of optimality if
we quantize

∑t
s=0(A

i)t−swi
s−1 instead of wi

t−1 at time
t; see for instance [14, Lemma 3.1]. Quantizing/encoding∑t

s=0(A
i)t−swi

s−1 is known as predictive coding, where
the quantizer removes the contribution of the control before
quantization. A brief discussion on the trade-off between
computational tractability and optimality for considering (12)
instead of predictive coding can be found in [13]. Studying
our proposed multi-agent problem in the predictive coding
setup is a promising and challenging future direction.

Under the innovation quantization scheme (12), our objec-
tive is to find the optimal controller and quantizer selector
strategies for each agent to solve the optimization problems
in (P1)–(P3).

IV. OPTIMAL CONTROLLER

The solution of a linear-quadratic optimal control problem
typically has two components: a state estimator and a feedback
gain, where the former depends on the available information
and the latter depends on system matrices through Riccati
equations. Given that we have both local and common infor-
mation, we define the estimators and the Riccati equations
upfront for subsequent uses. To that end, following [15],
[16] we define the following estimates based on the common
information

ût = E[ut|Ict ], x̂t = E[xt|Ict ]. (13)

Additionally, we also define the following variables

x̃t = xt − x̂t, (14a)
ũt = ut − ût. (14b)

Lemma 1: The state estimates and estimation errors evolve
as follows:

x̂t+1 = Ax̂t +Bût + ŵt, (15)
x̃t+1 = Ax̃t +Bũt + w̃t, (16)

where ŵt = E[wt | zt+1, θt+1] and w̃t = wt − ŵt.
Proof: The proof follows from [12] and has been omitted

due to page limitations.
We define a global Riccati equation whose solution (Pt) is
used by all the agents in their controllers, and we also define
local Riccati equations (P̃ i

t ) for each agent, as follows.

Pt = Q+ATPt+1A− LT
t (R+BTPt+1B)Lt,

PT = Q,

Lt = (R+BTPt+1B)−1BTPt+1A,

(17)



and for each individual agent i, we define

P̃ i
t = Qii + (Ai)TP̃ i

t+1A
i − (L̃i

t)
T(Rii + (Bi)TP̃ i

t+1B
i)L̃i

t,

P̃ i
T = Qii, (18)

L̃i
t = (Rii + (Bi)TP̃ i

t+1B
i)−1(Bi)TP̃ i

t+1A
i.

While Pt in (17) is used by all the agents, P̃ i
t in (18) is

only used by agent i.
The main result of this section is summarized in the

following theorem.
Theorem 1: The optimal controller for the i-th agent is

ui
t = −Li

tx̂t − L̃i
tx̃

i
t, (19)

where Li
t is the i-th block-row of the matrix Lt defined in

(17) and L̃i
t is defined in (18).

Furthermore, the optimal control cost under (19) is

JControl = tr (P0Σx) +

T−1∑
t=0

tr (Pt+1Σw)

+

n∑
i=1

T−1∑
t=0

E[(βi
t)

Tθit],

(20)

where βi
t is a constant given in (29).

Proof: A proof sketch is presented in Appendix B.
Using (14), one may also express (19) in the form

ui
t = −L̃i

tx
i
t − Gi

tx̂t, where an expression for Gi
t can be

obtained from Li
t and L̃i

t. This demonstrates that the choice
of quantizers (i.e., θ1:n0:t ) affects ui

t only through the term
x̂t. Furthermore, it can be verified that when the cost is
decoupled (i.e., Qij = 0 and Rij = 0), we have Gi

t = 0, as
expected. Notice that agent i needs to know the parameters
(Ai, Bi etc.) of all the other agents to compute the matrix
Li
t. Alternatively, one may assume that these matrices are

pre-computed and shared with the agents before system starts
running.

Theorem 1 not only reveals how the optimal controller is
affected by the quantization process, but also demonstrates
how the control performance (i.e., JControl) is influenced by the
choice of quantizers. This enables us to optimize the quantizer
selection policy further to minimize JControl, a discussion of
which will be provided in Section V. We conclude this section
with the following remarks.

Remark 2: The optimal controller for the i-th agent con-
sists of two parts: the −Li

tx̂t part that depends on the common
information and the part, −L̃i

tx̃
i
t, that depends on the local

information.
Remark 3: In the case of non-quantized communication,

the optimal control cost is tr (P0Σx) +
∑T−1

t=0 tr (Pt+1Σw),
and therefore, the adverse effects of the quantization
on the control performance is quantified by the term∑n

i=1

∑T−1
t=0 E[(βi

t)
Tθit]. A similar observation is also made

in [17], where the communication suffered from packet
dropouts and delays instead from quantization.

V. OPTIMAL QUANTIZER SELECTION

In this section, we derive the optimal quantizer selection
strategies for the agents. Let µi

t(· | Ict−1) denote the quantizer
selection policy, which is assumed to be a randomized

policy without loss of generality. In other words, we have
P(θimt = 1 | Ict−1) = µi

t(m | Ict−1), for all m = 1, . . . ,M .
For notational convenience, we define µim

t to denote µi
t(m |

Ict−1). For µi
t(· | Ict−1) to be a valid randomized strategy,

we impose
∑M

m=1 µ
im
t = 1 for all t. Finally, we define

µt = (µ1
t , . . . , µ

n
t ) and µi

t = (µi1
t , . . . , µiM

t ).
Optimizing JControl in (20) is equivalent to optimizing only

the last term since the first two terms are constants. At
this point we consider each of the optimization problems
(P1)–(P3) separately and discuss their corresponding optimal
quantizer selections.

A. Per-time and Cumulative Communication Constraints

In this section, we consider (P1) and (P2) and derive the
optimal quantizer selection strategies for these two cases.
Using (20) and the definition of µi

t, we may rewrite (P1) as

min

T−1∑
t=0

n∑
i=1

(µi
t)

Tβi
t , (21)

subject to

n∑
i=1

(µi
t)

Tλ ≤ ct,

1Tµi
t = 1, µi

t ≥ 0,

 t = 0, . . . , T − 1,

i ∈ N,

which is a linear programming (LP) problem in µ. The
constraints 1Tµi

t = 1 and µi
t ≥ 0 are to ensure that µi

t

is a valid probability distribution. Since the cost function can
be decoupled in t and the constraints are already decoupled,
the optimal selection strategy at any given time t can be
found by solving the following optimization problem

min

n∑
i=1

(µi
t)

Tβi
t , (22)

subject to

n∑
i=1

(µi
t)

Tλ ≤ ct,

1Tµi
t = 1, µi

t ≥ 0,

 t = 0, . . . , T − 1,

i ∈ N.

This results in a linear program and can be solved efficiently.
These optimization problems need to be solved in a centralized
manner.

Remark 4: Although it may appear that the optimal selec-
tion of the quantizers at time t is not concerned with the
system’s future performance, this is not the case. The βi

t

variable encapsulates the effects of the selected quantizer at
time t on the future performance.

In a similar fashion, the cumulative communication con-
strained problem (P2) is expressed as

min

T−1∑
t=0

n∑
i=1

(µi
t)

Tβi
t , (23)

subject to
T−1∑
t=0

n∑
i=1

(µi
t)

Tλ ≤ c,

1Tµi
t = 1, µi

t ≥ 0, t = 0, . . . , T − 1, i ∈ N,

which is also a linear program. However, unlike the previous
case, the optimal choice at time t cannot be decoupled.



B. Weighted Cost Formulation

Following the same steps as in the previous section, the
weighted cost formulation (P3) yields

min

T−1∑
t=0

n∑
i=1

(µi
t)

T(βi
t + αλ), (24)

subject to 1Tµi
t = 1, µi

t ≥ 0, t = 0, . . . , T − 1, i ∈ N.

This problem is particularly interesting as the class of
deterministic policies (i.e., µim

t ∈ {0, 1}) always contains the
optimal policy. In particular, agent i’s optimal quantizer at
time t is

m∗ = argminm{βim
t + αλm}. (25)

In contrast to the optimization problems (22)-(23), this
problem can be solved in a decentralized manner.

It is noteworthy that (P3) can be thought of a Lagrangian
relaxation of (P2). Therefore, one might be tempted to
solve (P2) via (P3). However, (P3) will always return a
deterministic selection policy (for every value of α), which
is not necessarily an optimal solution to (P2). In other words,
one may not be able to recover the solution of (P2) from (P3)
by simply varying α. A detailed discussion on this is beyond
the scope of this paper and will be addressed elsewhere.

We conclude the discussion on quantization selection by
remarking that the optimal selection strategy can be found by
solving a centralized linear program. This LP can be solved
offline, similar to the computation of the Riccati equations
that can be carried out offline as well. This significantly aids
the practical implementation of the framework, where one
does not need to carry out an online optimization at every
time instance.

Remark 5: It’s important to note that the solutions to both
the Riccati equations in Section IV and the LP problem
in Section V can be computed offline. In particular, the
Riccati equations in (17) and (18) depend only on the system’s
dynamics and βim

t depends on the Riccati solutions, the
distribution of the noises, the partitions Pm, and the number
of quantization levels ℓm. Hence, the solution to the LP
problem considers the constraints imposed by the Riccati
equations through the term β.

VI. CONCLUSIONS

In this paper, we revisited a decentralized linear-quadratic
optimal control problem with communication constraints. We
derived the optimal controllers as well as the optimal choice
of quantizers for the agents. We analytically quantified the
degradation in control performance due to the communication
constraints. We demonstrated that the optimal controller
can be designed based on the solution of matrix Riccati
equations, while the optimal quantizers can be determined by
solving a linear program. Furthermore, this linear program
can be further simplified depending on the nature of the
communication constraints. For future work, we believe
this work can be extended to the case where agents have
partial and noisy state measurements. In this case, one would
need to quantize the innovation signal based on these noisy
measurements.
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APPENDIX

A. Some Useful Lemmas

Lemma 2 (Completion of Square): Given a linear dynam-
ics (2) and an expected quadratic cost function (3), we may
write

E

[
T−1∑
t=0

(ut + Ltxt)
TPt+1(ut + Ltxt)

]

= E
[
xT
TQxT +

T−1∑
t=0

(
xT
t Qxt + uT

t Rut

)]
− tr

(
P0E[x0x

T
0 ]
)

−
T−1∑
t=0

tr
(
Pt+1E[wtw

T
t ]
)
,

where Pt follows the Riccati equation (17).
Proof: The proof follows from [18].



Lemma 3: For t = 0, . . . , T − 1, we have,

E[(x̃i
t)

TMx(x̃
j
t )] = 0, E[(ũi

t)
TMu(ũ

j
t )] = 0, i ̸= j,

for any matrices Mx and Mu with compatible dimensions.
Proof: The proof follows similar steps as those in [16,

Lemmas 4 and 5] and has been omitted due to page limitations.

B. Proof of Theorem 1

By performing completion of squares of Lemma 2 in (3),
and using the fact that E[x̂T

t x̃t] = E[ûT
t ũt] = 0, one may

obtain

JControl = tr (P0Σx) +

T−1∑
t=0

tr (Pt+1Σw)

+ E

[
T−1∑
t=0

(ût + Ltx̂t)
TPt+1(ût + Ltx̂t)

]

+ E

[
T−1∑
t=0

(ũt + Ltx̃t)
TPt+1(ũt + Ltx̃t)

]
,

(26)

where Σw = diag(Σ1
w, . . . ,Σ

n
w), Σx = diag(Σ1

x, . . . ,Σ
n
w)

and Pt is the Riccati matrix defined in (17). Let us define
J∗ ≜ tr (P0Σx) +

∑T−1
t=0 tr (Pt+1Σw), which is the optimal

cost when the agents share the true states without quantization.
From the expression of JControl in (26), one may conclude

that û∗
t = −Ltx̂t is the optimal choice. By substituting û∗

t

in (26), we obtain

JControl =J∗+ E
[T−1∑
t=0

(ũt + Ltx̃t)
TPt+1(ũt + Ltx̃t)

]
. (27)

Now, we may invoke Lemma 2 again along with the
conditional-independence property from Lemma 3 to rewrite
(27) as

JControl = J∗ − tr (P0Σx̃)−
T−1∑
t=0

tr (Pt+1Σw̃t)

+ E

[
n∑

i=1

[
(x̃i

T )
TQiix̃i

T +

T−1∑
t=0

((x̃i
t)

TQiix̃i
t + (ũi

t)
TRiiũi

t)
]]

where we use (15) and define Σw̃t ≜ E[w̃t(w̃t)
T] and Σx̃ ≜

E[x̃0x̃
T
0 ] with w̃t ≜ wt − E[wt | zt+1, θt+1] and x̃0 ≜ x0 −

E[x0 | Ic0 ]. Based on the conditional independence between
x̃i
0 and x̃j

0 as well as that between w̃i
t and w̃j

t , we obtain
Σw̃t = diag(Σ1

w̃t
, . . . ,Σn

w̃t
), and Σx̃ = diag(Σ1

x̃, . . . ,Σ
n
x̃),

where Σi
w̃t

= E[w̃i
t(w̃

i
t)

T] and Σi
x̃ = E[x̃i

0(x̃
i
0)

T].
Next, we apply the completion of square once again to

obtain

JControl = J∗

+ tr
(
(P̃0 − P0)Σx̃

)
+

T−1∑
t=0

tr
(
(P̃t+1 − Pt+1)Σw̃t

)
+

n∑
i=1

E

[
T−1∑
t=0

(ũi
t + L̃i

tx̃
i
t)

TP̃ i
t+1(ũ

i
t + L̃i

tx̃
i
t)

]
, (28)

where P̃t = diag(P̃ 1
t , . . . , P̃

n
t ). The matrices P̃ i

t and L̃i
t are

defined in (18). From (28), we notice that the optimal choice
for ũi

t is −L̃i
tx̃

i
t. Thus, combining the optimal choices for ût

and ũt, we obtain u∗
t = −Ltx̂t − diag(L̃1

t , . . . , L̃
n
t )x̃t, and

therefore the optimal input of agent i is

ui
t = −Li

tx̂t − L̃i
tx̃

i
t,

where Li
t is the i-th block-row of the matrix Lt. This

completes the derivation of the optimal controller.
Let us define the matrix P̄t ≜ P̃t − Pt and denote P̄ i

t to
be the i-th diagonal block of P̄t. Consequently, substituting
ũi
t = −L̃i

tx̃
i
t in (28) yields

JControl = J∗ +

n∑
i=1

(
tr
(
P̄ i
0Σ

i
x̃

)
+

T−1∑
t=0

tr
(
P̄ i
t+1Σ

i
w̃t

) )
.

This expression explicitly shows how the choice of the
quantizers affects JControl. To that end, recall that Σi

w̃t
=

E[w̃i
t(w̃

i
t)

T], w̃i
t = wi

t − E[wi
t | zit+1, θ

i
t+1], and zit+1 =∑M

m=1 θ
im
t+1δ

m(wi
t). Therefore,

w̃i
t = wi

t −
M∑

m=1

θimt+1E[wi
t | δm(wi

t)]

=

M∑
m=1

θimt+1(w
i
t − E[wi

t | δm(wi
t)]) ≜

M∑
m=1

θimt+1w̃
im
t ,

where we have used the constraint that
∑M

m=1 θ
im
t = 1 and

w̃im
t is the quantization error of th m-th quantizer on wi

t.
Consequently, one may verify

Σi
w̃t

= E

[
M∑

m=1

θimt+1w̃
im
t (w̃im

t )T

]
= E

[
M∑

m=1

θimt+1F
im

]
,

where,

F im =

ℓm∑
j=1

∫
pm
j

(w − E[w ∈ pmj ])(w − E[w ∈ pmj ])TPi(dw)

is the quantization error covariance that depends on the parti-
tions of Pm and the number of the quantization levels ℓm of
the m-th quantizer and the distribution of the source signal Pi.
Notice that F im does not depend on time since the distribution
of wi

t does not change with time due to the i.i.d assumption.
Similarly, one may obtain Σi

x̃ = E
[∑M

m=1 θ
im
0 F im

0

]
, where

F im
0 has the same expression as F im, except Pi is replaced

with the distribution of xi
0. Finally, we obtain

JControl = J∗+
n∑

i=1

E
[ M∑
m=1

θim0 tr
(
P̄ i
0F

im
0

)
+

T−1∑
t=0

M∑
m=1

θimt+1tr
(
P̄ i
t+1F

im
) ]

.

We define the constants

βim
t =

{
tr
(
P̄ i
0F

im
0

)
, t = 0,

tr
(
P̄ i
tF

im
)
, otherwise,

(29)

and the vector βi
t = vec(βi1

t , . . . , βiM
t ), which yields

JControl = J∗ +

n∑
i=1

T−1∑
t=0

E[(βi
t)

Tθit].

This completes the proof.


