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Abstract— This paper presents a new control strategy based
on a differential flatness approach for n boost choppers and n
sources connected in parallel with different characteristics, the
objective being to make them work on the same voltage bus.
We first give an in-depth study of flatness of the n-boost system
and propose a flat output for this type of boost choppers con-
figuration, which ensures homogeneous power sharing among
the choppers and guarantees continuous current in at least
n− 1 choppers. Another contribution is the establishment of a
relation between the proposed flat output and the regulation of
the DC bus voltage via an additional power load control loop. To
demonstrate the effectiveness of the proposed control strategy,
the paper includes simulation results for three boost choppers
and sources connected in parallel with different characteristics.

Keywords: boost choppers average model, differential flatness,
power control.

I. INTRODUCTION

Boost choppers are widely used in power electronics,
and this article aims to address the question of how to
make different energy sources and boost choppers work
together on the same voltage bus. This issue arises when
it becomes necessary, due to power demand, availability, or
security reasons, to connect multiple sources to the bus. This
seemingly simple problem is, in reality, more complex than it
appears. Indeed, it has been established in the literature (see,
e.g., [26], [33]), that the dynamical model of a boost chopper
has a non-minimum phase zero dynamics if the bus voltage
is considered as the output variable. To compensate for this
non-minimum phase behavior, many control algorithms have
been developed that, in addition to the control loop for
the voltage regulation, target the regulation of the current
using a cascade structure such as passivity-based control
(see, e.g., [5]), PI controllers (see, e.g., [6]), or sliding
mode control (see, e.g., [33]). Comparisons of some of these
methods have been conducted, for instance, in [11], [25],
[32].

A class of control systems that has the property of having
no zero dynamics is that of differential flat systems (simply,
flat systems). The notion of flatness was introduced in
control theory in the 1990s, by Fliess, Lévine, Martin and
Rouchon [9] (see also [1], [17], [18], [28]) and has attracted
a considerable interest [10], [22], [27], [29], [38] because
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of its important applications in the problems of motion
planning and constructive controllability. In the context of
electric power systems, flatness has already been successfully
applied to electrical systems in simulations as well as in
experimental works (see, e.g., [7], [20], [30]–[32], [34], [35],
[39], [40] for some recent works). Although the average
dynamic model of a single boost chopper is known to be
flat (see, for instance, [11], [34]) and flatness-based control
approaches have already been applied for a boost chopper
(see, e.g., [12]), the flatness property of an interconnected
system formed by several parallel connected boost choppers
becomes uncertain and is not a direct consequence of that of
each boost chopper. It has been shown (see [24]) that, even in
the simplest case of linear systems, if each subsystem is flat,
the global interconnected system is not necessarily flat and if
it is, then, for the class of interconnected systems considered
in [24], the flat output is never the collection of the flat
outputs of each subsystem considered independently. In the
case of an interconnected system of several boost choppers,
this makes it difficult to ensure continuous mode for the
boosts and an homogeneous power distribution on each boost
to be transmitted to the load, which are important problems
when dealing with such systems.

Therefore, the contribution of this work is two-fold.
Firstly, we investigate the flatness property of a system
consisting of n distinct boost choppers connected in parallel
and compute all its flat outputs. We discuss their uniqueness
and show that among all possible flat outputs, there exists a
flat output whose components are the currents of n−1 boost
choppers completed by the total stored energy of the n-boost
system. This flat output is very interesting from a control
point of view because it guarantees that at least n−1 boosts
are always in continuous mode. Secondly, we introduce
a load power control loop that establishes a relationship
between the bus voltage and the flat output, our primary
goal being to regulate the bus voltage while accomplishing
the following objectives: 1) maintaining continuous operation
for the maximum number of boost choppers; 2) achieving
uniform power distribution; 3) ensuring robust tracking of
the constant DC bus voltage in the face of load variations.

Parallel connected boost choppers have already been con-
sidered in the literature: [36], [37] deal with the case of
parallel-connected boost choppers powered by a single DC
source full cell. In [36], the DC bus voltage is handled using
the stored energy of the total DC bus capacitor, which is
actually considered as a flat output for a subsystem of the
control system modeling the whole circuit, and flatness-based
control is applied for that subsystem. Also [37] uses flatness
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(again of a subsystem and not of the control system modeling
the whole network) for the inner fuel cell power regulation,
the proposed flat output corresponding to the input power
of each boost. In [23], the considered network possesses
two distributed generators interfaced to the DC bus by non-
isolated boost converters, so it has, like our model, several
sources, but it presents a different topology than ours. A
nonlinear controller based on flatness of a subsystem, the
flat output being the energy of the output voltage capacitor,
is proposed. Although all these papers present interesting and
effective control strategies for the considered problems, none
of them provided an in-depth study of the overall system’s
flatness.

The paper is organized as follows. The averaged modeling
of the n-boost system is presented in Section II. Section III
gives a flatness analysis of the connected boost choppers and
proposes a flat output for the overall system. Then the control
laws are presented in Section IV. Finally, simulation results
and some future work directions are given in Section V.

Notations for the n-boost system:
i = 1, . . . , n: integer labeling the boost choppers,
Ii: current in the inductance of the ith boost chopper,
xi = Iiav : averaged current in the ith inductance,
VC : bus voltage, and C: bus capacitance,
xn+1 = VCav

: averaged bus voltage,
αi: duty cycle of the ith boost chopper,
T : switching period, and F = 1

T : switching frequency,
Vi: source voltage of the ith boost chopper,
Li: inductance of the ith boost chopper,
Pri: rated power of the ith boost chopper,
R: load resistance, and Il: load current,
Idi: desired current Iiav

and VdC : desired bus voltage VCav
,

Et: total energy, and Edt: desired total energy.

II. n-BOOST SYSTEM MODELING

A boost chopper is a switching power supply that converts
a DC voltage into a different DC voltage of higher value
[8], [34]. DC/DC power converters, such as boost choppers,
are generally used to supply a regulated DC output voltage.
The schematic of the boost chopper is shown in Fig. 1a.
It contains a diode, a Mosfet switch, an inductance, and a
capacitor.
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Fig. 1: Schematics.

To simplify the writing and the transition to the average
model, we assume that the system is driven by pulse width

modulation (PWM). The boost chopper operates in two
modes. In the on-mode, the switch K is closed (i.e., K = 1)
from time 0 to αT , with α ∈ [0, 1[, where α and T denote,
resp., the duty cycle of the boost chopper and the switching
period; then the diode D does not conduct. During this mode,
the energy provided by the DC voltage source V > 0 is
being stored in the inductance L. Then the capacitor C is
being discharged through the load resistance R with respect
to equation (1) of the on-mode boost chopper configuration
(Fig. 2a). In the off-mode (Fig. 2b), K is opened, i.e. K = 0,
from αT to T and the diode D conducts. During this mode,
the energy stored in the inductance L is transferred in the
capacitor and the load with respect to equation (2).
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(a) On-mode (0 < t ≤ αT ).
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(b) Off-mode (αT < t ≤ T ).

Fig. 2: Operation configurations of the boost chopper.

Fig. 2a gives the following equations for K = 1:(
İ

V̇C

)
=

(
0 0
0 −1

RC

)(
I
VC

)
+

(
V
L
0

)
, (1)

while from Fig. 2b, we deduce the following for K = 0:(
İ

V̇C

)
=

(
0 −1

L
1
C

−1
RC

)(
I
VC

)
+

(
V
L
0

)
. (2)

The behavior of a boost chopper corresponds to (2), when
the current I in the inductance does not pass through zero.
If I passes through zero then the diode is blocked and (2) is
no longer verified. If the boost chopper always has a strictly
positive current in its inductance, it is said to be in continuous
mode. Under the assumption that the boost chopper is in
continuous mode, and that relations (1) and (2) hold, the
average model of the boost chopper of Fig. 1a is:

İav =
α− 1

L
VCav +

V

L
(3)

V̇Cav =
1− α
C

Iav −
VCav

RC
, (4)

with Iav the averaged current and VCav
the averaged voltage.

For several reasons, like multiple energy sources, not
enough energy transmitted by a single boost chopper, hard-
ware redundancy for safety, etc., it may be necessary to
connect different boost choppers in parallel. In Fig. 1b, n
different boost choppers with different sources are connected
in parallel. Each boost and its characteristics are labeled
using the integer i, with 1 ≤ i ≤ n. Note that the parallel
connected capacitances Ci of each boost chopper have been
regrouped into one total capacitance C =

∑n
i=1 Ci leading

to a state reduction. In the case of a low power demand, all
boost choppers may provide a small current that approaches
zero. This can potentially cause the boosts choppers to go to
a discontinuous mode. To prevent this, we may disconnect
one or more boost choppers, allowing the remaining boost
choppers to provide a higher current. This ensures continuous
mode operation for the boost choppers that are still active.
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The new system has the same topology as the original
one, only the number n of boost choppers decreases. It is
described by system (5) below, with f and gi given, resp.,
by (6) and (7), but which now contains, instead of n, at
most n − 1 boost choppers operating in continuous mode.
Therefore, from now on, we can suppose the following:

Assumption 1: All boost choppers are in continuous mode.
The average model of the n parallel connected boost

choppers of Fig. 1b is of the form:

ẋ = f(x) +

n∑
i=1

gi(x)αi, (5)

where x := (x1, x2, .., xn, xn+1)> is the state and is equal to
x = (I1av , I2av , .., Inav , VCav )> corresponding resp., to the
averaged currents in the inductances Li, 1 ≤ i ≤ n, and to
the averaged bus voltage. The system is controlled by the n
duty cycles αi ∈ [0, 1[ of the boost choppers. The vector
fields f and gi are given, resp., by:

f(x) =

n∑
i=1

Vi − VCav

Li

∂

∂Iiav

+

(
n∑

i=1

Iiav

C
−
VCav

RC

)
∂

∂VCav

=

n∑
i=1

Vi − xn+1

Li

∂

∂xi
+

(
n∑

i=1

xi

C
−
xn+1

RC

)
∂

∂xn+1
, (6)

gi(x) =
VCav

Li

∂

∂Iiav

−
Iiav

C

∂

∂VCav

=
xn+1

Li

∂

∂xi
−
xi

C

∂

∂xn+1
, 1 ≤ i ≤ n. (7)

From a mathematical point of view, the state space of the
above system is Rn+1, but since all source voltages Vi are
positive and Assumption 1 is supposed to be always verified,
the only possible states, in continuous mode, are in Rn+1

+ .
The goal of this paper is to present a new control strategy

based on a flatness approach for n boost choppers and
sources connected in parallel with different characteristics.
It is well-known that the control system (3)–(4), describing
the dynamics of a single boost chopper, is flat (see, e.g., [11],
[34]), so each subsystem forming the interconnected one (5)
is flat, and one of the most natural questions is whether the
global system (5) is also flat. We will answer that question
in the next section.

III. FLATNESS ANALYSIS

The definition of flatness, see [9], for a general control
system with s states and m controls, can be stated as follows:

Definition 1: The system Ξ : ẋ = F (x, u), where x ∈ Rs
and u ∈ Rm, is flat if there locally exist m smooth functions
hi = hi(x, u, u̇, . . . , u

(`)), where 1 ≤ i ≤ m and1 ` ≥ −1,
having the following property: there exist an integer q and
smooth functions γi, 1 ≤ i ≤ n, and δj , 1 ≤ j ≤ m, such
that locally
xi = γi(h, ḣ, . . . , h

(q−1)) and uj = δj(h, ḣ, . . . , h
(q)),

where h denotes h = (h1, . . . , hm) and is called a flat
output. In the particular case when hi = hi(x), for all
1 ≤ i ≤ m, the system is called x-flat.

From the above definition it follows that for a flat system,
the evolution in time of all state and control variables can be
recovered from that of the flat output components hi without

1When ` = −1, we simply have hi = hi(x), for all 1 ≤ i ≤ m.

integration and all trajectories of the system can be com-
pletely parameterized. Flatness is closely related to the notion
of feedback linearization. The system Ξ : ẋ = F (x, u),
with x ∈ Rs and u ∈ Rm, is locally linearizable by static
feedback if it is equivalent, via a local diffeomorphism z =
φ(x) and an invertible static feedback transformation u =
ψ(x, v), to a linear controllable system Λ : ż = Az + Bv,
with z ∈ Rs, v ∈ Rm. Systems linearizable via invertible
static feedback are flat, and for single-input control systems,
flatness is actually equivalent to static feedback linearization,
see [3], [28], and is thus completely characterized by [15],
[19]. Consider again dynamics (3)–(4), describing a single
boost chopper, which has only one control. It follows that
studying its flatness reduces to checking static feedback
linearization and actually to finding a linearizing output,
see [19]. For multi-input control systems the equivalence
between flatness and static feedback linearization no longer
holds and in general, flat systems are not static feedback
linearizable but can be seen as a generalization of linear
systems (namely they are linearizable via dynamic, invertible
and endogenous feedback, see [9], [28]). Nevertheless, we
show next that the n-input control system (5), describing
the dynamics of n boost choppers connected in parallel,
is actually static feedback linearizable and therefore flat
(see Proposition 1 below). To system (5), we associate the
distribution D0 = span{g1(x), . . . , gn(x)} spanned by the
control vector fields of (5), given by (7), and define D1 =
D0 + [f,D0] = span{gi(x), [f, gi](x), 1 ≤ i ≤ n}, where f
is the drift of (5), given by (6), and the bracket represents
the Lie bracket.

Proposition 1: The n-input system (5) is locally static
feedback linearizable around any x∗ ∈ Rn+1 such that
x∗n+1 6= 0 and x∗i 6= −RCVi

2Li
for at least one integer

1 ≤ i ≤ n, and thus system (5) is flat at x∗. Moreover, any
n-tuple of smooth functions (h1(x), . . . , hn(x)) satisfying

(i) (D0)⊥ = span{dhn},
(ii) (dh1 ∧ . . . ∧ dhn−1 ∧ dhn ∧ dLfhn)(x∗) 6= 0,

forms a flat output of (5) at x∗.

Proof: Consider system (5) around any x∗ satisfying
the hypotheses of Proposition 1, and apply the following
(invertible around x∗) static feedback transformation ui =
Vi−xn+1

Li
+ xn+1

Li
αi, 1 ≤ i ≤ n, that locally brings (5) into:

ẋi = ui, 1 ≤ i ≤ n,
ẋn+1 = fn+1(x)−

∑n
i=1

Lixi

Cxn+1
ui,

(8)

where fn+1(x) =
∑n
i=1

Vixi

Cxn+1
− xn+1

RC . By a straightforward
computation, it is immediate that the distribution D0 =
span{ ∂

∂xi
− Lixi

Cxn+1

∂
∂xn+1

, 1 ≤ i ≤ n} is of constant rank n
and involutive (indeed we have [gi, gj ] = 0, for any 1 ≤
i, j ≤ n). Moreover, we have D1 = D0 + span{( 2Lixi

RC2xn+1
+

Vi

Cxn+1
) ∂
∂xn+1

, 1 ≤ i ≤ n}, which is of constant rank n + 1
around x∗. It follows from [19] that system (8) is static
feedback linearizable and hence, so is system (5). Let us
now compute its linearizing outputs (which are flat outputs
of (8) and thus of (5) as well). The distribution D0 being
involutive of constant corank 1, there exists a non trivial
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smooth function, denoted by hn, such that dhn ⊥ D0 and
L[f,gi]hn(x∗) 6= 0 for at least one integer 1 ≤ i ≤ n. This
yields the system of equations ∂hn

∂xi
− Lixi

Cxn+1

∂hn

∂xn+1
= 0, for

all 1 ≤ i ≤ n, whose solution hn(x) is any function of
1
2

(∑n
i=1 Lix

2
i + Cx2n+1

)
. We put x̃n = hn, x̃n+1 = Lfhn

and choose x̃1 = h1(x), . . . , x̃n−1 = hn−1(x), where
hi(x) are any smooth functions completing hn and Lfhn
to a coordinate system. In this coordinates, after applying a
suitable invertible static feedback, system (5) takes the form

˙̃xi = ũi, 1 ≤ i ≤ n− 1, ˙̃xn = x̃n+1,
˙̃xn+1 =un,

(9)

and is clearly flat with h = (x̃1, . . . , x̃n) a flat output. It
follows that h(x) = (h1(x), . . . , hn(x)) is a flat output of (5)
as well.

Remark 1: System (5) is a control-affine system with one
input less than the number of states, therefore, in order to
decide whether it is flat or not, we could have also applied
the results of [2] according to which the system is x-flat as
soon as it is strongly accessible for almost every x. Notice
also that system (5) is actually a bilinear control system; a
sufficient condition for flatness of bilinear control systems
can be found in [13], [14].

Remark 2: For the n-boost control system, the singular
state xn+1 = 0 will be forbidden by the control because
the system is stabilized around a positive desired bus volt-
age xd,n+1 = VdC , so throughout the paper xn+1 = VCav

is in the vicinity of VCav
> 0. Moreover, the diode of each

boost chopper prevents the current in the inductance to be
negative, so xi = −RCVi

2Li
can never happen. Therefore, from

a physical point of view, the n-boost system is locally static
feedback linearizable around any (physically possible) point
and from now on, we suppose that xi > 0, for 1 ≤ i ≤ n+1.

The flat output components depend on the state variables
only, thus the system is x-flat, and we actually have a lot
of freedom in choosing the functions hi. Indeed, among all
functions hi, 1 ≤ i ≤ n, only hn has to verify a structural
condition (given by Proposition 1(i)), and h1, . . . , hn−1 can
be any functions of x whose differentials and those of hn and
its derivative are independent at x∗ (see condition (ii)). Con-
sequently, a natural question is: which is the most interesting
choice of the flat output from a physical perspective and
control objective point of view? The structural condition (i)
requires that hn is a function of the total energy stored in
the n boost choppers. Now recall that one of our goals is to
impose currents values high enough in a maximum number
of boost choppers inductances such that the associated boost
choppers to be in continuous behavior. Hence, we would like
the other components of the flat output to involve as much
currents variables as possible and we have the following
immediate corollary:

Corollary 1: The n-tuple (h1, . . . , hn) of smooths func-
tions given by

hi(x) =xi = Iiav
, for 1 ≤ i ≤ n− 1,

hn(x) = 1
2

(∑n
i=1 Lix

2
i + Cx2n+1

)
= 1

2

(∑n
i=1 LiI

2
iav

+ CV 2
Cav

)
,

(10)

defines a flat output of system (5) at any x∗ ∈ Rn+1, where
x∗i > 0, for 1 ≤ i ≤ n + 1, with the flat parametrization
given by expressions (11)–(15) below.

Proof: Consider the functions hi(x), 1 ≤ i ≤ n, defined
by (10). From hn(x) = 1

2

(∑n−1
i=1 Lih

2
i + Lnx

2
n+Cx2n+1

)
and ḣn =

∑n−1
i=1 Vihi + Vnxn−

x2
n+1

R , we deduce that xn is
solution of the second order polynomial equation

Ln
C
x2n +RVnxn + µ(h, ḣ) = 0,

where µ(h, ḣ) =
∑n−1
i=1 (RVihi+

Li

C h
2
i )− 2

Chn−Rḣn, and

xn = γn(h, ḣ) =
−RCVn +

√
(RCVn)2 − 4LnCµ(h, ḣ)

2Ln
.

(11)
Similarly, from hn, we conclude that

xn+1 = γn+1(h, ḣ) =

√√√√ 2

C
hn −

n−1∑
i=1

Li
C
h2i −

Ln
C
γ2n(h, ḣ).

(12)
Further more, we have

xi = γi(h) = hi, 1 ≤ i ≤ n− 1, (13)

αi = δi(h, ḣ) = 1 +
Liḣi − Vi
γn+1(h, ḣ)

, 1 ≤ i ≤ n− 1. (14)

Finally, from ḧn, we compute:

αn = δn(h, ḣ, ḧ) = 1 +
Ln

dγn(h,ḣ,)
dt − Vn

γn+1(h, ḣ)
. (15)

We consider the flat output of Corollary 1 for the flatness-
based control of the n-boost system. A first consequence
of the fact that hn is the total energy stored in the n boost
choppers is that the control strategy cannot be a decentralized
control anymore. For such a system, the currents and the bus
voltage are usually measured. The problem is then only one
of stabilizing the bus voltage under the constraint of balanc-
ing the power in the boost choppers. We show next how this
can be achieved by a flatness-based control approach.

IV. CONTROL DESIGN FOR HOMOGENOUS POWER
DISTRIBUTION

The bus voltage needs to be stabilized and set at a desired
constant level VdC , and the power transmitted by each boost
chopper must be evenly distributed in proportion to the power
rating of each source Pri. Then, with respect to the nominal
power consumed by the load Pl, the desired power Pdi
assigned to the ith boost chopper is:

Pdi =
PlPri∑n
j=1 Prj

, 1 ≤ i ≤ n. (16)

Recall that the first n− 1 components of the flat output are
currents, so the desired powers Pdi must be translated into
desired currents Idi:

Idi =
Pdi
Vi
, 1 ≤ i ≤ n, (17)

leading to

hdi = Idi =
Pdi
Vi
, 1 ≤ i ≤ n− 1. (18)
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The last component hn of the flat output being the energy
stored in the n-boost system, it is necessary to calculate it
from Idi, 1 ≤ i ≤ n, and the desired bus voltage VdC .
Therefore, the desired energy hdn is given by:

hdn =

n∑
i=1

Li
2
I2di +

C

2
V 2
dC . (19)

For the flat n-boost system, the tracking of the above
desired flat output components may be designed thanks to
Proposition 1, establishing the equivalence of the considered
system to the linear one (9), by setting the controls αi as
follows (see also [16]):

αi = Li

γn+1

(
γn+1−Vi

Li
− λi(hi − hdi) + ḣdi

)
, 1 ≤ i ≤ n− 1,

αn=
(
Vnγn+1

Ln
+ 2γn+1γn

RC

)−1 (
−
∑n
i=1

Vi(Vi−γn+1)
Li

+ 2γn+1

R

(∑n
i=1 γi
C − γn+1

RC

)
−
∑n−1
i=1

(
Viγn+1

Li
+ 2γn+1γi

RC

)
αi

−λn,0(hn − hdn)− λn,1(ḣn − ḣdn) + ḧdn

)
,

(20)
where the constant gains λi, 1 ≤ i ≤ n − 1, and λn,j ,
j = 0, 1, are calculated via a classical pole placement, and
guarantee that the tracking error hi − hdi, 1 ≤ i ≤ n,
exponentially converges to 0.

In a second step, a control loop between the bus voltage
and the power assignment Pa, which will replace Pl in (16)
(that is, (16) becomes Pdi = PaPri∑n

j=1 Prj
, 1 ≤ i ≤ n,

with Pa solution of (21) below), is carried out to increase the
robustness of the control laws with respect to load variations.
The dynamics of the controlled Pa is described by:

Ṗa = −λn+1(VCav − VdC), (21)
where λn+1 is a constant gain to be selected based on
singular disturbance arguments [21], because the current and
energy loops must be faster than the power load control loop
(PLCL) to ensure current continuity in each boost chopper.
Since the control of Pa is slower than the other control loops,
allowing for temporal decoupling, Pdi and hdi can be thus
considered constant when Pl is replaced by Pa in (16).

To sum up, it is the desired powers Pdi (see (16)),
controlled through Pa given by (21), which allow to com-
pute the desired trajectories for the flat output components,
see (18) and (19). With the PLCL (21), when considering
variations of the load resistance, the desired powers Pdi
change and therefore the desired flat output trajectories has
also to be updated accordingly (that is, at each variation
of the load resistance). Without the PLCL (21), once the
desired trajectories of hdi have been computed (for the
power Pl associated to the nominal load resistance), they
no longer change (even in the presence of load variations).
This explains the different desired trajectories hdi for the
cases with and without the PLCL (21), see the simulation
results presented in Section V.

V. SIMULATION RESULTS AND DISCUSSIONS

Simulation tests are carried out for a system composed of
three boost choppers in the Matlab/Simulink environment.
The performance of the proposed flatness-based control
method (20), with n = 3, is evaluated under different

voltage sources and variation of the load resistance, with and
without the PLCL (21). TABLE I below presents the various
parameters of the boost choppers (obtained following [4])
and of the control loops used in the simulations. To obtain
only the average values, all measured variables underwent
filtering using a second order Butterworth low-pass filter
with a cutoff frequency Fcut. The abrupt load variation is:

R =

 50 Ω, 0s ≤ t < 0.5s and 2s ≤ t < 2.5s,
100 Ω, 0.5s ≤ t < 1s and 1.5s ≤ t < 2s,
200 Ω, 1s ≤ t < 1.5s.

TABLE I: 3-Boost system and control parameters.

Symbols Values Symbols Values Symbols Values
L1 79.7 mH V1 25 V λ1 150
L2 267.7mH V2 30 V λ2 150
L3 106.3 mH V3 50 V λ3,0 22500
C 900 µF Pr1 100 W λ3,1 300
T 50 µs Pr2 40 W λ4 2
Pl 100 W Pr3 200 W Fcut 1.5 kHz

Fig. 3a depicts the measured bus voltage VCav
, and demon-

strates that flatness-based control driven by a PLCL ensures
precise tracking of a given reference constant trajectory VdC .
Moreover, its response does not exceed a 7.3% overshoot
during the load variations. In contrast, when there is no
PLCL, the DC-bus voltage tracks the reference voltage only
when the power load is equal to the nominal one (i.e., for
t ∈]0.5s, 1s[ and t ∈]1.5s, 2s[). In Fig. 3b (top and middle),
it can be seen that the measured currents I1av and I2av ac-
curately track their respective reference currents Id1 and Id2
(which are constant without the flatness-based control driven
by the PLCL, and are load-dependent when we add the
PLCL). Fig. 3b (bottom) highlights that the measured current
I3av

is close to zero only at t = 1.01s, indicating that the
third boost chopper is close to discontinuous mode. Lower is
the load power demand, closer to zero is the current I3av . Fig.
3c shows that the measured energy Et follows the desired
flat output trajectory Edt (which, similarly to Id1 and Id2,
is constant without the flatness-based control driven by the
PLCL, and load-dependent when the PLCL is added). The
above results highlight that the desired flat output trajectories
are well followed in both cases (with and without the PLCL)
and to have a well bus tracking objective, i.e., VCav = 100V ,
the flatness-based control driven by the power control loop
is necessary.

Future work will consider experimental studies, discontin-
uous operation mode, boost choppers with different switch-
ing frequencies, and the inclusion of energy storage elements
such as batteries or super-capacitors.
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[10] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. A Lie-Bäcklund
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