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Abstract—In this work, a robust distributed hybrid algo-
rithm is proposed for the primary and secondary control loops
of an island AC-bus microgrid to provide large-signal stability
of the complete system. A secondary control loop is designed
from droop control and multi-agent systems theory to ensure
that the State Of Charge (SOC) of the batteries in discharging
mode converges to a consensus. Furthermore, this distributed
strategy ensures robustness with respect to any plug-and-play
event or communication failure. The DC-AC power converter
of each battery in discharging mode is controlled in the primary
loop by using hybrid dynamical system theory, which considers
non-trivial issues in the model (switching and affine terms)
and in the signals (constraints in the dwell time). A suited
selection of gains allows using singular perturbation analysis
to provide large-signal stability properties for the complete
nonlinear model.

I. INTRODUCTION

The use of renewable energies can mitigate the effects
of climate change. The concept of microgrids emerges
as a promising solution to integrate renewable energy
sources into the conventional electrical grid [1]. These
systems are defined as electric energy systems composed
of Distributed Generation (DG) units, Distributed En-
ergy Storage (DES) systems and loads, which can be
located at noteworthy distance.

DES systems, which are a set of Battery Energy Stor-
age System (BESS), are usually installed close to loads
and are more reliable and efficient than a single energy
storage element, especially if they are combined with
microgrids [2]. The importance of these DES systems
is revealed when the microgrid works in islanded mode
(i.e., non connected to the utility grid), since they must
provide grid-forming generation.

Nowadays, the most costly elements in a microgrid
from an economic and environmental point of view are
the DES systems. For this reason, it is crucial to increase
the lifespan of the batteries to reduce their degradation.
It is known, that the battery degradation can be im-
proved if they operate between 20% and 80% of their
State Of Charge (SOC). A way to help guarantee this
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operation mode is to drive all the SOCs of the batteries
to a consensus [3].

The literature provides some centralized, decentralized
[4] and distributed [5] solutions to this problem. It is
well known that distributed controllers, which follow the
idea: think globally, act locally to get a consensus between
the SOCs of the batteries, generate more reliable and
scalable systems, and make this solution more attractive.
In [6], the authors propose an improved droop control in
AC microgrids based on frequency scheduling, using the
average SOC value calculated from Multi-Agent Systems
(MAS) to get a SOC consensus (a previous work was
done in DC microgrids [5]). A similar approach was
developed in [7]. The authors of [8] presented another
distributed algorithm, which uses a nonlinear sliding-
mode control law to locally steer the estimated SOC of
each battery to a common reference, which is calculated
by a fixed-time observer. In [3], a consensus algorithm
in discharging mode where each battery communicate
with all the other batteries was introduced. In general,
either the control results in microgrids do not include the
control loop of the power converters, or if they take into
account the converter dynamics, global stability are not
guaranteed or only limited to small signals. This lack of
theoretical analysis diminishes the reliability and/or the
efficiency of the microgrids [9].

The recent literature demonstrates the increasing in-
terest of providing large-signal stability in microgrids. In
particular, [10] highlights the need to consider the power
converter dynamics and provide a large-signal stability
analysis to reduce the undesirable effects that cause large
disturbances. Moreover, this issue is also pointed out in
[11], where the authors stress the problems caused by
structural changes. Interestingly, a large-signal stability
analysis was conducted for an AC microgrid in [12].
These works consider power converter dynamics, but
they are limited by DC microgrids or microgrids without
batteries, among other system reductions.

Consequently, it is necessary to get a large-signal
stability property in a microgrid with DES system, con-
sidering the power converters that connect the batteries
to the bus line.

The objectives of the paper are: 1) to ensure that the
estimated SOCs of the set of batteries in discharging
mode of the DES system in an islanded AC microgrid
converge to a consensus in order to increase the battery
lifespan and it is robust with respect to any plug-and-
play event and any communication failure; 2) to design a
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complete hybrid model that considers both the secondary
and primary control loops; and 3) to provide a large-
signal stability. To achieve these objectives, a control
loop scheme is proposed, as depicted in Fig. 1. In the
secondary loop is expected to achieve a consensus be-
tween the estimated SOCs, Ψi, of the batteries, which
is reached through a consensus algorithm between the
references of the neighboring estimated SOCs, Ψr,i, based
on MAS that feeds the droop control. This last one
generates the inverter references, xr,i, and guarantees
the convergence of Ψi and active power, Pi, to their
references, Ψr,i and Pr,i, respectively. Moreover, the
primary loop is composed of the inner control loop of
the power converter that leads to a hybrid non-linear
system (due to the switches, the affine terms, and the
constraints on the dwell times). The complete system is
modeled as a hybrid dynamical system formulation [13],
[14]. Previous research on power converter systems has
proposed a hybrid framework [15], [16].

Notation: R is the set of real numbers. Rn×m and Rn

represent all the real n×m matrices and the n vectors,
respectively. eig(M) represents the eigenvalue of the
matrix M . Re(a) is the real part of the complex number
a. I, 0 and 1 denote the identity matrix, column vectors
of zeros and ones of suitable dimensions, respectively.
∅ represents an empty set. The Euclidean norm of the
vector x ∈ Rn is denoted by |x|. For any symmetric
matrix M of Rn×n, the notation M ≻ 0 (M ≺ 0) means
that the eigenvalues of M are strictly positive (negative).
diag
i∈N

{ai} and col
i∈N

{ai} are a diagonal matrix and a column

vector, respectively, whose elements are a1, a2, ..., aN .
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Fig. 1. Primary and secondary control loops in an islanded AC
microgrid.

II. DYNAMIC MODELS IN THE PRIMARY
ANS SECONDARY CONTROL LOOPS

This section describes the three dynamic models to get
the following control objectives:

• Inverter control in the primary loop: convergence of
state xi to a small neighbourhood of xr,i.

• Consensus algorithm in the secondary loop: conver-
gence of Ψi to a consensus Ψ∗.

• Droop control in the secondary loop: convergence of
Ψi and Pi to their references Ψr,i and Pr,i.

A. Inverter model and control.

First, let us consider that the inverters that connect
the batteries in discharging mode with the Point of Com-
mon Coupling (PCC) are half-bridge converters. The
dynamical model of these inverters i ∈ N := [1, 2, ..., N ]
can be rewritten according to [15]

ẋi = Aixi +Biui

żi = Θi(ωr,i)zi
x̃i = xi −Πi(ωr,i)zi,

(1)

where Ai :=

[
−

RLS,i
Li

− 1
Li

1
Ci

− 1
RiCi

]
, Bi =

[
Vin,i
Li
0.

]
, xi =

[iL,i, vC,i]
⊤ represents the state vector and ui is the

input control signal which switches in K := {−1, 1}. ωr,i

and Vr,i are the frequency and voltage reference, respec-
tively, Ci and Li are the capacitance and inductance
respectively, Ri and RLS,i are the converter load and
the parasitic resistance respectively, and Vin,i the input

voltage. Θi(ωr,i) =
[

0 −ωr,i

ωr,i 0

]
, Πi(ωr,i) :=

[
ωr,iCi

1
Ri

0 1

]
and zi = [zi,1, zi,2]

⊤ ∈ R2 models a generic oscillator,
such that zi,2 = Vr,i sin(ωr,it).

The error equation is formulated as follows

˙̃xi = Aix̃i +Bivi
vi = ui − Γi(ωr,i, Vri)zi ∈ R, (2)

with

zi ∈ Φi, Φi := {z1,i, z2,i ∈ R : z21,i + z22,i = V 2
r,i},

vi ∈ Ξi, Ξi := {vi = ui − Γizi, ui ∈ K, zi ∈ Φi},

Γi :=
[

ωr,iLi
RiVin,i

+
ωr,iRLS,iCi

Vin,i

(
1
Li

−Ciω
2
r,i+

RLS,i
LiRi

)
Li

Vin,i

]
.

Note that Γi, Θi and Πi have been selected according
to the output regulation problem defined in (1).

Assumption 1: [15] Consider model (1). For a given
matrix QL,i ≻ 0 ∈ Rn×n, there exists a matrix PL,i ≻
0 ∈ Rn×n such that

1) matrix Ai verifies

AT
i PL,i + PL,iAi + 2QL,i ≺ 0 (3)

2) and, for any periodic signal z(t) ∈ Rn of period
Tp, there exists a λj,e,i(t) for each j ∈ K such that
λ−1,e,i(t) + λ1,e,i(t) = 1 such that

λ1,e,i(t)− λ−1,e,i − Γi(ωr,i, Vri)zi(t) = 0. (4)

The Hurwitz requirement for matrices Ai is a common
property in converter models [17], [15].

The control law used here for ui will be the one given
in the previous work [15] based on the“argmin”operator.
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B. Consensus algorithm

A consensus algorithm for SOC references (Ψr,i) is
proposed here according to

Ψ̇r,i = −Kc

N∑
j=1

(Ψr,i −Ψr,j)−Ke(Ψr,i −Ψi) (5)

being Kc and Ke positive parameters. As in [3] the
adopted estimation method of the SOC is considered
to be Ψ̇i = −δiPi with δi a constant that gathers the
maximum capacity and efficiency of the battery. The
intuitive idea of this expression is the following. The first
term of (5) looks for achieving a consensus between all
Ψr,i, while the second term collects the deviation between
the estimated SOC of BESSi, Ψi, and its reference Ψr,i.
The next droop control is key to guarantee that the
estimated SOC converges to its reference, tending this
deviation to zero in a finite time, as will be proven later.

C. Droop control
A droop control is used here to guarantee that the

estimated SOCs and active powers converge to their ref-
erences, which are given by the consensus algorithm (5).
This droop control adjusts the frequency and amplitude
of the inverter voltage references, as follows.

ωr,i = ωn −Kd,1(Ψi −Ψr,i)−Kd,2

∫
(Ψi −Ψr,i)dt

−Kd,3(Pi − Pr,i) (6)

Vr,i = Vn −KV,iQi (7)

where ωn and Vn, are the nominal frequency and volt-
age, respectively. Pi and Qi are the active and reactive
powers. As seen in many references, this droop control
guarantees that Ψi and Pi converge to their reference
values Ψr,i and Pr,i respectively. [3], [6]. However, in
in Section III we will prove that this convergence is
asymptotically stable.

Finally, Kd,1 := Kω

K1
, Kd,2 := Kω

K1

(
KΨ +

K2
1

Kω
+

K2
0

KP

)
,

Kd,3 := KωK0

K1KP
, are the droop control gains, being

Kω,KΨ,KP ,K0,K1 positive parameters, which are used
later in the hybrid scheme.

III. HYBRID CONTROL STRUCTURE

The goal in this section is to propose a compact hy-
brid dynamical structure for the primary and secondary
control levels, following the theory given in [14]. The
dynamics of node i are collected in the scheme

Hi :

 ξ̇i = fi(ξi,Ψr) ξi ∈ Ci × [0, 1]

ξ+i ∈ Gi(ξi) ξi ∈ Di × [0, 1]
(8)

being Ψr := col
i∈N

{Ψr,i} ∈ [0, 1]N , ξi := [ξ⊤1,i, ξ
⊤
2,i,Ψr,i]

⊤

such that ξ1,i := [ω̃i, Ψ̃i, P̃i]
⊤ and ξ2,i := [x̃⊤

i , zi, vi, τi]
⊤.

Being Ψ̃i := Ψi −Ψr,i, P̃i := Pi −Pr,i, ω̃i := ωr,i −ωn,p,i

where ωn,p,i is the nominal frequency associated with the
operating point [6]. Therefore, it is defined by ω̃n,i :=

ωn,p,i−ωn. τi is a timer evolving in [0, T ] which is used to
ensure a minimum-dwell time in the converter switching.
fi and Gi define a continuous-time dynamic map and a
discrete-time dynamic (set-valued) map respectively, and
they are:

fi:=



−Kωω̃i −K1Ψ̃i

−KΨΨ̃i +K1ω̃i +K0P̃i

−KP P̃i −K0Ψ̃i

αi(Aix̃i +Bivi)
Θi(ωr,i)zi

−Γi(ωr,i, Vri)Θi(ωr,i)zi
1

−αiKc

N∑
j=1

αj(Ψr,i −Ψr,j) +KeΨ̃i


(9)

Gi:=
[
ξ⊤1,i x̃i zi hi(ξi) 0 Ψr,i

]⊤
(10)

such that, fi, Gi ∈ Hi × [0, 1]N with Hi := R8 × [0, T ].
αi = 1 represents that the battery i is connected to the
PCC or in discharging mode and αi = 0 otherwise.

hi(ξi) :=(argmin
i∈K

x̃⊤
i PL,iαi(Aix̃i+

Bi(ui−Γi(ωr,i, Vri)zi)))− Γi(ωr,i, Vri)zi

and, finally, for any PL,i, QL,i ∈ R2×2 ≻ 0 that satisfy
Assumption 1,

Ci:={(ξ1,i, ξ2,i) ∈ Hi : x̃
⊤
i PL,i (Aix̃i +Bivi)

≤− ηix̃
⊤
i QL,ix̃i} ∪ {(ξ1,i, ξ2,i) ∈ Hi : τi ∈ [0, T ]}

(11)

Di:={(ξ1,i, ξ2,i) ∈ Hi : x̃
⊤
i PL,i (Aix̃i +Bivi)

≥− ηix̃
⊤
i QL,ix̃i} ∩ {(ξ1,i, ξ2,i) ∈ Hi : τi = T}. (12)

ηi ∈ (0, 1) according to [15]. Note that vi and τi
change their values once that a minimum dwell-time,
T , has elapsed and condition x̃⊤

i PL,i (Aix̃i +Bivi) ≥
−ηix̃

⊤
i QL,ix̃i is verified.

Note that (6) is obtained from easy mathematical
manipulations of ξ1,i dynamic. The dynamic of ξ2,i comes
from [15] and is presented in Section II-A. Finally, the
Ψr,i dynamic is given in (5).
Consider a predefined parameter Xi > 0, then

Ai := {ξi ∈ Hi × [0, 1] : ∥x̃i∥ < Xi, ξ1,i = 0,Ψr,i = Ψ∗}
(13)

is here the attractor associated with hybrid system Hi,
which is inspired by [15]. Ψ∗ is a consensus value between
all connected Ψr,i.

A. Global hybrid structure

We need to define a compact hybrid dynamical system
that collects all dynamics i ∈ N with the aim at
providing a large-signal analysis stability of the complete
system. Previously to this model, a Laplacian matrix
definition is given.

Definition 1: Consider a network defined by a undi-
rected graph G(N , E), being N the set of batteries in
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discharging mode, and E ⊆ N ×N the edges. The Lapla-
cian matrix that represents the interconnections between
the neighbors of G is L(α) := ∆(α) − Ad(α), being
α := diag{α1, α2, .., αN}, ∆(α) = diag

i∈N
{
∑

j∈N ,j ̸=i αij :=

αiαj)} and Ad(α) the adjacency matrix Ad(α) =
[aij(α)], where

aij(α) :

{
αij if i ̸= j and ∀(i, j) ∈ E
0 if i = j or ∀(i, j) /∈ E . (14)

The Laplacian matrix L(α) is positive semi-definite
[18].

Now, we can formulate the compact hybrid system:

H(ξ) :

{
ξ̇ = f(ξ) ξ ∈ C

ξ+ ∈ G(ξ) ξ ∈ D,
(15)

f(ξ) :=



−Kωω̃ −K1Ψ̃

−KΨΨ̃ +K1ω̃ +K0P̃

−KP P̃ −K0Ψ̃
Ax̃+Bv
Θ(ωr)z

−Γ(ωr, Vr)Θ(ωr)z
1

−KcL(α)Ψr +KeΨ̃


(16)

G(ξ) ∈
⋃
i∈N

Gi(ξi) (17)

with Ψ̃ := col
i∈N

{Ψ̃i}, ω̃ := col
i∈N

{ω̃i}, P̃ := col
i∈N

{P̃i},
x̃ := col

i∈N
{xi}, v := col

i∈N
{vi}, z := col

i∈N
{zi}, τ := col

i∈N
{τi},

B := col
i∈N

{αiBi}, A := diag
i∈N

{αiAi}, Θ := diag
i∈N

{Θi},

Γ := diag
i∈N

{Γi}, ξ1 := [ω̃, Ψ̃, P̃ ]⊤, ξ2 := [x̃, z, v, τ ]⊤,

ξ := [ξ⊤1 , ξ⊤2 ,Ψr]
⊤ and

C =
∏
i∈N

Ci × [0, 1]N , D =
∏
i∈N

Di × [0, 1]N . (18)

For large signal analysis purpose, we need to guarantee
three time-scale separation to apply singular perturba-
tion theory on hybrid dynamical systems [19], between
ξ1, ξ2 and Ψr. To do so, next assumption must be
satisfied.

Assumption 2: Consider (15)–(18). Then, there
exist some parameters T , Kc >> Ke > 0,
K0,K1,Kω,KΨ,KP > 0, Kdc := min

i∈N
(min |Re(eig(K))|)

with K :=

[
−Kω −K1 0
K1 −KΨ K0

0 −K0 −KP

]
, and Kinv :=

min
i∈N

(min |Re(eig(Ai))|) such that

1) Kc >> 1
T >> Kinv

2) Kc >> Kinv >> Kdc

are satisfied.
Note that 1

Kc
, 1
Kinv

, 1
Kdc

represent the estimations of
the convergence speed of each control loop. Then, this
assumption implies that Ψr is faster than ξ2, because
1
Kc

<< 1
Kinv

and, that ξ2 is faster than ξ1, because
1

Kinv
<< 1

Kdc
.

IV. STABILITY CONDITIONS

Inspired in [20], we provide here a large-signal stability
analysis for islanded AC microgrid. To do so, we assume
that Assumption 2 is satisfied such that we define the
next singular perturbation form for H.

Hsp(ξ) :



 ξ̇1
ξ̇2
νΨ̇r

 = fsp(ξ) ξ ∈ C,

ξ+ ∈ G(ξ) ξ ∈ D,

(19)

such that

fsp(ξ) :=



−Kωω̃ −K1Ψ̃

−KΨΨ̃ +K1ω̃ +K0P̃

−KP P̃ −K0Ψ̃
Ax̃+Bv
Θ(ωr)z

−Γ(ωr, Vr)Θ(ωr)z
1

−L(α)Ψr + νKeΨ̃


(20)

with ν := 1/Kc. Note that G does not change in this
singular perturbation form w.r.t. the original scheme H.
Now, the goal is to prove Semi-Global Practical Sta-

bility (SPAS) of set A :=
∏
i∈N

Ai if ν tends to 0+. To do

so, we introduce the next propositions:
Proposition 1: System Hsp(fsp, G, C,D) has the prop-

erty to be well-posed.
Proof: Hsp(fsp, G, C,D) verifies the following prop-

erties [14, Section 6.2]

• each [0, 1] ⊂ R given in (18) is a compact set.
• Ci,Di ∈ Hi given in (18) present the characteristic

to be closed sets;
• fsp is a continuous function, thus outer semi-

continuous and locally bounded. Moreover, for ξ ∈
C, fsp is convex and nonempty;

• G is locally bounded and outer semi-continuous. In
addition, for ξ ∈ D, G is nonempty;

Then, from [14, Section 6.2] is hold that Hsp is well
posed.

Proposition 2: Consider Assumption 2 is satisfied. The
quasi-steady-state equilibrium of Hsp is regular.

Proof: If Assumption 2 is satisfied, then Ke << Kc.
As ν+ → 0, νKeΨ̃ → 0 being

L(α)Ψr =

{
0 ξi ∈ Ci
∅ ξi /∈ Ci

the quasi-steady-state equilibrium of Hsp.
Proposition 3: Consider Assumption 2 is satisfied. The

compact set

M := {ξ : (ξ1, ξ2) ∈ C ∩ {L(α)Ψr = 0}, L(α)Ψr = 0}

associated to the boundary layer of Hsp
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 ξ̇1
ξ̇2
νΨ̇r

 =

 0
0

−L(α)Ψr

 (21)

is Globally Asymptotically Stable (GAS).

Proof: First note that if Assumption 2 is satisfied
(Ke << Kc), then the flow dynamic (21) is straightfor-
ward, re-scaling the ordinary time, t by 1/ν, in (19) and
doing ν = 0. Moreover, we stress that there is not jump in
the boundary layer, remaining ξ1 and ξ2 constant during
flows.

Now, consider the Lyapunov function candidate

Vc :=
1

2
Ψr

⊤L(α)Ψr.

Then, ⟨▽Vc(Ψr), fbl⟩ = −Ψr
⊤L(α)L(α)Ψr ≤ 0, being

fbl := [0⊤ 0⊤ − Ψ⊤
r L(α)]

⊤. Note that ⟨▽Vc(Ψr), fbl⟩ is
negative semidefinite. Indeed, the control law defined in
the dynamic Ψr guarantees that each Ψr,i with associ-

ated αi = 1 converges to a neighborhood of Ψ∗ = 1⊤αΨr

1⊤α1
if 1⊤α1 ̸= 0. Consequently, M is GAS for (21).

Proposition 4: Consider Assumptions 1, 2 are satis-
fied. The attractor Ar :=

∏
i∈N

Ar,i with Ar,i := {ξi ∈

Hi × [0, 1] : ∥x̃i∥ < Xi, ξ1,i = 0}
associated to the reduced system:

Hr(ξ):




ξ̇1

ξ̇2


=



−Kωω̃ −K1Ψ̃

−KΨΨ̃ +K1ω̃ +K0P̃

−KP P̃ −K0Ψ̃
Ax̃+Bv

Θi(ωr, Vr)z
−Γ(ωr, Vr)Θ(ωr)z

1


ξ ∈ CH

[
ξ+1
ξ+2

]
∈

⋃
i∈N

Gr,i(ξ1,i, ξ2,i) ξ ∈ D,

(22)
being CH := C ∩ {L(α)Ψr,i = 0} and Gr,i(ξ1,i, ξ2,i) :=[
ξ⊤1,i x̃⊤

i zi hi(ξi) 0
]⊤

is Uniformly Globally
Asymptotically Stable (UGAS).

Proof: Note that we have here a cascade system
composed of the control inverter which is faster enough
than the droop control. Then, consider the following
Lyapunov function for the reduced system Hr,

V (ξ1, x̃) :=
∑
i∈N

Vi(ξ1,i, x̃i)

Vi(ξ1,i, x̃i) =
1

2
(ξ⊤1,iξ1,i + x̃⊤

i PL,ix̃i).

Applying [15, Theorem 1] to hybrid system Hr, it is got

⟨∇Vi(ξ1,i, x̃i)⟩ = −ξ⊤1,iSξ1,i + αix̃iPL,i(Aix̃i +Bivi)

≤ −ξ⊤1,iSξ1,i − αiηix̃
⊤
i QL,ix̃i < 0 (23)

Vi(ξ
+
1,i, x̃

+
i )−Vi(ξ1,i, x̃i) = 0 (24)

with S := diag{Kω,KΨ,KP }.
If Assumption 1 is satisfied and from [15, Theorem 1

and 2], we can conclude that Ar,i is UGAS.

Theorem 1: For a given QL,i ∈ Rn×n ≻ 0, there
exists any PL,i ∈ Rn×n ≻ 0 that satisfies Assump-
tion 1 for each i ∈ N . Moreover, for some selected
parameters T,Kω,KΨ,K,K0,K1,Kc,Ke > 0 satisfying
Assumption 2 and a given interconnected graph, G(N , E),
A is SPAS for hybrid system H, (15)–(18). □

Proof: The proof is direct from Proposition 1–4 and
the proof of [19, Theorem 1].

V. SIMULATION RESULTS

The hybrid control proposed here is validated in Mat-
lab/Simulink by using the Electrical Toolbox for an AC-
bus microgrid composed by 3 batteries in discharging
mode. A similar scenario was given in [3]. The bus line
voltage is Vbus = 120

√
2 sin(2π60t)V = Vnsin(ωnt).

PL,i =

[
28.20 0.12
0.12 0.08

]
and QL,i =

[
1.50 0
0 5.55

]
satisfy

Assumption 1 and Xi = 0.041. Finally, Table I and II
provide the parameters for the secondary and primary
control loop respectively, i.e., the parameters for the
hybrid model (9)–(12). From these parameters, we have
Ke/Kc = 0.01, Kinv = 34.7 and Kdc = 0.51, then it is
easy to see that Assumption 2 is satisfied.

TABLE I

Microgrid and droop control parameters

Parameter Value Parameter Value
Kc 10000 KP 50
Ke 100 K1 0.5
KΨ 0.45 K0 0.05
Kω 5

TABLE II

Inverter parameters

Parameter ∀i Value Parameter ∀i Value
Vin,i 48V ωn 60Hz

Li 50mH Vn 120
√
2V

Ci 140.72µF δk,i 6.12W/h
RLS,i 1.5Ω T 0.1ms
Ri 180Ω

We consider that at the instant time T2 = 1.5s the
battery 1 is disconnected, and then it is connected back
in T3 = 1.7s. Also at T1 = 0.5s a communication
failure occurs between battery 1 and 3, i.e., α1,3 = 0.
We consider that the net power (load power minus DG
power) is Pn = 300W. Fig. 2 shows the convergence of
the SOC reference, Ψr,i, to a consensus from the initial
conditions and after the battery plug-and-play event.
Note that the transient times are less than 0.1µs. The
estimated SOCs and active powers converge to their
references approximately before to 2s. Moreover, note
that the signals evolve robustly after the communication
failure. In Fig. 3 the voltage reference errors are shown.
Note that these errors present a transient time less than
30ms. Finally, Fig 4 shows the voltages, currents, and
duty cycles. Note as these inverters evolve slower than the
SOC references to a consensus and, faster than the droop
control, validating the time-scale separation assumption.
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Fig. 2. Evolution of Ψr,i, Ψi, and the active powers Pi, for
i = {1, 2, 3}, when the battery 1 is disconnected at T2 and then
connected back at T3. In T1, α1,3 turns to 0.
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Fig. 4. Evolution of the voltages, currents and duty cycles of
inverters between 1.45s to 1.8s.

Indeed, we highlight that 1/Kd = 2, 1/Kinv = 28ms
and 1/Kc = 0.1µs. Note again they are robust w.r.t
the communication failure. From this simulation, we can
validate Theorem 1 statement.

VI. CONCLUSION

This work provides a complete hybrid scheme for the
primary and secondary control loops in an islanded AC-
bus microgrid. The scheme considers nonlinearities in the
inverter model (switching and affine terms) and in the
signals (minimum-dwell time constraint). Moreover, the
secondary loop is composed of a consensus algorithm con-
nected to a droop control to increase the battery lifespan,
as well as provide robustness with respect to a plug-and-
play event or any communication failure. The scalability
of the microgrid is also a characteristic ensured with
the proposed algorithm. A large-signal stability analysis
for the inverter control, droop control, and consensus
algorithm is obtained by applying singular perturbation
theory to a time-scale separation hybrid model obtained
by selecting the controller gains appropriately. Then,
it is concluded that the attractor A is SPAS. As a
future work, experimental results are expected to be
performed to validate the SOC consensus convergence.
It is also envisioned to extend these results adding an
extra control loop to manage the functioning mode of

the batteries, loads and/or sources (charging mode or
discharging mode) to improve the battery degradations.
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