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Abstract— In this paper, we develop a strategy for arranging
a team of agents in orbits of arbitrary shape that pass through
a common point that may move. In particular, the shapes are
defined by star-shaped sets. The solution is based on its trans-
formation into the traditional circular formation problem and
subsequent reconversion. Given the large number of solutions
to such a problem, the developed algorithm is well suited as a
plug & play command generator to extend these solutions to
the promising field of aerial robotic swarms. Two examples of
such an application show its ease of implementation.

I. INTRODUCTION

The problem of distributed formation control in multi-
agent systems has long attracted the interest of the scien-
tific community and companies because of its numerous
application areas: patrolling, search and rescue, agriculture
just to name a few. This great interest, witnessed also by
the numerous dedicated survey papers (e.g. [1][2]), provides
us with different solving strategies that vary depending on
some aspects such as: the mathematical model used for their
description (kinematic, double integrator, nonlinear, etc.);
the type of information available to the agents (position,
displacement, bearing, etc.); and the communication flow
described by graphs of various nature (static, dynamic or
random). A fundamental and characteristic element of any
distributed control strategy is scalability. Most of the pro-
posed solutions, in fact, are designed for small teams of
agents, i.e., a few dozen. The limitation of scalability may
arise from the amount of communication data [3], com-
putational resources [4], or the difficulty of specifying the
positions of each individual agent in the desired formation
[5]. In the robotic context, in particular, works that focus
on the scalability aspect are part of a specific field that is
known as swarm robotics [6]. A recent example is [7] where
the authors present a method to control 2D static and time-
varying formations among collective self-repelling ferromag-
netic microrobots by spatially and temporally programming
an external magnetic potential energy distribution at the air-
water interface or on solid surfaces. The remarkable results
obtained, however, are limited to the very specific case of
planar-moving microrobots. The most of works in swarm
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robotics, in fact, are designed for the 2D space as reported
in [1], [8]. Aerial robotic swarms, however, are among the
most promising applications of formation control [9] along
with, more recently, space robotics [10]. In this direction, our
work provides a tool to exploit many existing strategies for
two-dimensional space in three-dimensional space as well
(property i). The problem considered, in particular, is the
classical one of circular formation tracking (CFT). Making
use of the disk transformation in a topologically equivalent
space, in fact, it is possible to exploit the command signals
of the original strategy, to obtain a formation in a curve
defined by a star-shaped set which allow a much wider
freedom of choice of shapes than polytopes or convex sets
(property ii). Given the interest in aerial applications, we
specifically employ not a single but a family of transfor-
mations (diffeomorphisms), capable of arranging agents in
arbitrarily shaped orbits around a known reference that may
be fixed or moving (property iii). Moreover, if, as is often
the case, the original strategy involves constant rotational
motion, that motion is preserved by the agents in their
assigned orbits (property iv). Immediate applications of this
ability are asteroid observation [11] and satellite formation
[12]. The proposed strategy that adds properties i, ii and iii
to the classical CFT problem is based on a transformation
between equivalent topological spaces. This transformation
was first used by the authors in [21] to solve the distributed
region following problem. The algorithm proposed in this
paper, however, extends the previous results in two different
aspects. The first is the new capabilities offered to the team,
in particular properties i and iii cannot be addressed using
[21]. The second is the ease of use. Due to the complete
independence between the original strategy for CFT and
the proposed algorithm, it is possible to use the former
as a black box. Therefore, using an analogy with the IT
devices, we can consider the new algorithm as a Plug &
Play component for the original strategy that generates the
proper command signals. An important aspect, finally, is
the choice of modeling the agents as single integrators,
which is a kinematic model or basically points without mass.
Considering only the kinematics, allows us to control any
type of aerial robot if we consider the generated trajectory
as the reference for a low-level on-board controller [13], [14].

II. PRELIMINARIES

Notation: p =
[
p(1), p(2), p(3)

]⊤ ∈ R3 is a point in R3;
p =

[
p(1), p(2)

]⊤ ∈ R2 is the projection of the point p ∈ R3

on the x-y plane of its reference frame; ∠(p) is the angle
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between p ∈ Rn, n ∈ {2, 3} and the unit vector of the x-axis,
i.e., ∠(p) = arccos(p(1)/∥p∥); given any set S we denote
its boundary with S̃; B(q, ρ) = {p ∈ R2|∥p− q∥ ≤ ρ} is the
disk of center q ∈ R2 and radius ρ ∈ R>0; given the interval
A = [−π, π) and a set S, the function bS : A → R2, S̃ =
{bS(θ), θ ∈ A} = bS(A) defines its boundary. For the sake
of notation, the parametrization of S̃ will be denoted as S̃(θ).
Star-shaped sets. This work uses the concept of star-shaped
sets. To facilitate the comprehension of the following results,
we summarize here some important properties of such sets.
Firstly, let us give a formal definition of a star-shaped set
in the 2D Euclidean space according to [15]. A set S in the
Euclidean space R2, with non empty interior, is star-shaped
at v ∈ S if, for all p ∈ S, the line segment joining v and
p is contained in S. A star-shaped set S compliant with the
previous definition is a strictly star-shaped set if for each
p ∈ S̃, the line segment joining p and v intersects S̃ only at
p. Usually, v is called the vantage point, and the set of all
vantage points is the kernel of the star shaped set, namely
ker(S). A distinctive property of the star-shaped sets is the
possibility to be shrunk into themselves. Formally a compact
set Q ∈ R2 is defined shrinkable iff ∀α ∈ [0, 1) ∃ p ∈ R2 s.t.
αQ + p ∈ Q. Finally, it is known that star shaped sets are
homeomorphic to a disk [15], which is a useful property.

The following choice about star-shaped sets is made:

Assumption A. We consider only strictly star-shaped sets
whose border is a simple, closed curve (also known as Jordan
curve [16]) that admits a differentiable radial parametriza-
tion with respect to the chosen vantage point v.

It is then assumed that there exists a radial parametrization
of the boundary curve [17]. Since the sets are strictly star-
shaped, there is one and only one point of the boundary
connected to the vantage point for any angle, and therefore,
the parametrization is a bijective function.

III. PROBLEM DEFINITION

The main purpose of the paper is organizing a swarm of
agents into groups that occupy different spatial regions, all

Fig. 1: An example of a star-shaped ring Di and the related
reference frames. The dashed line, in particular, represents
the path of the target r(t) that is the origin of {O} and {Oi}.

passing through a point known to all agents. This moving
point represents the target that the swarm aims to envelop
and thus, in a sense, capture. Each group is assigned a
region configured as two-dimensional ring of arbitrarily
small thickness whose outer and inner edges are formed
by a star curve. The inner edge, in particular, is a shrinked
version of the outer curve. These rings lie in different planes
all passing through the reference and moving alongside it,
similarly to what happens with orbits of celestial bodies or
satellites. As model for the agents we use a higher-level or
kinematic one that ignores the dynamics of the individual
agent. This choice, which at first seems simplistic, has proven
effective in realistic contexts through its use as a reference
trajectory for real robots (some aerial robots, all differentially
flat systems [18]) provided that at least one point of the body
of the robot can asymptotically track any (smooth) trajectory
[19]. A good overview of the wide potential of the kinematic
models is provided in [20] and the references therein. To
formally define this problem some definitions are required.

A. Multiple Rings Tracking Problem

Let’s consider a swarm of N agents moving in the 3D

space organized in M groups such that
M∑
i=1

Ni = N where

Ni is the size of the ith group. We assume that some agent
pairs know (or exchange information about) their relative
position through a bidirectional information/interaction net-
work which can be modelled by an undirected simple graph
G(V, E), |V| = N . Here the vertexes set V models the
agents and we assume the network to be connected.

We label the fixed world reference frame {W} and the
moving reference frame corresponding to the point to be
tracked {O}, both with right-handed coordinates. We assume
both with the same orientation and with a displacement
described by r(t) ∈ R3 with the function r : R≥0 →
R3 continuously differentiable. All the planes where the
star-shaped rings lie pass through such a point and their
orientation is described with M reference frames centered
at r(t) and with the z-axis perpendicular to the plane. We
label such frames as {Oi}, i = 1, . . . ,M and their orientation
is expressed by the rotation matrices Ri ∈ SO(3), i =
1, . . . ,M . Figure 1 provides an example of such planes and
the discussed reference frames. Agents are modelled as

W ṗi,j(t) = Wui,j(t) i = 1, . . . ,M, j = 1, . . . , Ni (1)

where W pi,j(t),Wui,j(t) ∈ R3 account for agent’s position
and local control law, respectively. In particular, the first
and second right subscripts denote the agent’s group and
its number within the group, respectively; the left subscript,
instead, indicates the reference frame with respect to which a
quantity is expressed (in this case the world reference frame).
Using the function ψ : R≥0 → [0, 2π) we define

ψi,j(t) ≜ ∠(Oi
p
i,j
(t)) (2)

the angle formed by the projection of the agent {i, j} on the
plane Oi

x-Oi
y. In order to define the star-shaped ring where
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the agents of the ith group must converge, we introduce

Oi
Ŝ
i
≜ {s ∈ R3 |

[
s(1), s(2)

]⊤
∈ Si, s

(3) = 0} (3)

i.e., the star shaped set defined by Si lying on the x-y plane
of the ith reference frame {Oi}. Then, the star-shaped ring
will be described by the set difference

Oi
D

i
≜ Oi

Ŝ
i
\ (1− σ)Oi

Ŝ
i
, σ ∈ (0, 1] (4)

where σ is the shrinkability factor of the star-shaped set.
Looking at Figure 1, it is easy to appreciate the two
transformations needed to express such a set in the world
fixed frame: the first one is the rotation with respect to
{O} that, for the sake of notation, we improperly denote
as ODi ≜ Ri Oi

Di; the second one is the translation w.r.t
to {W} that leads to WDi(t) ≜ ODi ⊕ r(t), where the
plus symbol ‘⊕’ denotes the Minkowski sum operator. It
is worth noting that, in order to express the ring region in
the world reference frame, it is necessary to introduce the
time dependence since the reference r(t) moves. Finally, we
can summarize these two transformations as

WDi(t) ≜ ODi ⊕ r(t) =
(
Ri Oi

D
i

)
⊕ r(t). (5)

It is now reasonable to make the following assumption:

Assumption B. The target position described by r(t), with
the function r : R≥0 → R3 continuously differentiable, is a
vantage point of any Si, i.e., r(t) ∈ ker(Si), i=1, . . . ,M .

The main goal of the proposed strategy is just to design
a control law for each agent, Wui,j(t), that drives it inside
WDi(t) and, once inside, it never leaves it again. With this
notation we can now formally define the addressed problem:

Problem 1 (Multiple Orbits Tracking Problem (MOTP)).
Consider a swarm of N agents organized in M groups

according to
M∑
i=1

Ni = N , modelled as single integrators

whose positions are controlled via (1). Recalling assumptions
A and B and definitions (2)-(5), for any arbitrary small
σ ∈ (0, 1], design a control law that ∀i = 1, . . . ,M,∀j =
1, . . . , Ni meets the following requirement

W pi,j(t) ∈ WDi(t) → W pi,j(t) ∈ WDi(t), ∀t ≥ t (6)

and respects alternatively one of the two following conditions

∀m∈Z≥0, !∃T ∈R>0, ∃ t∗∈R>0 s.t.
{ψi,j(t+T ) = ψi,j(t),∀t ≥ t∗}∧{
ψi,j(·)is piecewise-monotonic in [t∗+mT, t∗+(m+1)T ]

}
(7a)

lim
t→∞Oi

p
i,j
(t) ∈ Oi

D
i

(7b)

Condition (6), in particular, implies that once any agent
enters the related ring, it cannot escape from it anymore.
Condition (7a), instead, expresses how the projection of
individual agent on the Oi

x-Oi
y plane exhibits a rotational

movement, since the angle is described by a periodic function
that is also piecewise-monotonic. Please note that all the
agents rotate cohesively since the evolutions of their angles

have the same period T . Finally (7b) describes the case when
the position of the single agent relative to the reference
becomes constant thus reaching an overall consensus of
velocity among the agents and the target. It is worth noting
that, in both the variants of the problem described by (7a)
and (7b), our interest is towards rings with a very small
thickness (σ ≪ 1) because we aims at arranging the agents
in specific shapes around the target. Since because of the
scalability issue, in this strategy we do not set a specific
position for each agent with respect to the reference, the
more space there is among the boundaries of the rings, the
less probably agents will show the desired shape. In order to
solve the MOTP, the following conditions are prescribed: i)
each agents has information about the ring to reach via the
triple {Si, Ri, σ}; ii) each agent knows the velocity of target
to be tracked W r(t), W ṙ(t) and its own position W pi,j(t);
iii) agents are able to exchange their own position data with
their neighbors according to the network described by G.

B. Equivalent problem

Driving a group of agents in a ring of any arbitrary star-
shaped curve is not a trivial task. Following the same lines
of [21], we will redefine our problem in a topologically
equivalent space where designing the control law is much
simpler and then convert it back to the original space.
Diffeomorphism. The main idea is to define a bijection
ϕ : R2 → R2 that maps any point on the boundary of the
star-shaped set into a point on a circle

p ∈ S̃ → ϕ(p) ∈ B̃(v, ρ) (8)

where v ∈ S is any selected vantage point of the star-shaped
set S and B̃(v, ρ) is the circle related to the disk B(v, ρ). For
our strategy it is fundamental that such a map has an inverse
function ϕ−1 that is continuously differentiable, i.e., ϕ is
a diffeomorphism [17]. We will refer to the topologically
equivalent space described by ϕ(·) as circular space. This
map must satisfy one additional condition

ϕ
(
µ S̃(θ)

)
∈ B̃(v, µρ), µ ∈ R, p, v ∈ R2, (9)

stating that a point in a scaled version of the star-shaped
curve is translated in a circle scaled of the same factor.

Algorithm 1 Conversion from MOTP to COTP and viceversa

Require: W ṙ(t), Opi,j(t), Si, Ri, σ, ρ.
Ensure: Wui,j(t) such to solve MOTP.

1: Oi
p
i,j
(t) = R⊤

i Opi,j(t).

2: qk(t) = ϕi

(
Oi
p
i,j
(t)

)
.

3: Compute wk(t) such to solve the COTP.

4: Oi
u
i,j
(t) = Jϕi

(
Oi
p
i,j
(t)

)−1

wk(t).

5: Oi
u
i,j
(t) =

[
Oi
u
i,j
(t)⊤,−τ Oi

p
(3)
i,j (t)

]⊤
, τ ∈ R>0.

6: Oui,j(t) = Ri Oi
u
i,j
(t).

7: Wui,j(t) = Oui,j(t) + W ṙi(t)

389



Transformation. A diffeomorphism compliant with condi-
tions (8) and (9) is ϕ(p) = v+ ρ

∥S̃(∠(p−v))−v∥ (p−v), where

∠(p−v) is the angle formed by the displacement between the
point p to be transformed and the vantage point v. Condition
(8) is respected and, thanks to the homogeneity property of
the norm function, also condition (9). Let us now consider
only the projections of the agents on the plane where the star-
shaped ring lies, i.e., Oi

p
i,j

. For the control law design, we
need to transform all the agents to the same circular space.
Such a result is viable using a family of diffeomorphisms
ϕi centered on the same vantage point v and with the same
scaling factor ρ. Thanks to Assumption B we can choose
r(t) as common vantage point and, recalling that in {Oi}
the target r(t) coincides with the origin

(
Oi
r(t) = 0

)
, then

ϕi

(
Oi
p
i,j

)
=

ρ∥∥∥S̃i

(
∠Oi

p
i,j

)∥∥∥ Oi
p
i,j
, i = 1, . . . ,M. (10)

For the sake of the readability, we denote 2D points converted
to the circular space as qk(t) ≜ ϕi

(
Oi
p
i,j
(t)

)
, where

the index k = 1, . . . , N is given by k = j +
i−1∑
l=1

Ml (note

how knowing all groups size Ni, (i, j) can be retrieved
from k). Now, since all the agents are mapped to the same
circular space, it is necessary to guarantee that two agents
with different initial conditions in the original space are not
mapped to the same point using (10). Therefore, let’s develop
the condition qk(t0) ̸= ql(t0) as

ρ

∥∥∥Oi
p
i,j
(t0)

∥∥∥Oi
d
i,j
(t0)∥∥∥S̃i

(
∠Oi

p
i,j
(t0)

)∥∥∥ ̸=ρ

∥∥∥Om
p
m,n

(t0)
∥∥∥Om

d
m,n

(t0)∥∥∥S̃m

(
∠Om

p
m,n

(t0)
)∥∥∥

where and Oi
d
i,j
,Om

d
m,n

∈ R2 are direction vectors of
Oi
p
i,j

and Om
p
m,n

, respectively. This condition is true if at
the initial time t0, for any agent pairs in the swarm labeled
Oi
p
i,j

and Om
p
m,n

, it holds true that Oi
d
i,j
(t0)̸=Om

d
m,n

(t0)

or that

∥∥∥S̃i

(
∠Oi

p
i,j

(t0)
)∥∥∥∥∥∥S̃m

(
∠Om

p
m,n

(t0)
)∥∥∥ ̸= Oi

p
i,j

(t0)

Om
p
m,n

(t0)
. The agent motion

in the same space will be q̇k(t) = wk(t), k=1, . . . , N , where
wk(t) is the control law to be designed in the circular space.
Problem Definition. Using the defined transformation and
ψk(·) in the same way of (2), the MOTP translates into:

Problem 2 (Circular Orbit Tracking Problem (COTP)). Con-
sider a swarm of N agents modelled as points without mass
whose position is controlled as q̇k(t) = wk(t), k = 1, . . . , N .
Given C ≜ B(0, ρ) \ B (0, (1−σ)ρ), for any arbitrary small
σ ∈ R>0, design a control law that ∀k = 1, . . . , N meets the
requirement qk(t) ∈ C → qk(t) ∈ C ∀t ≥ t and respects
alternatively one of the two following conditions

∀m∈Z≥0, !∃T ∈R>0, ∃ t∗∈R>0 s.t.
{ψk(t+ T ) = ψk(t),∀t ≥ t∗}∧{
ψk(·) is piecewise-monotonic in [t∗+mT, t∗+(m+1)T ]

}
(11a)

lim
t→∞

qk(t) ∈ C. (11b)

Comparing this problem with the original one, it becomes
clear how the role of the multiple star-shaped rings is
taken over by the single ring C by virtue of the family
of diffeomorphisms (10) that bridges them. The rotational
movement inside the ring is described by (11a) in the same
way used in the MOTP. It is worth nothing that all the
agents have the same angular velocity (period of rotation)
so that there is an orderly movement. Since this angular
velocity is maintained by the diffeomorphism, the agents in
the original space will have the same angular velocity but
different linear velocities according to the different shapes
of the orbits. The swarm fixed configuration, instead, is
described by (11b) and corresponds to the velocity consensus
between agents and target requested in (7b). Finally, the
assumptions for this problem are in line with the ones for
the MOTP: each agent is aware of the ring to reach as
{ρ, σ}; each agent knows its own position qk(t); agents
are able to exchange their own position data with their
neighbors as prescribed by the connected graph G; for any
agent pair (k, l), k, l = 1, . . . , N, k ̸= l , at the initial
time t0, qk(t0) ̸= ql(t0). Conversions. Algorithm 1 can be
defined to convert the problem of interest into the circular
space and to reconvert the obtained solution. First of all, the
agent’s position with respect to the target is trasformed in
the reference frame related to the ith ring, i.e., {Oi} (line
1). As a second step, the diffeomorphism ϕi(·) is applied to
the projection of the agents on the x-y plane of {Oi} (line
2). The control law that solves the COTP is the obtained (line
3) and it is converted (line 4, according to [22], through the

jacobian matrix Jϕi

(
Oi
p
i,j

)
≜ ∂

∂Oi
p
i,j

ϕi

(
Oi
p
i,j

)∣∣∣∣
Oi

p
i,j

,

that is always invertible since a diffeomorphism for the radial
mapping is assumed). Since we want the agents to lie on the
x-y plane of {Oi}, the control law is completed by adding
a decaying term for the third dimension (line 5). The result

Fig. 2: A block diagram representing Algorithm 1. Bold
letters indicate the vectors in which the relative val-
ues of the individual agents are contained (e.g. q(t) =
[q1(t)

⊤, q2(t)
⊤, . . . , qN (t)⊤]⊤).
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is transformed in the frame {O} attached to the target r(t)
(line 6) and, as a final step, the command in the world frame
is obtained by adding the velocity of the target (line 7).
These steps are shown in Figure 2 through a block diagram.
A specular interpretation. In what has been presented so
far, we have described how to solve MOTP through a conver-
sion to a topologically equivalent space by transforming the
problem into a much simpler version (COTP). This sequence
of conversion and reconversion, however, can also be read
in a specular way: given a solution for the COTP problem,
we can extend these results to generic forms (defined by
star-shaped sets) in 3D space. This interpretation is quite
interesting when we consider the many works that have
solved the two versions of COTP in recent years (e.g. [23],
[21]). For such solutions our algorithm is, in fact, a Plug &
Play command generator. Considering the broad application
perspective, the proposed strategy could be helpful to use
the properties of an existing swarm formation protocol and
extend it to a more general scenario.

IV. EXAMPLES

The purpose of this section is to show the capability of the
proposed algorithm by considering two different versions of
COTP: in the first, the final position of the agents is fixed
in compliance with (11b); in the second, instead, the agents
exhibit rotatory motion thus satisfying (11a).
Swarm stationary configuration. This example aims at
showing how the rings can be defined by totally differ-
ent shapes and agents can maintain stationary positions.
Concerning the COTP solution, the solution described in
[23] has been used. There the authors use potential fields
generated from a bivariate normal function f(x, y) =

e−α((x−xc)
2+γ(y−yc)

2) where (xc, yc) is the center of the
ellipse and γ is the ratio of the minor axis (y-direction)
to the major axis (x-direction). In this example γ = 1 to
obtain a circle and the center is the origin, (xc, yc) = (0, 0).
Thanks to two sigmoid limiting functions, Sin, Sout, agents
arrange themselves in a circular ring whose outer and inner
borders are defined by the circles with radii R∗ + ∆Rout
and R∗ − ∆Rin, respectively. Once inside the ring, agents
can equally disperse themselves thanks to another potential
field SGN used together the limiting function N⊥. Then the
overall control law for the individual agent is

wk =(Sin(qk)− Sout(qk))∇f
(
q
(1)
k , q

(2)
k

)
+ SGN∗

N⊥(qk)∇f
(
q
(1)
k , q

(2)
k

)
+

N∑
l=1,l ̸=k

Savoid(qk, ql)

[
dx avoid
dy avoid

]
where the last term is devoted to collision avoidance. This
solution of COTP is used in the following example.
Example 1. Let’s consider a team of N = 16 agents divided
in two equal groups N1 = N2 = 8. The first group must
arrange itself inside an ellipsoidal ring D1 based on ellipse
S1 =

{
[x, y]⊤ ∈ R2 |x2/82 + y2/52 ≤ 1

}
. For the sake of

simplicity, we set as vantage point the center of the ellipse,
in such a way as to take advantage of the well-known radial
parametrization of the ellipse S̃1(θ) = [a cos(θ), b sin(θ)]⊤.

The second group, instead, has to go inside a ring
D2 defined by a set whose boundary is a rhodonea
curve (see [24]) with five petals, i.e., S̃2(θ) =[
(3 + sin(5θ)) sin(θ),−(3 + sin(5θ)) cos(θ)

]T
where the

vantage point is the center. The shrinkability factor of the
curves is σ = 0.1. For the sake of readability we choose
as target the origin (W r(t) = [0, 0, 0]⊤) and as planes
for the rings the Ox-Oy plane, i.e., R1 = R2 = I3. The
agents start from the same plane, the communication graph
is complete and ρ = 25. Using the COTP solution discussed
above, in order to compute wk(·) we used α = 0.01,
∆Ravoid = 1, κ = 1 and ε = 1. To make the circle with
radius ρ the external border of the ring and (1 − σ)ρ the
inner one, we chose ∆Rin = ∆Rout = ∆R, R∗ = ρ −∆R
and ∆R = σR∗/(2 − σ). Figure 3 shows the evolution
of the agents from the initial position to the final one.
Swarm rotational movement. The ability of the algorithm
to transform the rotatory motion within the starting circular
ring C (see condition (11a)) into an ordered rotatory motion
in the desired orbits (see condition (7a)) is now shown. As
solution of COTP, the one we developed in [21] has been
used. The agents kinematics evolve as:

q̇k = wk = −αqk + (1− σ)2qk
(
qTk qk − (1− σ)2ρ2

)−1

+

N∑
l=1,l ̸=k

εI(∥qk − ql∥)(qk − ql) + hk(t), k = 1, . . . , N.

The control law is formed by three main terms. The first
one accounts for attraction, where α > ρ−2W0

(
e−1

)
,

with W0(·) the principal branch of the Lambert function
[25], and σ ∈ (0, 1] is the shrinkability factor used in
(4). This term drives the agents to the disk B(0, (1 − σ)ρ)
simultaneously ensuring that they never enter it.As a second
term, a summation that considers the interactions of the
individual agent with all the other connected ones according
to G is concerned, aiming at avoiding collisions among team

Fig. 3: Example 1: paths of the agents from the initial
positions (squares) to the final ones (disks). The two groups
are shown with different colors and the numbers are the k
indexes of the agents.
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members. As a last term, hk(t) provides a rotational behavior
since it is designed to be always tangential to the boundary of

C, i.e., hk(t) ≜ ωAqk(t), ω ∈ R≥0, A =

[
0 −1
1 0

]
where

ω is the desired angular speed for k-th agent. According
to [21], α > max

{
W0

(
e−1

)
ρ−2, α

}
has to be used, with

α ≜ (1−σ)2+N(N − 1)λσ(2−σ)
(
ρ2σ(2−σ)

)−1
. This

solution of COTP is used in the following example.
Example 2. In this example we consider a group of N =
18 agents divided in three groups whose sizes are N1 =
8, N2 = 6, N3 = 4. We want them to rotate inside three
rings D1, D2, D3 defined by the same ellipse of the previous
example with a shrinkability factor σ = 0.1. These rings lay
on three different planes defined by the rotation matrices.
R1 = Ry(0) = I3, R2 = Ry(π/3), R3 = Ry(2/3π),
where Ry(θ) ∈ SO(3) is the matrix describing a rotation
of θ radians around the y-axis. This rings are centered on
the common reference W r(t) = [0, 0, t/10]⊤. Considering
the agents starting from the Wx-W y plane and a connected
communication graph, we applied Algorithm 1 choosing
ρ = 30. To compute wk(·) we applied the proposed method
with δ = 100, η = 0.9, λ = 1.8, ω = 0.05, τ =
1. With these settings we computed α = 1.01α. The
evolution of the agents can be appreciated in the video:
https://www.youtube.com/watch?v=MPL04Jc8Trg. A snap-
shot of the evolution is depicted in Figure 4.

V. CONCLUSIONS

In this paper, the authors provided an algorithm capable
of arranging groups of agents in arbitrarily shaped orbits
around a moving reference. Given the modeling of agents
as generic points without mass and its connection to the
traditional circular formation tracking problem, the presented
algorithm succeeds in extending many existing solutions to
3D space by providing a Plug & Play scheme with freedom
of choice on the desired shapes.

Fig. 4: Example 2: a snapshot of the agents evolution at
t = 60 s. The groups are shown in different colors together
with the related ring. The black cross is r(60) = [0, 0, 6]⊤.
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