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Abstract— The paper is about the computation of the prin-
cipal spectrum of the Koopman operator (i.e., eigenvalues and
eigenfunctions). The principal eigenfunctions of the Koopman
operator are the ones with the corresponding eigenvalues equal
to the eigenvalues of the linearization of the nonlinear system
at an equilibrium point. The main contribution of this paper
is to provide a novel approach for computing the principal
eigenfunctions using a path-integral formula. Furthermore,
we provide conditions based on the stability property of the
dynamical system and the eigenvalues of the linearization
towards computing the principal eigenfunction using the path-
integral formula. Further, we provide a Deep Neural Network
framework that utilizes our proposed path-integral approach
for eigenfunction computation in high-dimension systems. Fi-
nally, we present simulation results for the computation of
principal eigenfunction and demonstrate their application for
determining the stable and unstable manifolds and constructing
the Lyapunov function.

I. INTRODUCTION

The Koopman operator theory is emerging as a powerful
tool for the analysis and synthesis of nonlinear systems [1]–
[7]. The linear lifting of a nonlinear system provided by the
Koopman operator in the space of functions is successfully
exploited for control design [8], [9], prediction [10], [11], and
uncertainty propagation [12], [13] in a dynamical system.
However, the spectral properties, i.e., the eigenvalues and
eigenfunctions, of the Koopman operator still need to be
explored, especially for control [9], [14].

In this paper, we are specifically interested in identifying
the principal eigenfunctions of the Koopman operator. The
principal eigenfunctions are associated with the eigenvalues
of the linearization of the nonlinear system at an equilibrium
point. The principal eigenfunctions provide a powerful tool
for analyzing and synthesizing controllers for nonlinear
systems. These eigenfunctions can be used as a change
of coordinates for the linear representation of a nonlinear
system over a large region of the state space [1], [15]. The
extent of validity of these eigenfunctions determines the
size of the domain over which the linear representation is
valid. For example, in a system with a stable equilibrium
point, these eigenfunctions are well defined in the domain
of attraction of the equilibrium point. The zero-level curves
of the eigenfunction are used to identify the stable and
unstable manifolds of the dynamical system. More recently,
the connection between the principal eigenfunctions of the
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Koopman operator and the solution of the Hamilton Jacobi
equation has been established [9]. This connection provides
a systematic approach for formulating and solving various
control problems, including optimal control, robust control,
and input-output gain analysis of a nonlinear system [16]. For
all these reasons, it becomes imperative to develop system-
atic and robust computational methods for determining the
principal spectrum of the Koopman operator. In [17], Taylor
and Bernstein’s polynomials were used to approximate the
eigenfunctions. In [18] a diffeomorphic neural network was
proposed to learn eigenfuctions and [19] extended it to
learn the Koopman spectra. To reduce the computation cost
for high dimensional systems, [20] proposed to decompose
the system as a set of interconnected systems and exploit
its sparsity structure. A convex formulation to approximate
the principal eigenfunctions is provided in [21]. However,
these methods cannot be easily extended to a general high-
dimensional system.

The main contribution of this paper is to provide a novel
approach for the computation of the principal eigenfunctions
of the Koopman operator. The approach relies on decompos-
ing principal eigenfunctions into linear and purely nonlinear
parts. The linear part of the eigenfunction is obtained as the
left eigenvector of the linearization of system dynamics at the
equilibrium point. The nonlinear part is shown to satisfy a
linear partial differential equation (PDE). The solution of this
linear PDE is obtained using a path-integral formulation. In
particular, the value of the eigenfunction at any given point
x0, is obtained by integrating a known function along the
system trajectory forward in time with x0 as the initial state.
We provide conditions based on the stability properties of
the system for the path-integral formula to work. The path-
integral approach does not involve a choice of basis function,
making it attractive for complex systems. Furthermore, we
present a DNN framework to approximate the solution of the
PDE for high-dimensional systems. Finally, we demonstrate
the application of the developed framework for the compu-
tation of stable/unstable manifolds and the construction of
Lyapunov functions.

II. PRELIMINARIES AND NOTATIONS

Consider the continuous-time dynamical system

ẋ = f(x), x ∈ X ⊂ Rn. (1)

The following assumption is made on the vector field in the
rest of the paper.

Assumption 1. We assume that the vector field f(x) is at
least C2(X) (twice continuously differentiable) and x = 0
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is a hyperbolic equilibrium point of the system, i.e., A :=
∂f
∂x (0) has no eigenvalues on the imaginary axis.

Definition 1 (Koopman Operator). Let st(x) be the solution
of the dynamical system (1) at time t starting from the initial
condition x. The Koopman operator Ut : L∞(X) → L∞(X)
associated with the dynamical system (1) is defined as

[Utψ](x) = ψ(st(x)), (2)

where ψ (commonly referred to as an observable function)
is defined on L∞(X), which is the space of essentially
bounded functions on X. The infinitesimal generator Kf for
the Koopman operator is given by

lim
t→0

(Ut − I)ψ

t
=
∂ψ

∂x
f(x) =: Kfψ, t ≥ 0. (3)

Definition 2 (Eigenvalues and Eigenfunctions). A function
ϕ(x) ∈ C1(X) is said to be an eigenfunction of the Koopman
operator associated with eigenvalue λ if

[Utϕ](x) = eλtϕ(x), t ≥ 0. (4)

Using the Koopman generator, equation (4) can be written
as

Kfϕ =
∂ϕ

∂x
f(x) = λϕ(x). (5)

Notice that equations (4) and (5) provide a “global” definition
of Koopman spectrum in the sense that it holds for all t ∈
[0,∞) and all x ∈ X. However, the spectrum can be defined
over finite time or over a subset of the state space and is
of interest to us in this paper. Furthermore, in this paper, we
are also interested in computing the spectrum associated with
the eigenvalues of the linearization of the nonlinear system
at an equilibrium point.

Definition 3 (Open Eigenfunction [1]). Let ϕ : C → C,
where C ⊂ X is not an invariant set. Let x ∈ C, and τ ∈
(τ−(x), τ+(x)) = Ix, a connected open interval such that
sτ (x) ∈ C for all τ ∈ Ix. If

[Uτϕ](x) = ϕ(sτ (x)) = eλτϕ(x) ∀τ ∈ Ix,

then ϕ is called an open eigenfunction of the Koopman
operator family Ut, for t ∈ R with eigenvalue λ.

If C is a proper invariant subset of X in which case
Ix = R for every x ∈ C, then ϕ is called a subdomain
eigenfunction. If C = X, then ϕ will be an ordinary
eigenfunction associated with eigenvalue λ as defined in (4).
When C is open, the open eigenfunctions as defined above
can be extended from C to a larger set which is the backward-
reachable from the closure of C, based on the construction
procedure outlined in [1, Definition 5.2, Lemma 5.1]. Fol-
lowing Assumption 1, let D be the domain of attraction
of the equilibrium point at the origin. Our interest is in
computing the Koopman eigenfunctions which are defined
over this domain D. Furthermore, these eigenfunctions are
associated with the eigenvalues of the dynamic matrix A of
the linearized system around the equilibrium x = 0. These
principal eigenfunctions are connected to the diffeomorphism

as established in the famous Hartman Grobman theorem,
which transforms the nonlinear system into a linear system
in a small neighborhood around the equilibrium point [15],
[22]. In fact, these eigenfunctions can be essentially viewed
as the extension of the Hartman Grobman diffeomorphism
from the local neighborhood around the origin to the entire
domain of attraction D [1, Theorem 5.6].

III. MAIN RESULTS

Following Assumption 1, we can write the system dynam-
ics (1) as

ẋ = f(x) = Ax+ fn(x), (6)

where Ax := ∂f
∂x (0)x is the linear part and fn(x) :=

f(x) − Ax is the purely nonlinear part of the vector field
f(x). Let λ be an eigenvalue of the linearization, i.e., A, and
let φλ(x) be the eigenfunction associated with the eigenvalue
λ (such eigenfunctions are called principal eigenfunctions).
Similar to the system decomposition into linear and nonlinear
parts, the principal eigenfunction, φλ(x), also admits a
decomposition into linear and nonlinear terms as follows:

φλ(x) = w⊤
λ x+ hλ(x), (7)

where w⊤x is the linear part and hλ(x) is the purely
nonlinear term and hence satisfies ∂h

∂x (0) = 0. Substituting
(7) in equation (5) and comparing terms, we obtain

w⊤
λ A = λw⊤

λ , (8)

i.e., wλ is the left eigenvector of A with eigenvalue λ.
Similarly, the nonlinear part, hλ(x), of the eigenfunction
satisfies the following linear partial differential equation
(PDE)

∂hλ
∂x

f(x)− λhλ(x) +w⊤
λ fn(x) = 0. (9)

The main results of this section on the computation of
principal eigenfunctions of the Koopman operator present an
approach for solving equation (9). We present two different
approaches for the computation of the nonlinear part of
the principal eigenfunctions. Our first approach relies on
the path-integral formula for the computation of principal
eigenfunctions. Our second approach relies on the use of a
Deep Neural Network for solving the linear PDE (9).

A. Path-Integral Approach for Computation

Our first results on the path-integral approach for eigen-
function computation provide a solution formula for the
linear PDE (9) using the method of characteristics.

Theorem 1. The solution formula for the first order linear
PDE (9) can be written as

hλ(x) = e−λthλ(st(x)) +

∫ t

0

e−λτw⊤
λ fn(sτ (x))dτ, (10)

where st(x) is the solution of the system (6).

Proof. The PDE (9) can be written as

dhλ(st(x))

dt
− λhλ(st(x)) +w⊤

λ fn(st(x)) = 0. (11)
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Multiplying throughout by e−λt, we obtain

d(e−λthλ(st(x)))

dt
+ e−λtw⊤

λ fn(st(x)) = 0.

Next, we integrate the above from 0 to t, thus obtaining

e−λthλ(st(x))− hλ(x) +

∫ t

0

e−λτhλ(sτ (x))dτ = 0,

=⇒ hλ(x) = e−λthλ(st(x)) +

∫ t

0

e−λτw⊤fn(sτ (x))dτ.

This completes our proof. ■

Our first main result establishes conditions under which
the solution of the PDE (9) is nonlinear.

Theorem 2. For the dynamical system (6) that satisfies
Assumption 1, let the origin be an asymptotically stable
equilibrium point with the domain of attraction D and let
A be Hurwitz. Furthermore, all the eigenvalues of the A
satisfy

−Re(λ) + 2Re(λmax) < 0, (12)

where λmax is the eigenvalue closest to the jω axis and in
the left half plane. Let hλ be the solution of PDE (9) as
given in (10). Then,

lim
t→∞

e−λthλ(st(x)) = 0, ∀x ∈ D (13)

if hλ(x) is purely nonlinear function of x i.e., ∂hλ

∂x (0) = 0.

Proof. We show that if hλ is nonlinear then (13) is true.
Since hλ is purely nonlinear, ∇xhλ(0) = 0 and by construc-
tion hλ(0) = 0. Next, we show that for every ε > 0, there
exists cε > 0 such that

∥hλ(x)∥ ≤ cε∥x∥2

for all ∥x∥ ≤ ε. By applying the mean value theorem inside
∥x∥ ≤ ε, we have

hλ(x) = hλ(0) +∇xhλ(0)x+ xT∇2
xhλ(z)x

=⇒ ∥hλ(x)∥ ≤ ∥∇2
xhλ(z)∥ · ∥x∥2

for some point z on the line segment joining 0 and x. Since
hλ is smooth over the compact domain ∥x∥ ≤ ε, we can
define a constant cε := sup∥x∥≤ε ∥∇2

xhλ(x)∥, and obtain the
uniform bound ∥hλ(x)∥ ≤ cε∥x∥2 in the region ∥x∥ ≤ ε,
where cε :=

(∑
i c

2
ε,i

) 1
2 . Now for ∥x∥ ≤ ε, there exists,

by Hartman Grobman theorem, a near identity change of
coordinates with inverse in the small neighborhood around
the origin, say of size ∥x∥ ≤ ϵ, of the form

z = x+d(x) = D(x) ⇐⇒ x = D−1(z) = z+d̄(z), (14)

with d(x) and d̄(z) purely nonlinear such that the nonlinear
system is transformed into linear system i.e., ẋ = Ax +
fn(x) =⇒ ż = Az and hence

st(x) = D−1(eAtD(x)) =⇒ st(x) = D−1(eAt(x+d(x)))

= eAtx+ eAtd(x) + d̄(eAtx+ eAtd(x)).

In the above, we have used (14) for D−1. Since d̄(z) is
purely nonlinear, for ∥x∥ ≤ ϵ, we can get using mean value
theorem

∥d̄(z)∥ ≤ cd̄∥z∥2, ∥d(x)∥ ≤ cd∥x∥2.

Using the above inequality, Cauchy Schwartz inequality, and
the fact that ∥x∥ ≤ ϵ, we obtain

∥st(x)∥ ≤ c1e
Re(λmaxt) =⇒ ∥st(x)∥2 ≤ c21e

Re(2λmaxt)

for some constant c1 that depends on ϵ, cd, and c̄d. Now

∥hλ(st(x))∥ ≤ cε∥st(x)∥2 ≤ c2e
Re(2λmaxt),

where c2 = cεc
2
1. Then, the limit in equation (13) follows by

noting that

∥e−λthλ(st(x))∥ ≤ c2e
(−Re(λ)+2Re(λmax))t.

■

Using the results of the above theorem we have the follow-
ing results for the computation of Koopman eigenfunctions
under the stability assumption on the system dynamics.

Theorem 3. Consider the dynamical system (6) with origin
asymptotically stable and with the domain of attraction D.
Let the eigenvalue λ of matrix A satisfy condition (12). Then
the principal eigenfunction, ϕλ, corresponding to eigenvalue
λ, is well defined in the domain D and is given by following
path-integral formula:

ϕλ(x) = w⊤
λ x+

∫ ∞

0

e−λtw⊤
λ fn(st(x))dt (15)

where wλ satisfies w⊤
λ A = λw⊤

λ .

Proof. The eigenfunction corresponding to eigenvalue λ
admits a decomposition into linear and nonlinear parts as
given in Eqs. (7) and (8). Since hλ is assumed to be
nonlinear, the results of Theorem 2 applies and hence
limt→∞ e−λthλ(st(x)) = 0 for all x ∈ D. The result then
follows by applying Theorem 1 on the solution formula of
linear PDE. ■

Remark 1. The eigenfunctions ϕλi for i = 1, . . . , n can
be used as diffeomorphism for the linearization of nonlinear
system valid within the domain of attraction D. In [1], [15],
the authors propose an approach for the construction of such
diffeomorphism valid within the domain of attraction based
on the extension of the Hartman Grobman diffeomorphism,
which is known to exist in a small neighborhood of the
origin.

The results of Theorem 3 can be extended to compute the
Koopman spectrum for the system with linearization having
all its eigenvalues in the right half plane by time reversing
the vector field. We have the following Corollary in this
direction.

Corollary 1. Consider the dynamical system (6) satisfying
Assumption 1. Let the matrix A for the linearization of
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system dynamics have all its eigenvalues in the strict right
half plane with eigenvalue, λ, satisfying the condition

Re(λ)− 2Re(λmax) < 0. (16)

The principal eigenfunction, ϕλ, with eigenvalue λ, are well
defined in the domain D̄ := {x ∈ X : limt→∞ s−t(x) = 0}
and is given by the following formula

ϕλ(x) = w⊤
λ x+

∫ ∞

0

eλtw⊤
λ fn(s−t(x))dt, (17)

where wλ satisfies w⊤
λ A = λw⊤

λ .

Note that the path integral formula given in Theorem 3 can
be applied to learn the value of the eigenfunctions in a given
domain. In the next section, we propose a DNN framework
to obtain a functional approximation of the eigenfunctions
based on the values obtained over the domain.

B. Deep Neural Network for Principal Eigenfunction

Deep learning techniques have been successfully applied
in literature towards computation of the Koopman opera-
tor and its associated eigenfunctions [23], [24]. In all of
these prior works, the main approach is to parameterize the
eigenfunctions (or nonlinear ‘lifting’ functions in other cases)
using autoencoders and then utilizing sampled trajectory data
to compute the loss function for training.

Let P = {(xi,yi)}i∈I be a set of points along system
trajectories sampled at a uniform time interval τ , that is,

yi = sτ (xi), i ∈ I.

Then, the DNN parameterized vector of eigenfunctions or
lifting functions ψθ is typically learned by minimizing the
loss

min
K,θ,ω

 E
(x,y)∼D

[
∥ψθ(y)−Kψθ(x)∥

]
+

E
x∼X

[
∥x− ηω

(
ψθ(x)

)
∥
]

 , (18)

where E[·] denotes the expected value with respect to the
data distribution specified. The function ηω is a decoder
network parameterized by ω, which maps points from the
lifted Koopman space back to the original state-space and
K is the finite-dimensional approximation of the Koopman
operator. The second term in the equation above is the auto-
encoder loss and is needed to ensure that the DNN does not
learn a trivial solution ψθ ≡ 0. In place of the first term, it is
also common to use Koopman PDE (2) in the loss function,
wherein one penalizes the violation in the PDE satisfaction.
In the case where the DNN parameterizes the lifting function,
one needs to indirectly extract the eigenfunctions using the
learned K matrix and ψθ.

Our approach using path-integral can be used to learn the
principal Koopman eigenfunctions in a more direct fashion,
using the equation (7) to create a labeled training dataset
D′ = {(xi, ϕλ(xi))}i∈I , thus leading to the following
supervised learning problem:

min
θ

E
(x,z)∼D′

[
∥z−w⊤x− ĥθ(x)∥

]
, (19)

Fig. 1. Analytical example 1: (a) eigenfunction corresponding to stable
eigenvalue estimated using Theorem 3 (b) eigenfunction corresponding to
unstable eigenvalue estimated using Corollary 1.

where θ parameterizes the nonlinear part of the principal
eigenfunction using the DNN ĥθ. Additionally, one can
introduce the following secondary term in the loss function
for regularization:

E
x∈X

[∥∥∥∂ĥθ
∂x

f(x)− λĥθ(x) +w⊤fn(x)
∥∥∥] . (20)

This ensures that the network does not overfit to the dataset
D′. Note that this secondary term (20) is much cheaper to
evaluate compared to the loss term in (19) due to offline
computations involved in the generation of labeled dataset
D′. Moreover, since PDE (9) does not admit a trivial solution
(unlike PDE (2)), we do not need an additional auto-encoder
loss term like in equation (18).

IV. SIMULATION RESULTS

Analytical Example 1: Consider the dynamics of a one-
dimensional system given by

ẋ = α(x− x3).

The principal eigenfunctions for this system can be computed
analytically as ϕ(x) = x√

1−x2
. Note that ϕ(x) is well-defined

within the domain x ∈ (−1, 1). For α = −1, the system
has a stable equilibrium point at the origin (with eigenvalue
λ = −1). Although ϕ(x) blows up as x −→ (−1, 1),
since st(x) −→ 0, condition in Eq. (13) is satisfied. The
corresponding eigenfunction can be estimated using Theorem
3 as shown in Fig. 1a. For α = 1, the origin is unstable, and
hence the results of Theorem 3 do not apply. But the results
of Corollary 1 apply, and the estimated eigenfunction using
Eq. (17) matches perfectly with the analytical solution.

Analytical Example 2: Consider the dynamics of a two-
dimensional system given by

ẋ1 = −2λ2x2(x
2
1 − x2 − 2x1x

2
2 + x42)

+ λ1(x1 + 4x21x2 − x22 − 8x1x
3
2 + 4x52)

ẋ2 = 2λ1(x1 − x22)
2 − λ2(x

2
1x2 − 2x1x

2
2 + x42)

where λ1, λ2 are the eigenvalues of the system when lin-
earized about the origin [25]. For this system, the eigenfunc-
tions can be computed analytically as ϕλ1(x) = x1−x22 and
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Fig. 2. Analytical Example 2 with saddle equilibrium point: Eigenfunction
corresponding to Re(λ) > 0. (a) analytical (b) estimated using Corollary
1.

ϕλ2
(x) = −x21 + x2 + 2x1x

2
2 − x42. We pick the eigenvalues

λ1 = −1 and λ2 = 3 such that the system has a saddle
equilibrium at the origin. The analytical eigenfunction cor-
responding to λ2 = 3 is shown in Fig. 2a. The eigenfunction
corresponding to the unstable eigenvalues can be estimated
accurately using Corollary 1 as shown in Figure 2b.

Duffing Oscillator: The Duffing oscillator dynamics is

ẋ1 = x2, ẋ2 = x1 − δx2 − x31

For eigenfunction computation, we use δ = 0.5. The equi-
librium point at the origin is a saddle point. Fig. 3a shows
the eigenfunction corresponding to the unstable eigenvalue
obtained for the equilibrium point at the origin after t = 20
s. Since the eigenfunctions remain bounded, equation (13)
is satisfied. The stable manifold (shown in yellow in Fig.
3b) is obtained as the zero-level set of this eigenfunction.
The magnitude of the (complex) eigenfunction corresponding
to the stable eigenvalue obtained after t = 20s for the
equilibrium point at [1,0] is shown in Fig. 3c.

The Lyapunov function verifying the stability
of the equilibrium dynamics is constructed as
V (x) = Φ⊤(x)PΦ(x), where P is a positive matrix
obtained as the solution of the following Lyapunov equation
Λ⊤P + PΛ < 0 [17]. The Lyapunov function for this
system is shown in Fig. 3d.

Two Link Robotic Arm: Consider the following Euler-
Lagrange dynamics representing a 2-link manipulator:

M(q)q̈+C(q, q̇)q̇+G(q) = Bq̇ (21)

where q ∈ R2 represents the generalized coordinates of the
manipulator. Specifically, we take

M(q) =

[
2 cos(q2) + 8.33 cos(q2) + 0.33
cos(q2) + 0.33 0.33

]
C(q, q̇) =

[
−2q̇2 sin(q2) −q̇2 sin(q2)
q̇1 sin(q2) 0

]
G(q) =

[
50 sin(q1) + 5 sin(q1 + q2)

5 sin(q1 + q2)

]
and B = diag[5.5, 0.001], where diag represents a di-
agonal matrix. We take the 4-dimensional state to be x =

Fig. 3. Duffing Oscillator: (a) eigenfunction (real) for λ = 0.78 at the
origin; (b) zero level set representing the stable manifold; (c) magnitude of
the eigenfunction (complex) for λ = −0.25±1.39j at (1, 0); (d) Lyapunov
function obtained from (c).

[q1, q2, q̇1, q̇2], and rewrite the dynamics (21) in standard
form as ẋ = f(x). The linearized system about the sta-
ble equilibrium x = 0 has complex eigenvalues λ1,2 =
−0.23 ± 2.29j and λ3,4 = −0.32 ± 5.32j, thus leading to
complex eigenfunctions. We pick a domain [− π

12 ,
π
12 ]

4 over
which we compute the path integrals and create a dataset
D′ as described in Subsection III-B. This dataset, along
with the sum of losses (19) and (20), is then used to train
a multi-layer perceptron network (MLP) with a sinusoidal
activation function. The MLP has 3 hidden layers, each with
128 neurons. The input layer is of size 4, and the output
layer has a size 2, corresponding to the real and imaginary
parts of the eigenfunction being learned. Fig. 4 shows the
magnitude and phase of the complex eigenfunction along
the system trajectory starting at random initial conditions
within the domain. It can be seen that the magnitude of the
eigenfunction goes to zero along the stable trajectory.

V. CONCLUSIONS

We provide a novel approach for the computation of
principal eigenfunctions of the Koopman operator based
on the path-integral formula. Furthermore, the path-integral
formula is used to formulate the DNN-based approach for
computing the eigenfunctions. Simulation results show that
the path-integral-based approach accurately approximates the
principal eigenfunctions of systems with complex dynamics.
We demonstrate the applications of eigenfunctions for the
computation of stable/unstable manifolds and the Lyapunov
function. Simulation results involving analytical examples,
duffing oscillator, and two links robotic arm are presented
to show the efficacy of the developed framework. Future
research will focus on a data-driven approach for the com-
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Fig. 4. Magnitude of the eigenfunction corresponding to stable eigenvalue
λ = −0.23 ± 2.29j along the trajectories of the system starting from
random initial conditions

putation of principal eigenfunctions and its extension to
discrete-time dynamical systems.
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