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Abstract— We address the problem of assessing the power
flexibility that a pool of prosumers equipped with a generalized
storage device can offer to the electrical grid as an ancillary
service for balancing power demand and generation. A key
feature of the proposed approach is that the disaggregation
policy is computed jointly with the aggregate flexibility set, and
it is hence readily available for the pool to supply any (feasible)
power profile request from the grid. Each prosumer is assumed
to provide a contribution which is an affine function of the
aggregated power profile. The coefficients of the affine policies
are designed by solving a distributed optimization program
where the volume of the aggregate flexibility set is maximized
while satisfying the power and energy constraints of each
storage device and additional constraints involving multiple
(possibly all) devices. Simulation results show the superiority of
the proposed approach with respect to a state-of-the-art method
that inspired our work.

I. INTRODUCTION

The energy sector is facing a transition due to the high pen-
etration of non-programmable renewable energy resources,
such as wind and solar power, and the increasing consump-
tion due to the constant electrification of facilities, houses,
and vehicles. This transition puts at risk the grid stability
by making it more challenging to balance demand and
generation. Traditional large-scale, inertia-based facilities,
such as gas and pumped-hydro storage power plants, will not
be able to offer enough flexibility to the grid to guarantee
a safe and reliable operation. Fortunately, the energy sector
transition is accompanied by a modernization of the electrical
grid, which enables the provision of flexibility (i.e., the
capability of adjusting the electric energy exchanged with
the grid according to some external signal) through direct
involvement of the prosumers, which can be grouped together
in a pool by an aggregator to support the grid via explicit
demand-response. This ultimately calls for computationally
efficient methods to assess the flexibility that the resulting
aggregate can offer to the grid, which motivated a significant
effort in the literature, including the present work.

Assessing flexibility is equivalent to computing the set
of all the feasible power trajectories that the resources in
the pool, typically modeled as storage systems, [1], can
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jointly provide along a given time horizon. It is a challenging
task because it implicitly involves mapping any (admissible)
power request by the grid back into the power exchange
profile of each single storage system (disaggregation policy).
Moreover, to fully exploit the available flexibility while
reducing the complexity of planning, trading, and control
by the aggregator and grid operator, the aggregate flexibility
of the pool must be computed and represented as a set with
a concise and compact description. Considering the possible
heterogeneity of the resources in the pool, the sought form
has to be as general as possible to represent different units.

From the observation that computing exactly the aggre-
gated flexibility set is generally intractable [2], approxi-
mation methods have been proposed in the literature. In
particular, methods seeking for an inner approximation of
the flexibility set are briefly reviewed next. Interested readers
are referred to [3] for a more comprehensive review.

Some approaches approximate the flexibility set of every
single unit independently first and then simply aggregate
these sets. The key point here is to choose a suitable
geometry for the individual sets to ease their aggregation.
According to this rationale, [1] adopts zonotopes, a subclass
of polytopes with suitably defined and fixed shapes, to
approximate a unit’s original polytopic flexibility set along
some reference time horizon. However, since zonotopic sets
are symmetric and, generally, the sets to be approximated are
not, the method tends to leave many feasible trajectories out-
side the approximation. Also, due to the high computational
cost to compute the volume of the zonotopic set - ideally,
one wants to find the approximation with the largest volume
among all the ones inscribed into the original set -, auxiliary
cost functions are used, leading to conservative results when
the time horizon increases. [4] presents a different union-
based approach that uses homothets of hyper-rectangles.
The polytopic set to be approximated is decomposed by
recursively inscribing maximum volume hyper-rectangles.
The idea is to adopt a set for which it is straightforward to
compute the volume and repeat the process recursively with
the residual sub-polytopes to cover the whole flexibility set
progressively. The accuracy of the result improves at each
step. However, as pointed out in [3], the method becomes
computationally intractable when more than two steps are
used, which limits its performance in practice. [5] tries to re-
duce the approximation error due to geometrical mismatches
by using homothets of a prototype polytope suitably defined
to be more flexible than zonotopes and hyper-rectangles. The
formulation maximizes the dilation coefficient of the ho-
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mothets, which indirectly maximizes the volume. However,
in all these approaches, conservatism increases substantially
when heterogeneity increases due to the propagation of the
individual approximation errors towards the aggregate set.
Additionally, aggregation of power flexibility is typically
limited by constraints over the distribution network, which
these methods cannot handle because they approximate the
units independently. Disregarding these constraints causes
an over-estimation of the aggregated flexibility and, hence,
infeasibility.

Other approaches try to overcome these limitations by
looking for an approximation of the aggregated set di-
rectly. [6] and [7] reformulate the involved sum operation as
a set projection. The aggregate flexibility is hence considered
as the projection of a higher dimensional polytope onto
the subspace representing the aggregate power of the units.
Therefore, instead of approximating the sum directly by
its definition, authors approximate the associated projection
operation with respect to the homothets of a given polytope.
This problem is solved by means of a robust optimization
problem, which, however, introduces conservatism to the
solution. The idea has been recently extended in [8] and [9]
to reduce conservativeness. However, all these methods use
several reformulations of the original optimization problem,
often introducing approximations to recover tractability. An
interesting approach to approximate the aggregated flexibility
is the one proposed in [10], where the aggregated flexibility
set is described through an equivalent battery model, whose
parameters are determined by assuming a disaggregation
policy which is linear as a function of the power profile
requested by the grid. Later in [11], an expansion method of
the set resulting from [10] is proposed while also accounting
for network constraints.

Inspired by [10], in this paper the disaggregation policy
structure is fixed a priori and its parameters are chosen
so as to maximize the volume of the aggregate flexibility
set directly. Differently from [10], where some restrictive
assumptions are imposed on the storage-like devices that are
aggregated, our framework is more general since it allows
to account for time-varying power and energy constraints,
as well as for an arbitrary initial energy content. Indeed, a
specific initialization cannot be guaranteed, in general, and
it would fail to be met as soon as the offered flexibility is
actually exploited. Also, we assume an affine disaggregation
policy (as opposed to a linear one) and take a box to
model the aggregate flexibility set, so as to comply with the
requirements of the energy service market, where the offered
flexibility has to be given in terms of (constant) downward
and upward power made available along some reference
time horizon. We show that the problem of maximizing the
volume of the aggregate flexibility box while accounting for
global constraints related to, e.g., minimum levels of upward
and downward services and network constraints, is convex
and has a multi-agent constraint-coupled structure. It can
then be solved via a distributed scheme, which allows to cope
with the growth of the computational effort as the population
size increases, while guaranteeing information privacy. The

latter is a key feature since, typically, prosumers are willing
to offer flexibility but not to disclose their private information
encoded in their local constraints.

II. PROBLEM SETTING AND BACKGROUND

In this section, we first formalize the addressed problem
and then briefly recall the approach in [10], which inspired
our methodology.

A. Problem Formulation

Consider a pool of N prosumers, indexed by i, i =
1, . . . , N , and a time-horizon composed of M time-slots,
each one of duration τ . Each prosumer is equipped with an
energy storage device, which can be a battery, a thermo-
statically controlled load, or another type of load, see [7].
Nominal operating conditions will correspond to a certain
usage of the storage device, thus possibly making the residual
capacity and power that are available for the flexibility
service time-varying quantities.

In each time-slot k, k = 0, . . . ,M − 1, prosumer i can
vary its baseline power profile by an amount pi(k) to absorb
(pi(k) > 0) or supply (pi(k) < 0) some constant power. The
power pi(k) exchanged within the k-th time-slot must satisfy

li(k) ≤ pi(k) ≤ ui(k), k = 0, . . . ,M − 1, (1)

to comply with the prosumer’s (possibly time-varying) power
limitations. Denote as ei(k) the energy content of the storage
device with respect to the baseline content at the beginning
of time-slot k. Then, the evolution of ei(k) is described by
the recursive equation

ei(k + 1) = ζi ei(k) + τ pi(k), k = 0, . . . ,M − 1, (2)

where the self-discharge coefficient ζi ∈ (0, 1] models
storage energy losses in a time-slot and ei(M) denotes the
storage energy content at the end of time-slot M − 1. The
energy quantity that can be stored into or retrieved from the
storage is constrained to be within a (possibly time-varying)
minimum emin

i (k) and a maximum emax
i (k) values, i.e.,

emin
i (k) ≤ ei(k) ≤ emax

i (k), k = 1, . . . ,M. (3)

By collecting the time-evolution of the introduced quanti-
ties of the i-th prosumer into the following vectors

pi = [pi(0) · · · pi(M − 1)]>,

li = [li(0) · · · li(M − 1)]>,

ui = [ui(0) · · · ui(M − 1)]>,

ei = [ei(1) · · · ei(M)]>,

emin
i = [emin

i (1) · · · emin
i (M)]>,

emax
i = [emax

i (1) · · · emax
i (M)]>,

and unrolling the recursive equation (2), constraints (1)
and (3) can be compactly rewritten as

li ≤ pi ≤ ui ∧ emin
i ≤ Aiei(0) +Bipi ≤ emax

i ,
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where

Ai =

 ζi...
ζMi

 , Bi = τ


1 0 . . . 0
ζi 1 . . . 0
...

...
. . .

...
ζM−1i ζM−2i . . . 1

 .
By further defining ei = emin

i − Aiei(0) and ei = emax
i −

Aiei(0), the set of all power trajectories pi that the i-th
prosumer can exchange on top of its nominal operation is
given by

Pi = {pi ∈ RM : li ≤ pi ≤ ui ∧ ei ≤ Bipi ≤ ei}. (4)

Set Pi describes the flexibility that prosumer i can provide
to the grid and belongs to a class of polytopes known in the
literature as PE-polytopes [1] (or resource polytopes [2]), as
they are defined by Power constraints (i.e., li ≤ pi ≤ ui)
and Energy constraints (i.e., ei ≤ Bipi ≤ ei).

Since the power profile p = [p(0) · · · p(M − 1)]> that
the whole pool can absorb/supply is given by

p =

N∑
i=1

pi, (5)

then, the flexibility set of the prosumer pool can be expressed
as

P =

{
p =

N∑
i=1

pi : pi ∈ Pi, i = 1, . . . , N

}
. (6)

Note that the exact description of P in (6) as a polytope given
by the intersection of multiple half-planes is hard to use for
assessing the flexibility offered to the grid. In fact, relevant
properties like, e.g., the minimum upward and downward
power that the pool of storage devices can provide to the
grid, are not readily available. Much effort has been spent
in the literature to find a simpler and more explicit inner
approximation of P , which is easy to compute also when the
number of prosumers is large. This is also the objective of
the present work, where a distributed scheme for computing
a hyper-box inner approximation – together with the local
prosumer charge/discharge policy – is proposed.

Starting from the observation that P can be computed as

P = P1 ⊕ · · · ⊕ PN ,

where ⊕ denotes the Minkowski sum between sets, some
approaches in the literature exploit an inner set representation
of the local flexibility sets in the form of axis-aligned boxes
or zonotopes with specific generators aiming at reproducing
the PE-polytopes shape to ease the Minkowski sum inner-
approximation, see, e.g., [4], [1]. Besides the conservative-
ness of the resulting flexibility set, a further step for disaggre-
gating the grid power request is needed. Motivated by these
observations in [10], a different approach is proposed where
the aggregated flexibility set is directly inner-approximated
while designing the disaggregation strategy.

B. The Generalized Battery Model (GBM) Approach

The authors of [10] impose the following simplifying
assumptions on each prosumer i, i = 1, . . . , N ,

li(k) = Li ≤ 0 ui(k) = Ui ≥ 0 (7a)

emin
i (k) = −Ci ≤ 0 emax

i (k) = Ci ≥ 0 (7b)
ei(0) = 0 (7c)

and try to inner-approximate the overall flexibility set P with
a PE-polytope P̃ defined as

P̃ = {p ∈ RM : L1 ≤ p ≤ U1 ∧ −C1 ≤ B̃p ≤ C1}, (8)

where L ≤ 0, U ≥ 0, and C ≥ 0 are three scalar parameters
to be determined so that P̃ ⊆ P , while 1 is the all-one vector
in RM and

B̃ = τ


1 0 . . . 0
ζ 1 . . . 0
...

...
. . .

...
ζM−1 ζM−2 . . . 1

 ,
with ζ ∈ (0, 1] a-priori chosen based on the values of
ζ1, . . . , ζN , e.g., set equal to ζ = 1

N

∑N
i=1 ζi. The assump-

tion underlying the choice of P̃ in (8) is that the prosumer
pool can be regarded as an equivalent battery model (hence
the name of the approach) e(k + 1) = ζ e(k) + τ p(k) with
e(0) = 0 and constraints

L ≤ p(k) ≤ U ∧ |e(k)| ≤ C, k = 0, . . . ,M − 1.

In order to ensure that P̃ ⊆ P , for any p ∈ P̃ , there
must exist p1, . . . , pN , with pi ∈ Pi, i = 1, . . . , N , such that∑N
i=1 pi = p. To enforce this condition, the authors of [10]

propose to parameterize each prosumer’s power profile pi as
follows

pi(k) = βip(k), k = 0, . . . ,M − 1, (9)

with βi ≥ 0 and
∑N
i=1 βi = 1, and then impose βip = pi ∈

Pi by requiring, for all i = 1, . . . , N ,

Li1 ≤ βip ≤ Ui1 ∧ −Ci1 ≤ βiBip ≤ Ci1, ∀p ∈ P̃, (10)

which, according to [10], is satisfied if, for all i = 1, . . . , N ,

βiC ≤
Ci
Φi
∧ βiL ≥ Li ∧ βiU ≤ Ui (11)

with Φi = 1 + |(ζ − ζi)/ζi|, βi ≥ 0, and
∑N
i=1 βi = 1.

While there are several combinations of the free parameters
satisfying (11), the authors of [10] provide, among other
alternatives, the following explicit formulas for maximizing
the capacity (which is related to flexibility) of the equivalent
battery model:

C =

N∑
i=1

Ci
Φi
, βi =

Ci
ΦiC

, L = max
i

Li
βi
, U = min

i

Ui
βi
. (12)

Although inspiring, this approach has three major short-
comings: i) it assumes time-independent power and energy
bounds (cf. (7a) and (7b)), which excludes those scenarios
in which the baseline power and energy profiles are not
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constant, ii) it assumes symmetric energy bounds for each
prosumer (cf. (7b)), and iii) it assumes a zero initial condition
(cf. (7c)).

Regarding the third shortcoming, given that the amount
of energy that the storage device can absorb or deliver
(depending on the sign of ei(0)) is reduced by an amount
equal to |ei(0)|, zero initial conditions can be recovered
while preserving symmetric energy bounds by reducing the
capacity boundary parameter Ci in (10) of an amount |ei(0)|
and, hence, using Ci − |ei(0)| in place of Ci in (12).

III. PROPOSED METHODOLOGY

In this section, we build on [10] to propose a new approach
to approximate the overall flexibility set P . Specifically,
instead of using the linear disaggregation policy (9), we
parameterize each prosumer’s power profile with the affine
map

pi(k) = βip(k) + αi, k = 0, . . . ,M − 1, (13)

and, instead of inner-approximating P with a PE-polytope,
we inner-approximate it with a box

B = {p ∈ RM : c1− d1 ≤ p ≤ c1 + d1}, (14)

where c ∈ R affects the center of the box and d ∈ R is
half-length of the cube edge.

The introduction of the affine term in (13) is to add a
further degree of freedom to the policy proposed in [10],
enabling a net-zero (see (15)) energy exchange among pro-
sumers, while the choice of a box in place of a PE-polytope
is motivated by market requirements. As explained next,
the use of a box for the inner approximation enables us to
find the values of the design parameters c, d, βi, and αi,
i = 1, . . . , N , that maximize the volume of B while ensuring
B ⊆ P via a simple convex optimization problem, without
imposing any of the assumptions in (7).

Clearly, (5) must hold, therefore, given (13), one has

p =

N∑
i=1

pi = p

N∑
i=1

βi + 1

N∑
i=1

αi,

for any p ∈ B, which can be satisfied if and only if
N∑
i=1

βi = 1 ∧
N∑
i=1

αi = 0. (15)

On the other hand, for all i = 1, . . . , N , we must ensure
pi ∈ Pi, which, using (13) in (4), translates into

li ≤ βip+ αi1 ≤ ui, (16a)
ei ≤ Biβip+ αiBi1 ≤ ei. (16b)

Since (16) must hold for all p ∈ B we have

li ≤ min
p∈B

βip+ αi1,

max
p∈B

βip+ αi1 ≤ ui,
(17a)

ei ≤ min
p∈B

Biβip+ αiBi1,

max
p∈B

Biβip+ αiBi1 ≤ ei,
(17b)

which can be equivalently posed as

li ≤ βic1− |βid|1 + αi1,

βic1 + |βid|1 + αi1 ≤ ui,
(18a)

ei ≤ Biβic1− |Biβid|1 + αiBi1,

Biβic1 + |Biβid|1 + αiBi1 ≤ ei,
(18b)

where the minimum and maximum operators with vector ar-
guments and the absolute value of vectors and matrices must
be intended component-wise. Unfortunately, constraints (18)
contain the products between βi and c and between βi
and d, which are all decision variables, thus rendering (18)
non-convex. However, considering the following change of
variables

δi = βid, (19a)
µi = βic+ αi, (19b)

enables to reformulate (18) as

li ≤ µi1− |δi|1,
µi1 + |δi|1 ≤ ui,

(20a)

ei ≤ µiBi1− |δiBi|1,
µiBi1 + |δiBi|1 ≤ ei,

(20b)

which is now convex in µi and δi. The box parameters can
be easily recovered as

d =

N∑
i=1

βi︸ ︷︷ ︸
1

d =

N∑
i=1

δi, (21a)

c =

N∑
i=1

βi︸ ︷︷ ︸
1

c+

N∑
i=1

αi︸ ︷︷ ︸
0

=

N∑
i=1

µi, (21b)

and (if the feasibility set has non-zero volume) the policy
parameters can be computed as

βi =
δi
d

and αi = µi − βi c. (22)

Additional relevant constraints can also be included in the
problem formulation like, e.g.,

i) the constraint

−
N∑
i=1

δi ≤
N∑
i=1

µi ≤
N∑
i=1

δi (23)

to ensure 0 ∈ B, so that a zero request (i.e., no deviation
from the baseline profile) can be accommodated,

ii) constraints on the minimum levels of downward (umin)
and upward (lmin) services requested by the grid

−
N∑
i=1

δi + umin ≤
N∑
i=1

µi ≤
N∑
i=1

δi + lmin, (24)

iii) network constraints of the form∑
i∈N`

µi +
∑
i∈N`

δi ≤ umax
` , (25a)

lmax
` ≤

∑
i∈N`

µi −
∑
i∈N`

δi, (25b)
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where the power injected by a set N` of neighboring
prosumers in a point ` of the grid is subject to conges-
tion constraints.

Finally, since we are inner-approximating the overall flex-
ibility set P with an M -dimensional cube, maximizing its
volume is equivalent to maximizing d =

∑N
i=1 δi. We can

thus find the largest-volume box B ⊆ P by solving the
following convex optimization program

max
{δi,µi}Ni=1

N∑
i=1

δi (26)

subject to: li ≤ µi1− |δi|1,
µi1 + |δi|1 ≤ ui,
ei ≤ µiBi1− |δiBi|1,
µiBi1 + |δiBi|1 ≤ ei,
i = 1, . . . , N,

(23), (24), (25) ∀`,

and recovering the box and the policy with (21) and (22).
Note that d =

∑N
i=1 δi obtained by solving (26) will

necessarily be non-negative because the δi’s appear in the
constraints through their absolute value, and their sum is
maximized. Indeed, each single δi will be non-negative and,
hence, βi recovered in (22) will also be non-negative, a
condition that was enforced a priori in [10] and here is
instead an outcome of the optimization.

A slightly different cost function can be used to promote
some solutions over others, but still preserving convexity.
For example, among all the different boxes with the same
volume, one may be interested in finding the one with the
center close to zero, which can be easily achieved by using

N∑
i=1

δi − ε
∥∥∥ N∑
i=1

µi

∥∥∥2
2

where ε > 0 is a sufficiently small coefficient to ensure that
the primary objective is still maximizing the volume of B.

Note that the optimization problem (26) is coupled due
to the constraints (23)-(25). Yet, it is characterized by a
constraint-coupled multi-agent structure (that can also be re-
covered in the case when the penalization term ‖

∑N
i=1 µi‖22

is introduced by adding an auxiliary decision variable for
the aggregator to upper bound it and treating the aggregator
as a further agent), and it can then be solved by applying
distributed optimization schemes like [12], for achieving
scalability and preserving privacy.

If the constraints (23), (24), (25) and the penalization term
over µi are not of interest, then (26) has a separable structure
and each prosumer can solve the local maximization problem

max
δi,µi

δi (27)

subject to: li ≤ µi1− |δi|1,
µi1 + |δi|1 ≤ ui,
ei ≤ µiBi1− |δiBi|1,
µiBi1 + |δiBi|1 ≤ ei,

and then coordinate with the others to recover the box
parameters and the policy using (21) and (22). For instance,
one of them or an external entity could act as an aggregator,
and collect all the δi, µi solutions, compute the center
parameter c and half-size d of the box, and then send them
to all the prosumers so that each one can derive its own
policy parameters without sharing its local information (loss
coefficient, energy and power bounds, initial energy content).

IV. SIMULATION RESULTS

In this section, we compare the performance of the
proposed method and the GBM approach in [10]. To this
aim, we consider a pool of N = 50 prosumers, each one
equipped with a storage device that satisfies the simplifying
assumptions (7a) and (7b) adopted in [10], with the lower
and upper bounds on the power exchange in (7a) taken with
the same absolute value (Li = −Ui, i = 1, . . . , N ) and the
time-slot duration τ = 1. In order to generate the population
of prosumers, we extract at random the parameters Ci, Ui,
ζi from a uniform distribution U(I) over some interval I ,
respectively set equal to [8, 12], [5.5, 7.5], and [0.6, 1].

Given the extracted population, we then compute the
flexibility sets according to the two approaches. We consider
M = 2, . . . , 7 as values for the number M of time-slots,
while we maintain the time slot duration constant and equal
to τ , with an initial condition ei(0) extracted according to
U(γ[−Ci, Ci]) with γ = 0, 0.2, 0.4, . . . , 1, so as to impose
an initial state dispersion around zero of γ · 100%.

For each pair (M,γ · 100), Figure 1 reports the ratio

Vrel =
VGBM
Vbox

(28)

where VGBM and Vbox are the volumes of the M -
dimensional flexibility sets obtained with the GBM approach
in [10] and our method, respectively. Volume VGBM has
been computed using the COntinuous Reachability Analysis
(CORA) Toolbox, [13]. Darker colors correspond to values of
Vrel close to zero (meaning that the flexibility set provided by
our approach is much larger than the one returned by [10]),
while lighter colors correspond to higher ratios, for which
the GBM approach is more effective.

Note that Vrel is strictly smaller than 1 in most instances.
Also, Vrel takes smaller and smaller values as γ grows,
which indicates that the approximation adopted in [10] is
more conservative as the dispersion in the initial condition
increases. For a dispersion larger than 20%, Vrel decreases
as the number M of time slots increases.

Just to appreciate the level of conservatism introduced
in the GBM approach by a growth in the initial condition
dispersion γ · 100% within the capacity range −[Ci, Ci],
we consider M = 2 and report the flexibility sets for
γ ∈ {0, 0.4} in Figure 2a (γ = 0) and 2b (γ = 0.4). Note that
our method is more robust against the dispersion of the initial
condition. In fact, in both scenarios, the box reaches the
boundaries of the exact aggregated flexibility set and, thus,
the error of the approximation is mainly given by geometric
mismatches, whereas the region obtained using [10], despite
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Fig. 1: Volume ratio as a function of the number M of time-
slots and the dispersion γ · 100% of the initial state. The red
line separates the (M,γ · 100%) pairs for which the volume
ratio is larger than 1 from those where it is smaller than 1.

having the potential of adopting the “right” shape, has a
smaller volume when γ = 0.4.

Note that, when γ = 0, the approach in [10] performs
better than ours (Vrel > 1) because of its PE-polytopic
shape. In this respect we are favoring [10] in the comparison
since the PE-polytope obtained by [10] should be inner-
approximated by a box to comply with the energy service
market requirements. If we compare the volume of our box
and the volume of the box contained in the PE-polytope
of [10], then we are always better by construction, since our
box is the one which maximizes the volume.

V. CONCLUSION

We propose a new method to assess the power flexibility
of a population of storage systems, which rests on the
adoption of an affine disaggregation policy and on the
approximation of the flexibility set with a box. Notably,
the resulting optimization problem for determining the box
and the coefficients of the disaggregation policy is amenable
for a distributed implementation. Numerical results reveal
that our method has a better performance than an inspiring
contribution in the literature as the time horizon length and
the dispersion of the initial condition grow. Future work
will focus on further improving the results by extending
the degrees of freedom of the affine policy. Note that the
proposed method was derived referring to resources that are
described as PE-polytopes. Resources modeled as general
convex polytopes (see [7]) could also be considered, whereas
the non-convex case remains open.
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