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Abstract— Safely controlling unknown dynamical systems is
one of the biggest challenges in the field of control systems.
Oftentimes, an approximate model of a system’s dynamics
exists which provides beneficial information for control design.
However, differences between the approximate and true systems
present challenges as well as safety concerns. We propose an
algorithm called SAFESLOPE to safely evaluate points from
a Gaussian process model of a function when its Lipschitz
constant is unknown. We establish theoretical guarantees for
the performance of SAFESLOPE and quantify how multi-fidelity
modeling improves the algorithm’s performance. Finally, we
present a case where SAFESLOPE achieves lower cumulative
regret than a naive sampling method by applying it to find the
control gains of a linear time-invariant system.

I. INTRODUCTION

In the realm of control systems, there exist many instances
in which the dynamics are not fully modeled. While an
approximation of the dynamics may exist, variations in the
system’s components or environment may cause the system
to deviate from the design model. For example, consider
off-the-shelf robotics kits. Though identically designed, each
robot possesses variations that cause its performance to vary
from the design model. In this case, we can consider each
robot to be a black-box system, possessing accessible input-
output data but inaccessible exact dynamics. We study how
the true system output can be used with a design or simulated
model to create an improved model of the true dynamical
system.

Gaussian process (GP) regression is a popular non-
parametric technique for optimizing unknown or difficult-to-
evaluate cost functions. The upper confidence bound (UCB)
algorithm [1] guarantees asymptotic zero regret when it-
eratively sampling a GP. Multi-fidelity Gaussian processes
(MF-GPs) predict a distribution from multiple correlated
inputs. The linear auto-regressive (AR-1) model is an MF-
GP that uses a cheaper model to assist in evaluating a more
complex model [2]. The AR-1 model’s recursive structure
allows it to effectively model correlated processes while its
decoupled form enables computationally efficient parameter
learning. Analytical guarantees have also been established
when applying Bayesian optimization to MF-GPs [3], [4].

Recently, GPs have been explored for control design. GPs
and MF-GPs have been applied to finding ideal control gains
for linear time-invariant (LTI) systems [5], [6]. MF-GPs
have also been applied to falsification frameworks for testing
system safety [7]. However, these papers primarily contain
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experimental results, without any mathematical guarantees
for the approach.

Other data-driven methods have been proposed to control
LTI systems. Model-based approaches reconstruct a model
of the system dynamics from trajectories of similar systems
[8], [9] and have been studied for robustness [10]. When
data is abundant, model predictive control may be used to
find an ideal control strategy [11]. Model-free approaches
aim to directly control a system without learning the system
dynamics [12]–[14].

Whether model-based or model-free, a critical aspect of
controller design is safety. A recent review of safe learning
in control classifies approaches based on the strength of
the safety guarantee and the required knowledge of the
system’s dynamics [15]. An ideal approach ensures strict
constraints are met for a system with unknown dynamics.
Despite proposed solutions, there is a gap in work involving
using GPs for safe control design.

We consider a data-driven Bayesian optimization approach
to find optimal controllers of black-box systems. The follow-
ing are our main contributions:

1) We establish SAFESLOPE, a safe exploration algorithm
with analytical bounds when the Lipschitz constant of a
black-box cost function is unknown. Unlike SAFEOPT [16],
which relies on a known Lipschitz constant, we upper bound
the slope using the posterior distribution of the GP.

2) We formalize how an AR-1 model can improve the
choice of inputs. In particular, we show how its conditional
covariance matrix can be used to reduce the upper bound
on the information gain. We also numerically compare the
performance of an AR-1 model to a single-fidelity GP.

II. PROBLEM OVERVIEW

A. Motivating Scenario

For this problem, we model a true system with LTI
dynamics, zj+1 = Azj + Buj , where z ∈ Rn is the state,
u ∈ Rp is the input, and A ∈ Rn×n, B ∈ Rn×p are the
system matrices. Under feedback control, the system input is
uj = −Kzj , where K ∈ Rp×n is the control gain. Given an
initial state z0 and weighting matrices Q and R, the system’s
infinite-horizon LQR cost for a set of gains K is

J(K)=

∞∑
j=0

zT
0 (A−BK)Tj [Q+KTRK](A−BK)jz0. (1)

Our goal is to minimize (1) by finding the ideal gain K∗.1

1We demonstrate the algorithm on an LTI system with a quadratic
cost for simplicity’s sake. However, our algorithm may also be applied
to any system possessing a parameterized controller with a measurable
performance metric.
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When A and B are unknown, determining an ideal K∗

becomes more challenging. We consider a situation in which
a design model of the system has the evolution zj+1 =
Âzj + B̂uj and associated cost Ĵ , with Â ∈ Rn×n, B̂ ∈
Rn×p. The design model has the same dimension as the true
system, but its entries differ from those in the true system.
We aim to leverage the design model to quickly find an ideal
K∗ while avoiding gains that cause instability.

We propose using an MF-GP framework that only requires
the input-output data from the auxiliary and the true systems.
Here, the input is the choice of gain K, and the output is
J(K). We apply an AR-1 model by treating (Â, B̂) and
(A,B) as the low- and high-fidelity models, respectively.
By using a search algorithm that guarantees safety, we seek
to avoid sampling unstable controller gains.

B. Multi-Fidelity Gaussian Processes (MF-GPs)

A Gaussian process is a collection of random variables
such that every finite set of random variables has a multi-
variate Gaussian distribution [17]. A GP is defined over a
space X ⊂ Rn by its mean function µ : X → R and its
covariance (kernel) function k : X × X → R.

Given a set of points Xt = {x1, . . . ,xt}, we create a
covariance matrix k(Xt,Xt) = [k(xi,xj)]

t,t
i,j=1, which is

always positive definite. The covariance between a point
and a set of points yields a covariance vector k(x) :=
k(Xt,x) = [k(x1,x) . . . k(xt,x)]

T .
Let f be a sample from a GP with mean µ and kernel

k. Suppose we have prior data Xt and Y t = {y1, . . . , yt},
where yi = f(xi)+η has measurement noise η ∼ N(0, ξ2).
Then the posterior distribution of f at x is a normally
distributed random variable with mean µf,t+1, covariance
kf,t+1, and standard deviation σf,t+1 given by

µf,t+1(x) = kT (x)[k(Xt,Xt) + ξ2I]−1Y t (2)

kf,t+1(x,x
′) = kf,t(x,x

′)−kT (x)[k(Xt,Xt)+ξ2I]−1k(x′)

σf,t+1(x) =
√

kf,t+1(x,x). (3)

To incorporate data from multiple sources, we use an AR-1
model, which models f as a linear combination of a low-
fidelity GP fL(x) and an error GP δ(x) according to

f(x) = ρfL(x) + δ(x), (4)

where ρ is a scaling constant [2]. In general, an AR-1 model
is beneficial when the low-fidelity observations XL are more
abundant than the high-fidelity observations XH .

Let k(L) denote the kernel of fL(x) and k(δ) denote the
kernel of δ(x). Then, letting X = [XL,XH ], the covariance
matrix of the AR-1 model has the form

k(MF )(X,X) =

[
k
(L)
L,L ρk

(L)
L,H

ρk
(L)
H,L ρ2k

(L)
H,H + k

(δ)
H,H

]
, (5)

where k
(L)
L,H is shorthand notation for the single-fidelity

covariance matrix k(L)(XL,XH).

C. Problem Statement
Consider a finite domain X ⊂ Rn, with x =

(x1, . . . , xn) ∈ X . Let f : X → R be an unknown realization
of a GP and let x∗ be a minimizer of f . Given a safety barrier
h ∈ R and precision ϵ > 0, our goal is to design a sequence
{xt}t∈N such that for some sufficiently large t∗,

f(xt) < f(x∗) + ϵ, ∀t > t∗; and f(xt) ≤ h ∀t ∈ N.

We develop an iterative algorithm to design such a se-
quence {xt}t∈N. We apply this framework to the multi-
fidelity case when an approximation of f(x) is available.

III. ALGORITHMS AND MAIN RESULTS

In this section, we first review the SAFEOPT algorithm,
which forms the framework of SAFESLOPE. Next, we in-
troduce SAFESLOPE and describe how it deviates from
SAFEOPT. We then discuss how SAFESLOPE applies to MF-
GPs, then discuss the theoretical properties of this algorithm.

A. The SAFEOPT Algorithm [16]
SAFEOPT is an exploration algorithm that uses the Lip-

schitz constant L of a function f to avoid searching in
an unsafe domain. To accomplish this, SAFEOPT uses the
predictive confidence interval

Qf,t(x) :=
[
Q−

f,t(x), Q
+
f,t(x)

]
, (6)

where Q±
f,t(x) := µf,t−1(x) ± β

1/2
f,t σf,t−1(x) and βf,t is a

parameter which controls exploration.
Step 1: Given an initial safe set S0, we define Cf,0(x) :=

[h,∞), ∀x ∈ S0 and R otherwise. Then, the nested con-
fidence interval Cf,t(x) = Cf,t−1(x) ∩ Qf,t(x) is used to
define the upper and lower confidence bounds of f as

uf,t(x) := maxCf,t(x) and ℓf,t(x) := minCf,t(x). (7)

Step 2: These confidence bounds are used to establish the
subsequent safe sets St according to

St =
⋃

x∈St−1

{x′ ∈ X | uf,t(x) + Ld(x,x′) ≤ h} ,

where d(x,x′) is the distance between x and x′.
Step 3: Two subsets of St guide the search process. The

set of points that potentially minimize f is given by

Mt =

{
x ∈ St

∣∣∣∣ℓf,t(x) ≤ min
x′∈St

uf,t(x
′)

}
.

Step 4: Meanwhile, the set of points that potentially
increase the size of St is given by

Gt = {x ∈ St|gt(x) > 0} ,

where gt(x) is the cardinality of the set of points that
sampling at x could add to St, defined by

gt(x) :=
∣∣∣ {x′ ∈ X\St | ℓf,t(x) + Ld(x,x′) ≤ h}

∣∣∣.
Step 5: From the union of Mt and Gt, SAFEOPT selects

points using the width of the confidence interval wt(x) :=
uf,t(x)− ℓf,t(x) according to the function

xt ∈ argmax
x∈Mt∪Gt

wt(x). (8)
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B. The SAFESLOPE Algorithm
The SAFESLOPE algorithm is an adaptation of SAFE-

OPT with the following modification: we assume the global
Lipschitz constant is unknown and instead use local slope
predictions to avoid searching beyond the safety limit.

To do so, we model the slopes of f as GPs. For ease of
presentation, we organize X into a hypercube with rn points.
Along each axis i ∈ {1, . . . , n}, we create an incidence
matrix Wi with size (r − 1)rn−1 × rn. Each Wi corresponds
to the union of directed line graphs along the i-th axis. Then,
at iteration t, we represent the slopes between adjacent points
along the i-th axis using mi ∈ R(r−1)rn−1

. Each mi is a
realization of a GP with mean and covariance

µmi
= Wi · µf,t(X ), kmi

= Wi · kf,t(X ) ·WT
i .

Essentially, the elements of mi consist of evaluations of

mi(x,x
′) = [µf (x

′)− µf (x)]/d(x
′,x),

where x and x′ are adjacent points along the i-th axis, x′
i >

xi, and d(x′,x) is the distance between x and x′.
Step 1: We preserve the format of SAFEOPT’s safety

condition by using the magnitude of the slope. Here, we use
the greatest magnitude of the confidence bounds, defined by

qmi,t(x,x
′):=max

{
abs(Q−

mi,t(x,x
′)), abs(Q+

mi,t(x,x
′))

}
,

(9)

where

Q±
mi,t(x,x

′) := µmi,t−1(x,x
′)± β

1/2
m,tσmi,t−1(x,x

′).

Then, we replace L with the nested upper bound on the slope

ûmi,t(x,x
′) := min{qmi,t(x,x

′), ûmi,t−1(x,x
′)}, (10)

where ûmi,0 = ∞.
Step 2: We now redefine the safe set as

St =
⋃

x∈St−1

⋃
i=1,...,n

{
x′ ∈ Vi(x) | st(x,x′) ≤ h

}
, (11)

where

st(x,x
′) = uf,t(x) + ûmi,t(x,x

′) · d(x,x′)

and the vicinity Vi of x is given by

Vi(x) = {x′ ∈ X |x′,x are adjacent and x′
i = xi} .

Steps 3 and 4: The definitions of Mt and Gt are the same
as those in SAFE-OPT, but the growth criterion becomes

gt(x) =
∣∣∣ {x′ ∈ Vi(x)\St|ℓf,t(x) + ûmi,td(x,x

′) ≤ h}
∣∣∣.

Step 5: Similar to SAFEOPT, points are sampled using
the redefined Mt and Gt according to (8).

C. Multi-fidelity Extension of SAFESLOPE

We can use SAFESLOPE to sample points from the highest
fidelity of an MF-GP. Consider an AR-1 GP with fidelities,
fL and f . We evaluate fL at every x ∈ X to construct a
data set (Y L,XL). We also evaluate f at a starting point
x0 = argmin

x∈X
fL(x). Then, with x0 as S0, SAFESLOPE is

used to explore the AR-1 GP and find x∗.

D. Reachability

Similar to SAFEOPT, the theoretical guarantees of SAFE-
SLOPE rely on the reachability operator. Define ût :=
[ûm1,t, . . . , ûmn,t]

T . Then the reachability operator at time
t is the set of points given by

Rϵ,ût
(S) :=

S ∪
{
x′ ∈ X

∣∣∣∣ ∃x ∈ S, ∃i ∈ {1, . . . , n},x′ ∈ Vi(x),
f(x) + ûmi,t(x,x

′) · d(x,x′) + ϵ ≤ h

}
,

where ûmi,t(x,x
′) is the upper bound on the slope between

x and x′ at time t. Given the current set of safe points, the
reachability operator provides the total collection of points
that could be sampled as f is learned within S.

The T -step reachability operator is defined by

RT
ϵ (S) := Rϵ,ûT

(Rϵ,ûT−1
. . . (Rϵ,û0

(S))). (12)

By taking the limit, we obtain the closure set R̄ϵ(S) :=
limT→∞ RT

ϵ (S). Because SAFESLOPE never explores out-
side R̄ϵ(S0) with probability 1, we modify our optimization
goal from Section II-C to take the equivalent form,

f∗
ϵ = min

x∈R̄ϵ(S0)
f(x).

E. Theoretical Results

For Bayesian approaches, we measure the information gain
after sampling a set of points A ⊆ X as I(yA;fA) =
H(yA)−H(yA|f), where yA is a random vector of noisy
observations of f evaluated at every point in A, fA is the
vector of true values of f at every point in A, and H is the
entropy of the vector. The maximum information gain after
T evaluations of f is given by

γT = max
A⊂X ,|A|=T

I(yA;fA). (13)

A bound on the γT can be found in [1, Eq. (8)]. With the
information gain defined, we now move to the main theorem.

Theorem 3.1 (Single-Fidelity SAFESLOPE Guarantees):
Define x̂t := argminx∈St

uf,t(x). Select δf , δm ∈ (0, 1).
Set βf,t = 2 log(|X |πt/δf ) and βm,t = 2 log(|X |nπt/δm),
where

∑
t≥1 π

−1
t = 1 with πt > 0. Given an initial safe

set S0 ̸= ∅, with f(x) ≤ h for each x ∈ S0, let t∗ be the
smallest positive integer satisfying

t∗

γt∗βf,t∗
≥

C1

(
|R̄0(S0)|+ 1

)
ϵ2

,

where C1 = 8v2/ log(1 + v2ξ−2), v2 is the kernel variance,
and | • | denotes cardinality. Then, for any ϵ > 0, using
SAFESLOPE with βf,t and βm,t results in the following.

• With probability at least 1− δf − δm,

∀t ≥ 1, f(xt) ≤ h.

• With probability at least 1− δf ,

∀t ≥ t∗, f(x̂t) < f∗
ϵ + ϵ. ■

The first point of Theorem 3.1 states that with high
probability, SAFESLOPE will sample points under a threshold
h. This probability is directly tied to βf and βm, parameters
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that quantify the algorithm’s tendency to explore points
in unexplored regions. The second point states that with
high probability, after time t∗, the minimum yielded by
SAFESLOPE will fall within an ϵ-neighborhood of f∗

ϵ . This
value of t∗ scales intuitively with the information gain γt∗ ,
since more information to learn requires a greater search
iteration count. Because γt∗ lacks a closed-form solution, a
bound on γt∗ is typically used instead.

Our second main result is an extension of Theorem 3.1 to
an AR-1 model. But first, we establish an upper bound on
the information gain γT for an AR-1 model.

Theorem 3.2 (Information Gain Bound for an AR-1 GP):
Consider the information gain γT from (13). For a linear
auto-regressive GP with noise-free (ξ2L = 0) low-fidelity
observations at XL and high-fidelity observations at
XH ⊆ XL, the information gain γT is upper bounded by

γ̃T :=
1/2

1− e−1
max

m1,...,mT

T∑
t=1

log
(
1 + ξ−2mtλ

(δ)
t

)
, (14)

where
∑T

i=1 mi = T and λ
(δ)
t are the eigenvalues of the

error covariance matrix k
(δ)
H,H .

Proof: Suppose we have the high- and low-fidelity input
points XH and XL, where XH ⊆ XL, XH′ = XL\XH ,
and each entry of XL is unique. Then, XL = XH ∪XH′ .
Since the covariance matrix is always positive definite, k(L)

L,L

is invertible, and the covariance of the high-fidelity data
conditioned on the low-fidelity data is given by

k(fH(XH), fH(XH)|fL(XL) = yL, fH(XH) = yH)

= ρ2k
(L)
H,H + k

(δ)
H,H − ρ2k

(L)
H,L[k

(L)
L,L]

−1k
(L)
L,H

= ρ2k
(L)
H,H + k

(δ)
H,H − ρ2

[
k
(L)
H,H′ k

(L)
H,H

]
×

[
k
(L)
H′,H′ k

(L)
H′,H

k
(L)
H,H′ k

(L)
H,H

]−1 [
k
(L)
H′,H

k
(L)
H,H

]
= k

(δ)
H,H ,

where the last line is obtained using properties of block
matrix inversion. In words, the conditional covariance is
simply the covariance of the error GP δ(x). By applying
the above result to [1, Eq. (8)], we complete the proof.

Remark 3.1: As the quality of a low-fidelity model im-
proves, the variance of the error GP approaches 0. Since the
eigenvalues of a covariance matrix are directly proportional
to the kernel’s variance, Theorem 3.2 shows that improving
the low-fidelity quality decreases the eigenvalues of k

(δ)
H,H ,

thereby decreasing the information gain.

Theorem 3.3 (Multi-Fidelity SAFESLOPE Guarantees):
Assume f is an AR-1 GP with the structure given in (4).
Consider x̂t, δf , δm, βf,t, βm,t, πt, and S0 as defined in
Theorem 3.1. Let t∗MF denote the smallest positive integer
satisfying

t∗MF

γ̃t∗MF
βf,t∗MF

≥
C1

(
|R̄0(S0)|+ 1

)
ϵ2

,

where γ̃t∗MF
is defined by (14), C1 = 8v2MF / log(1 +

v2MF ξ
−2), and v2MF is the variance of the AR-1 GP, given

by v2MF = ρv2L+v2δ . Then, for any ϵ > 0, using SAFESLOPE
with βf,t and βm,t, with probability at least 1− δf ,

∀t ≥ t∗MF , f(x̂t) < f∗
ϵ + ϵ. ■

This theorem indicates that the quality of a multi-fidelity
model impacts the time t∗MF to identify an optimal x̂. In
particular, improving the quality of the low-fidelity model
lowers the information gain bound γ̃t∗MF

, thereby decreasing
the time to find an optimal x̂.

IV. NUMERICAL RESULTS

We now apply SAFESLOPE to our motivating scenario, in
which we try to find the best controller for a system when
an approximate model of the system exists.

For the motivating scenario from Section II-A, consider a
2× 2 LTI system. For the true system, we let

A =

[
0.785 −0.260
−0.260 0.315

]
, B =

[
1.475
0.607

]
. (15)

By applying system identification [18] to (15) with Ns =
12 snapshots, we obtain the approximate model,

Â =

[
0.700 −0.306
−0.306 0.342

]
, B̂ =

[
1.543
0.524

]
. (16)

Since unstable controllers result in extremely large costs,
we modify the cost functions to be

f(x) = log(J(x)), fL(x) = log(Ĵ(x)), (17)

where J and Ĵ are approximated by a 20-step horizon
quadratic cost with Q = I , R = 1 and x now represents
the choice of controller gains. Gaussian noise with variance
ξ2 = 10−4 and ξ2L = 10−8 is added to evaluations of f and
fL to ensure kernel matrices are well-conditioned.

Our goal is to find the controller gains x∗ = [x∗
1 x∗

2] such
that (17) is minimized. First, we set a search domain X and
select an initial safe set S0. In practice, input constraints and
low-fidelity data could guide the choice of X and S0. Here,
we set x1 ∈ [−0.5, 4.5], x2 ∈ [−3.5, 1.5], and resolution
r = 26. Matérn kernels are used to correlate points for each
fidelity [17]. For 10 different S0’s of three points each, we
observe the safety and regret of SAFESLOPE with parameters
h = 0, δf = 0.1, δm = 0.1, and πt = t2π2/6. We compare
SAFESLOPE to SAFEUCB, a naive approach that solely
relies on uf,t(x) for safety and selects points according to

xt = argmax
x∈St

w(xt), where St = {x ∈ X |uf,t(x) ≤ h} .

We use SAFEUCB with h = 0, δf = 0.1, and πt = t2π2/6.
To compare SAFESLOPE to SAFEUCB, we use the

cumulative regret up to time T , given by RT =∑T
t=0 (f(xt)− f∗). Fig. 1 plots the cumulative regret and

cumulative number of unsafe samples over 150 iterations.
We see that in this example the multi-fidelity SAFESLOPE
algorithm performs the best, with a plateau in regret after 25
iterations. In general, SAFESLOPE obtains better cumulative
regret than SAFEUCB at higher iteration counts. By limiting
evaluations to growth or minimizer points, SAFESLOPE
eliminates non-ideal points in fewer trials. This differs from
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Fig. 1. (a) Cumulative regret and (b) the cumulative number of
unsafe samples using SAFESLOPE and SAFEUCB, averaged across
10 trials. Error bars indicate one standard deviation.

SAFEUCB, which seeks to limit uncertainty across all safe
points, rather than growth and minimizer points only. We
also see both algorithms sample fewer unsafe points on MF
models, with MF SAFESLOPE sampling the fewest unsafe
points on average.

V. CONCLUSION

We propose SAFESLOPE, a safe exploration algorithm that
leverages a function’s posterior mean to predict its slopes. We
preserve the safety result from SAFEOPT with a reduction
in probability. By applying SAFESLOPE to an AR-1 GP, we
show the search time for an optimal point corresponds to
the quality of the low-fidelity approximation. Finally, we
examine SAFESLOPE’s performance by comparing it to a
naive approach applied to single- and multi-fidelity models.
We observe that applying SAFESLOPE to an MF-GP achieves
lower cumulative regret while sampling fewer unsafe points.

Future research includes applying SAFESLOPE to nonlin-
ear systems, LTI systems with disturbances, or experimental
robotic applications. Another direction is designing a search
algorithm which can select either fidelity for evaluation.
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APPENDIX

The following steps compose the proof of Theorem 3.1.
We start by restating the upper confidence bound from
Lemma 5.1 in [1].

Lemma 1.1 (UCB Bound): Let f be a function sampled
from a GP. For all t ≥ 1 and βf,t = 2 log(|X |πt/δf ) with
probability 1− δf ,

abs[f(x)− µf,t(x)] ≤ β
1/2
f,t σf,t(x), ∀x ∈ X . ■

Next, we show that even though multiple GPs are used to
model the slopes, the UCB bound still applies.

Lemma 1.2: Suppose we have n GPs mi over X . For all
t ≥ 1 and βm,t = 2 log(|X |nπt/δm) with probability at least
1− δm, the following holds for all i = 1, . . . , n:

abs[mi(x)− µmi,t(x)] ≤ β
1/2
m,tσmi,t(x), ∀x ∈ X .

Proof: Let Ai be the event

Ai = {abs[mi(x)− µmi,t(x)] ≤ β
1/2
m,tσmi,t(x)∀x ∈ Xi}.

Then, P [Ac
i ] ≤ |X | · e−βm,t/2. By applying DeMorgan’s

laws and the union bound, we obtain P [∩iAi] ≥ 1 −
|X |ne−βm,t/2. The remainder of the proof is identical to the
proof of Lemma 5.1 in [1].

We now establish properties of sets used in SAFESLOPE.
Lemma 1.3: The following properties hold for all t ≥ 1.
(i) St+1 ⊇ St ⊇ S0.
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(ii) S ⊆ D =⇒ Rϵ,ût
(S) ⊆ Rϵ,ût

(D).
(iii) S ⊆ D =⇒ R̄ϵ(S) ⊆ R̄ϵ(D).

Proof: (i) From Lemma 2 of [16], we know that (i)
holds when the Lipschitz constant L of f(·) is known. By
replacing L with ûmi,t(x, x

′), it follows that for every t ≥ 1
and given any x, x′,

uf,t+1(x) + ûmi,t+1(x,x
′) · d(x,x′)

≤ uf,t(x) + ûmi,t(x,x
′) · d(x,x′) ≤ h.

From the definition of uf,t and ûmi,t, it follows that these
bounds are non-increasing over time, for all x. The second
inequality follows from (11). Therefore, St+1 ⊇ St ⊇ S0.

(ii) Let x ∈ Rϵ,ût(S). By definition of the reachability
set, ∃x′ ∈ S such that f(x′) + ûmi,t · d(x,x′) + ϵ ≤ h. As
S ⊆ D, this implies x′ ∈ D, which implies x ∈ Rϵ,ût

.
(iii) This directly follows from repeatedly applying part

(ii). Each reachability step is a union of two subsets of X ,
so the union is bounded by X and the limit exists.

Next, we show that the width w(x) is bounded by some
ϵ > 0 using upper confidence bounds. Unlike [1], [16], we
consider a non-unit variance for the kernel function k.

Lemma 1.4: Given a kernel with variance v2 and mea-
surement noise ξ2, for each t ≥ 1, define Tt as the
smallest positive integer satisfying Tt

βf,t+Ttγt+Tt
≥ C1

ϵ2 , where
C1 = 8v2/ log(1 + v2ξ−2). If St+Tt = St, then for any
x ∈ Gt+Tt

∪Mt+Tt
, it holds that wt+Tt

(x) ≤ ϵ. ■

The proof follows the same steps as Lemma 5 in [16] and
Lemma 5.4 in [1] with the difference of a non-unit kernel
variance. The complete proof is provided in [19].

In the following lemmas, we assume C1 and Tt are defined
as in Lemma 1.4. We next establish guarantees on how St

evolves with time using the reachability operator.
Lemma 1.5: For any t ≥ 1, if R̄ϵ(S0)\St ̸= ∅, then with

probability at least 1− δf ,

St+Tt
⊋ St. (18)

Proof: We prove this by contradiction. First, for any
t ≥ 1, if R̄ϵ(St)\St ̸= ∅, then Rϵ,ût

(St)\St ̸= ∅ (by
following steps identical to those in the proof of Lemma
6 in [16]). By the definition of Rϵ,ût(St), we know that (a)
∃x′ ∈ Rϵ,ût

(St)\St and (b) ∃x ∈ St so that

f(x) + ϵ+ ûmi,t(x,x
′) · d(x,x) ≤ h. (19)

Now, assume that contrary to (18), St+Tt = St. This
implies that x′ ∈ V (St+Tt

)\St+Tt
and x ∈ St+Tt

. As a
result, with probability at least 1− δf ,

ℓf,t+Tt
(x) + ûmi,t+Tt

(x,x′) · d(x,x′)

≤ f(x) + ûmi,t+Tt(x,x
′) · d(x,x′) by Lemma 1.1

≤ f(x) + ûmi,t(x,x
′) · d(x,x′) by (10)

≤ f(x) + ϵ+ ûmi,t(x,x
′) · d(x,x′) ≤ h by (19).

Therefore, gt+Tt(x) > 0 and x ∈ Gt+Tt . Since we

assumed that St+Tt
= St with x ∈ Gt+Tt

, we have

uf,t+Tt(x) + ûmi,t+Tt(x,x
′) · d(x,x′)

≤ uf,t+Tt
(x) + ûmi,t(x,x

′) · d(x,x′) by (10)
≤ uf,t+Tt(x)− f(x)− ϵ+ h by (19)
≤ wt+Tt

(x)− ϵ+ h ≤ h by Lemmas 1.1, 1.4.

Eq. (11) implies x′ ∈ St+Tt
. This contradicts our assumption

that x′ ∈ V (S)\St+Tt
. Therefore, St+Tt

⊋ St.
Lemma 1.6: For any t ≥ 1, if St+Tt

= St, then with
probability at least 1− δf ,

f(x̂t+Tt
) ≤ min

x∈R̄ϵ(S0)
f(x) + ϵ.

Proof: By solving a minimization rather than a
maximization, the first part of the proof of Lemma 8 in
[16] shows that f(x̂t+Tt

) ≤ f(x∗) + ϵ, where x∗ :=
argmaxx∈St+Tt

f(x). Then, since St+Tt
= St, Lemma 1.5

implies that R̄ϵ(S0) ⊆ St = St+Tt
. Therefore,

min
x∈R̄ϵ(S0)

f(x) + ϵ ≥ min
x∈St+Tt

f(x) + ϵ

= f(x∗) + ϵ ≥ f(x̂t+Tt
).

Corollary 1.1: For any t ≥ 1, if St+Tt
= St, then with

probability at least 1− δf ,

∀t′ ≥ 0, f(x̂t+Tt+t′) ≤ min
x∈R̄ϵ(S0)

f(x) + ϵ. ■

Similar to the proof of Corollary 3 in [16], this directly
follows from Lemma 1.6.

Having analyzed the evolution of the St, we now bound
the time it takes to achieve the optimization goal.

Lemma 1.7: Let t∗ be the smallest integer resulting in
t∗ ≥ |R̄0(S0)|Tt∗ . Then, there exists a t0 ≤ t∗ such that
St0+Tt0

= St0 . ■
The proof of this lemma is similar to the proofs of Lemma
9 and 10 in [16], with the key difference of R depending
on the upper bound of ût instead of a global constant L.
Complete proof provided in [19].

Corollary 1.2: Let t∗ be the smallest integer resulting in
t∗

βf,t∗γ
∗
t

≥ C1(|R̄0(S0)|+1)
ϵ2 . Then, there exists a t0 ≤ t∗ so

that St0+Tt0
= St0 . ■

The proof results directly from Lemmas 1.4 and 1.7.

Proof of Theorem 3.1: For the first point of Theorem 3.1,
the steps are similar to the proof of Lemma 11 in [16]. For
the induction step, assume f(x) ≤ h for some t ≥ 1 and any
x ∈ St−1. Then, for any x ∈ St, ∃x′ ∈ St−1 along some
axis i so that h ≥ uf,t(x

′) + ûmi,t(x
′,x) · d(x′,x).

With probability at least 1− e−
1
2βf,t ,

h ≥ f(x′) + ûmi,t(x
′,x) · d(x′,x) by Lemma 1.1.

With probability at least 1− e−
1
2βm,t ,

≥ f(x′) + |m(x′,x)| · d(x′,x), by Lemma 1.2
≥ f(x), by the definition of m.

By applying the union bound across |X | realizations of x,
the resulting inequality holds with probability 1− δf − δm.

The second point results from Corollaries 1.1 and 1.2. ■
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